
Journal of Theoretical and Applied Information Technology 
15th May 2022. Vol.100. No 9 
© 2022 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3075 

 

MODEL-BASED RESILIENCE PATTERN ANALYSIS FOR 
FAULT TOLERANCE IN REACTIVE MICROSERVICE 

 
MUHAMMAD MIRAJ 1, AHMAD NURUL FAJAR 2 

 
1,2Information Systems Management Department, BINUS Graduate Program - Master of Information 

Systems Management, Bina Nusantara University, Jakarta 11480. Indonesia 

E-mail:  1muhammad.miraj@binus.ac.id, 2afajar@binus.edu   
 
 

ABSTRACT 
 

In designing the application, it must be robust, meaning that the application design must be able to cope in 
the event of a failure. The failure here is more of a failure in communication between microservices. 
Overcoming communication failures between microservices is one of the most difficult problems to solve, 
especially in distributed systems. In this study, we use a resistance pattern consisting of a circuit breaker, 
bulkhead pattern, timeout pattern, and retry pattern to test which resistance pattern has a better response time 
and throughput when there is a failure to communicate between microservices and it can be concluded that 
the circuit breaker and the timeout pattern has better response time and throughput compared to other 
resilience patterns. 

Keywords: Microservices, Resilience Pattern, Reactive, Fault Tolerance, Architecture TradeOff Analysis 
Method 

 
1 INTRODUCTION  
 

This research was conducted at one of the 
companies engaged in online travel agents in 
Indonesia, the company has many microservices and 
is separated by platform, namely planes, hotels, 
trains, events, and car rentals. One of the 
microservices on the aircraft platform, called the 
flight order manager, has two important functions, 
namely making insurance orders and making the 
process of making aircraft orders. 

The search process, selecting passengers, 
schedules, and airlines along with addons such as 
baggage, food or seats using other microservices, 
after the process has been completed then the process 
from the microservice flight order manager runs to 
form orders and make insurance orders to another 
microservice called microservice insurance. 

When microservice insurance experiences 
stress, in another sense, it is experiencing a high load, 
because it does not only communicate with the 
aircraft platform, but also with the hotel, train, event 
and car rental platforms. This causes the flight order 
manager to experience a high load because it does 
not get a response from the microservice insurance 
which results in slow consumer transactions and 
even the transaction fails. 

The solution at that time was to temporarily 
close microservice insurance so that consumers do 
not buy insurance and microservice flight order 
managers do not need to make requests because there 
are no insurance products purchased by consumers. 
This solution has an impact on the company's 
purchase of insurance suspended. 

Based on these problems the author wants 
to try to overcome these problems, one way to solve 
these problems is by using the pattern of resilience 
[1]. While the resilience pattern itself is a type of 
service architecture that helps prevent tiered client 
server communication failures and to maintain 
functionality in the event of a communication failure 
in the service. The resilience pattern itself consists of 
several patterns according to the purpose of the 
pattern, namely Circuit Breaker Pattern, Bulkhead 
Pattern, Time Limiter Pattern and Retry Pattern. 

The retry pattern concept is quite simple, 
namely by re-sending the same request as before, 
while the circuit breaker has a slightly different way 
of retrying. In the circuit breaker pattern, the client 
will try to send several different requests to the 
server. When these requests fail at one time. Then the 
next request will not be sent again and immediately 
assume that the request will also fail. 

For the time limiter pattern itself, the 
concept provides a limit to the client not to always 



Journal of Theoretical and Applied Information Technology 
15th May 2022. Vol.100. No 9 
© 2022 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3076 

 

send requests. When the request is over-limited, it 
can immediately reject or create a request queue 
according to its limit, while the bulkhead pattern is a 
concept to avoid errors in one part of the system that 
cause the entire system to shut down. 

This study limits the four patterns of 
resilience to be analyzed, namely the performance of 
Circuit Breaker, Bulkhead Pattern, Timeout Pattern, 
and Retry Pattern, evaluated based on response time 
and throughput so that it is known which of the four 
patterns has the best performance. Furthermore, an 
experiment was carried out by conducting a 
simulation using two microservices, where one of the 
microservices experienced a system failure, then the 
microservice would be called by several users 
simultaneously. 

2 LITERATURE REVIEW 
. 
The literature study was conducted to add 

references to the theories used in the study as a 
comparison material in analyzing the model of 
resilience patterns and the application of the ATAM 
method as an evaluation method. 

 
2.1 Microservice 

Microservice means dividing an 
application into smaller, interconnected services 
unlike monolithic applications. Each microservice is 
a small application that has its own hexagonal 
architecture consisting of logic and its various 
adapters (programming languages, etc.). 

The microservices architecture is popular 
for its distributive system style. It describes how to 
develop an application as a series of small services 
that are implemented and deployed independently. 
Each service has processes running and interacting 
with each other by a lightweight mechanism called 
an Application Programming Interface (API)[2].  

 
Microservice architectural patterns 

significantly affect the relationship between 
applications and databases. Instead of sharing a 
single database schema with other services, each 
service has its own database schema. On the one 
hand, this approach contradicts the idea of an 
enterprise-wide data model. In addition, it often 
results in duplication of some data. However, having 
a per-service database schema is essential if you are 
to benefit from microservices. Each service has its 
own database. In addition, services can use the type 
of database and programming language that best 
suits their needs. 

 
2.2 Advantages and Disadvantages of 

microservices 
 

The following are the advantages obtained 
when using microservices including the following 
[3]: 
 Strong Module Boundaries, microservices can 

strengthen the modular structure, which is 
especially important for larger teams. 

 Independent Deployment, Simple services 
are easier to deploy, and because they are 
autonomous, are less likely to cause system 
failure when something goes wrong. 

 Technology Diversity, with mircroservice can 
combine various programming languages, 
development frameworks, and data storage 
technologies. 

The following are the disadvantages or 
prices to pay when using microservices as follows: 
 Distributed, Distributed systems are more 

difficult to program, because long-distance 
calls are slow and always run the risk of failure. 

 Eventual Consistency, maintaining strong 
consistency is very difficult for distributed 
systems, which means everyone must maintain 
consistency in the end  

 Operational Complexity, you need a mature 
operations team to manage 

2.3 Reactive System 

The term reactive system was introduced 
by David Harel and Amir Pnueli, and is now 
generally accepted to designate systems that 
permanently interact with their environment, and to 
distinguish them from transformational systems such 
as compilers [4]. 

This change occurs because application 
requirements have changed dramatically in recent 
years. Just a few years ago large-scale applications 
had dozens of servers, slow response times, 
maintenance of gigantic bytes of data offline. 
Currently, applications run from mobile devices to 
cloud-based clusters run by multi-core processors. 
User expectations, response time in milliseconds and 
100% uptime. Data is measured in petabytes. 
Today's software requirements cannot be met by old 
software architectures. 

A coherent approach to the system 
architecture is urgently needed and believes that all 



Journal of Theoretical and Applied Information Technology 
15th May 2022. Vol.100. No 9 
© 2022 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3077 

 

the necessary aspects have been recognized. 
Reactive Systems must have a system that is 
Responsive, Resilient, Elastic and Message Based. 
Systems built as reactive systems are more flexible, 
loosely coupled, and broad. This makes the system 
easier to develop and open to change. The system is 
significantly more failure tolerant and when failure 
is unavoidable it can handle failure elegantly, 
avoiding disaster. Reactive Systems are very 
responsive, can provide users with effective 
feedback interactively. 

2.4 Reactive Manifesto 

Prior to 2013, reactive was almost 
unknown. However, today "reactive" has increased 
in popularity and is being adopted by more and more 
companies. This is a direct response to the need for 
enterprises to design and build applications capable 
of handling the massively increasing scale and 
quantity of data. However, this widespread adoption 
has led to the creation of multiple applications and 
various "reactive" versions. 

In 2013, the Reactive Manifesto was 
created to do just this. This manifesto was conceived 
with a view to all the knowledge we have 
accumulated as an industry in designing and 
application that is highly reliable and scalable. It is 
then distilled with this knowledge into a set of 
required architectural characteristics that will make 
any application flexible, loose, and elastic. It also 
carves out a defined vocabulary to enable efficient 
and clear communication between all participants, 
including developers, project leaders, architects and 
CTOs [5]. 

The reactive manifesto outlines four high-
level characteristics of reactive systems: responsive, 
elastic, resilient, and message driven. While there 
are all of them, these characteristics are unlike 
hierarchical levels in standard layered architectures 
on the contrary, they describe design properties that 
must be implemented across the technology stack. 

2.5 Fault Tolerance 

Fault tolerance is a dynamic method used to 
maintain interconnected relationships, 
maintainability, and availability in distributed 
systems. The hardware and software redundancy 
method are a known fault tolerance technique in 
distributed systems. Hardware method ensures the 
addition of multiple hardware devices such as CPU, 

communication link, memory, and I/O devices while 
in software fault tolerance method, specific program 
to resolve the fault. an efficient fault tolerance 
mechanism helps in detecting faults and if possible 
recovering from them[6] 

Microservices are designed to run in a 
distributed environment. This distributed 
environment brings many benefits as well as many 
challenges. In this paper, the most important 
characteristics of a distributed system that can affect 
its behavior negatively will be described. It also 
provides an overview of best practices on how to 
address these challenges and the most popular tools 
for the Java platform that helped follow this writing. 

2.6 Resilience Pattern 

In making software, it should not just be 
casual, the software needs to support business 
processes and customers feel helped in operating the 
software. If the software is not running in 
production, it cannot generate value. Productive 
software, however, must also be correct, reliable, 
and available. 

When it comes to robustness in software 
design, the main goal is to build robust components 
that can help errors in their scope, but also the failure 
of other components that rely on them. Although 
techniques such as automatic failure or redundancy 
can make components fault-tolerant, almost every 
distributed system today. Even simple web 
applications can contain web servers, databases, 
firewalls, proxies, load balancers, and cache servers. 
Moreover, the network infrastructure itself is made 
up of so many components that there is always a 
failure going on somewhere[7]. 

At this writing, the author wants to see four 
patterns of resistance patterns, namely: Circuit 
Breaker Pattern, Bulkhead Pattern, Timeout Pattern, 
Retry Pattern 

Circuit Breakers in electronics, circuit 
breakers are protecting your components from 
damage due to overload. In software, circuit breaker 
protects your service from spam while some of it is 
no longer available due to high load.[7] 

Circuit Breaker Pattern described by Martin 
Fowler. It can be implemented as stateful software 
that switches between three states: closed (requests 
can flow freely), open (requests are denied without 



Journal of Theoretical and Applied Information Technology 
15th May 2022. Vol.100. No 9 
© 2022 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3078 

 

being sent to a remote resource), and half-open (one 
request is asked to decide whether to close) the 
circuit. again). 

The Bulkhead Pattern is a type of failure 
tolerant application design. In a partition 
architecture, application elements are isolated into 
batches so that if one fails, the others continue to 
work. This is selected partition part (bulk) ship hull. 
If the hull is damaged, only the damaged part is filled 
with air, so the ship cannot sink[8]. 

Timeout Pattern is a pattern to set the time 
limit we wait for the operation to finish called time. 
If the operation doesn't finish within the time we set, 
we want to be notified about it with a timeout error. 
sometimes, this is also referred to as "setting a 
deadline". 

One of the main reasons for this pattern is 
to ensure that it doesn't keep the user or client 
waiting indefinitely. Slow service that doesn't 
provide any feedback can leave users disappointed. 
Another reason for the pattern of setting a timeout on 
operations is to make sure we don't hold the resource 
server indefinitely. 

Retry Pattern is Whenever we assume that 
an unexpected response or no response in this case 
can be fixed by sending the request again, using the 
retry pattern can help. This is a very simple pattern 
where failed requests are retried a configurable 
number of times in case of failure before being 
marked as failure [9]. 

2.7 Architecture TradeOff Analysis Method 

The architectural tradeoff analysis method 
abbreviated as ATAM was developed by the 
Software Engineering Institute (SEI) at Carnegie 
Mellon University. Its purpose is to help select 
alternative architectures for software systems by 
finding trade-offs and sensitivity points. This 
method is a risk mitigation process used early in the 
software development cycle and is most beneficial 
here because of the minimal cost of architectural 
changes. 

In general, there are 9 steps that can be done 
with ATAM, of which these 9 steps are categorized 
into 4 conceptual groups[10] 

1) Presentation, exchange of information 
about the system with presentations with 

stakeholders. There are 3 steps to 
presentation: 

a. Describe ATAM itself, The raters 
explain the method so that those who 
will be involved in the evaluation 

b. Describe business drivers, An 
appropriate system representative 
presents an overview of the system, its 
requirements, business objectives, and 
context, and the drivers of its 
architectural quality attributes 

c. Present the proposed architecture, The 
systems or software architect (or other 
key technical staff) presents the 
architecture 

2) Investigation & analisys, considering the 
need for key quality attributes and 
architectural approaches. In this group 
there are 3 steps: 

a. Identify architectural approaches, is 
an architectural approach identified 
by, but not analyzed. 

b. Generate a utility tree describing 
quality attributes, hierarchical list of 
quality requirements. 

c. Analyze architectural approaches, 
This results in differences in 
sensitivity points in which approaches 
affect attribute quality, which 
approach points affect some 
attributes, and the quality of the list of 
points that cause risk. 

3) Testing,  check the results obtained with the 
needs of relevant stakeholders. In testing 
there are 2 steps, namely: 

a. Brainstorm and prioritize scenarios, 
Now that stakeholders are included, 
brainstorm both current use cases, 
expected future "change scenarios," 
and extreme "exploratory scenarios." 

b. Re-analyze architectural approaches 
and priorities, Now focus on the most 
important scenarios from step 7. If a 
scenario cannot be realized using the 
chosen architectural approach, this 
needs to be adjusted. 

4) Reporting, report the final results of the 
ATM to stakeholders. There is 1 step in the 
report group: 

a. Present consensus results, Based on 
the information collected at ATAM 
(style, scenario, attribute-specific 



Journal of Theoretical and Applied Information Technology 
15th May 2022. Vol.100. No 9 
© 2022 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3079 

 

questions, utility tree, risk, location, 
cost). 

 

3 RELATED WORKS 

Hajar Hameed Adden in the year of 2019 
[9] perform an analysis by testing one of the 
resistance patterns, namely the circuit breaker 
pattern and modifying the circuit breaker by adding 
the Markov Chain algorithm and given the name 
DFTM (Dynamic Fault Tolerance Model) with 
circuit breaker. The results of the analysis are stated 
that DFTM has better performance and reliability 
than the original circuit breaker, the study only tested 
the circuit breaker without testing other patterns such 
as timeout pattern, bulkhead pattern and retry 
pattern. 

For research conducted Nabor C. 
Mendonca Carlos M. Aderaldo in the year of 2020 
[1] conducted an analysis of resistance patterns 
namely circuit breakers and retry patterns using the 
checker model namely PRISM, the results of these 
stated that if both patterns were configured correctly 
it could reduce failures in communicating between 
clients and servers. In this study, testing by adding a 
circuit breaker and a retry pattern can reduce failures 
in communication between client and server 
compared to without using these two patterns and 
this study does not examine other patterns such as 
bulkhead patterns and timeout patterns. 

Furthermore, for the research conducted by 
Fabrizio Montesi and Janine Weber in 2018 entitled 
from the decorator pattern to circuit breakers in 
microservices[11] conduct an analysis of the settings 
for the application of circuit breakers and implement 
it using the Jolie programming language. Then for 
the research conducted by Elena Troubitsyna in 
2019, which proposed a systematic model for fault 
tolerance, in this study defines a generic modeling 
pattern that can be used in microservice driven 
models to assist in analyzing possible failures and 
improving QoS. The research did not explain how to 
test the circuit breaker and the results obtained after 
doing the test 

Next is the research conducted by Kanglin 
Yin, Qingfeng Du in 2019 [8] namely defining 
microservice resilience refers to systematic studies 
in other scientific fields and this research proposes a 
Microservice Resilience Measurement Model to 
measure the resilience of a microservice. In this 
study, two patterns of resilience were used, namely 

the circuit breaker and the bulkhead pattern, but did 
not explain in detail the results after using the two 
patterns. 

In previous studies, many have conducted 
analysis and testing of resistance patterns, for the 
pattern of resistance that has been tested the most is 
circuit breakers. In this study, we will analyze, and 
test resilience patterns also using the Architecture 
Tradeoff Analysis Method or commonly abbreviated 
as ATAM, for resilience patterns not only circuit 
breakers but with several other resilience patterns, 
namely bulkhead patterns, timeout patterns and retry 
patterns. As for the test experiment using concurrent 
user parameters, the lag time between users and the 
addition of response time on different microservices. 

4 RESEARCH METHOD 
 
4.1 Data Collection 

Observations on this data collection are the 
data needed in making analysis and design at the 
company. The first step in collecting this data is by 
observing by observing the object of research and 
work processes in the company, namely observing 
the microservice architecture that is currently 
running. 

Interviews were conducted in a structured 
manner with related parties, including the aircraft 
platform manager to find out the architecture that 
runs in the company. Furthermore, interviews were 
conducted with the flight booking team leader 
related to the problems faced when there was a 
communication failure between microservices. 

4.2 Object of research  

The research at this writing is a 
microservice that is located in an online travel agent 
company in Indonesia, the application is called a 
flight order manager where this microservice service 
has two important main functions as follows: placing 
an order with microservice insurance and making an 
order for aircraft reservations. 

4.3 Design, Analysis and Evaluation using the 
ATAM method 

In the process of designing, analyzing the 
architecture that runs on the company, and 
evaluating the pattern of resilience to overcome 



Journal of Theoretical and Applied Information Technology 
15th May 2022. Vol.100. No 9 
© 2022 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3080 

 

communication problems between microservices 
using the ATAM method. 

This study, the design method uses several 
stages from ATAM, in this design uses the 
architectural proposal stages which produce images 
of the proposed architecture based on the 4 + 1 model 
or better known as the Architectural View Model. 

For this research project, the author 
develops two microservices, namely microservice 
order manager and microservice insurance using the 
Java programming language assisted by the Spring 
Webflux framework to support reactive 
programming, for the database itself using mongodb. 
In the microservice order-manager, one layer or 
component is added before communicating between 
microservices, this layer uses a supporting library, 
namely resilience4j which aims to create a resilience 
pattern, namely circuit breaker, bulkhead pattern, 
timeout pattern and retry pattern, then microservice 
insurance is scenariod to fail system. 

Furthermore, experiments and recordings 
will be carried out by gradually increasing the 
number of concurrent users starting from 100 users, 
200 users, 300 users, 400 users, 500 users and 1000 
users and then adding a response time delay of 500 
milliseconds. Simulations with different number of 
concurrent users will be carried out with the help of 
JMeter7 tools as shown in Figure 1. 

 

Figure 1 Simulation with Jmeter 

With the Graph Generator, which is an 
additional plugin owned by the JMeter application, 
it can generate information in the form of csv and 
png, the information obtained includes the number 
of response times, error rates, throughput that can be 
used as parameters for the evaluation process. 

In this study, the evaluation method used 
ATAM, the resilience patterns that were evaluated 
were Circuit Breaker Pattern, Bulkhead Pattern, 

Timeout Pattern and Retry Pattern using response 
time and throughput parameters, in this evaluation 
using three stages of the ATAM method, namely 
Brainstorm and Priority scenarios, Reanalyzing the 
approach and architectural priorities, and Present the 
consensus results. 

5 METHODOLOGY THE 
ARCHITECTURE EVALUATION 

In this section, we will discuss the design, 
analysis and evaluation carried out using the ATAM 
method as a method of developing the architecture. 
The stages of the ATAM method that will be carried 
out in this research start from the Presentation to the 
Reporting Stage 

5.1 Step 1 Describe the ATAM method 

At this stage, explaining to the company, to 
deal with problems related to communication 
failures between microservices, especially when the 
microservice flight order manager communicates 
with microservice insurance which often 
experiences high loads, the writing will test using the 
ATAM method. 

5.2 Step 2 Describe Business Driver 

At this stage, it explains what functional 
requirements are needed, and what test scenarios are 
needed to carry out testing in this research. The 
following are the results of the functional 
requirements and scenarios for testing. 

At this stage there are three requirements 
needed, namely the system is still running or is 
experiencing a communication failure, whether there 
is a microservice that is off, the microservice is 
experiencing a high load. Then create microservices 
that can deal with communication failures and 
improve performance when they occur, and the last 
one implements the robustness pattern of Circuit 
Breaker Pattern, Bulkhead Pattern, Timeout Pattern, 
Retry Pattern which is expected to fulfill those 
needs. 

5.3 Step 3 Present the proposed the 
architecture 

this stage is to display the proposed 
architecture for the company, to display the 
architecture in this paper using a 4+1 architectural 



Journal of Theoretical and Applied Information Technology 
15th May 2022. Vol.100. No 9 
© 2022 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3081 

 

view, which will be displayed are Logical View, 
Process View, Development View, Physical View, 
and Scenarios. 

In Figure 2 the following is a logical view 
using an activity diagram in the company. In the 
microservice order manager section, when the 
process of making aircraft orders from the process of 

creating order requests to the process of creating 
order data, and for the schedule selection process, 
the selection of aircraft has been carried out by other 
microservices. The author focuses on the process of 
making orders. 

 

 

 

Figure 2 Class Diagram Proses Create Order 

 



Journal of Theoretical and Applied Information Technology 
15th May 2022. Vol.100. No 9 
© 2022 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3082 

 

 
 

Figure 3 Class Diagram Controller dan Service Create Order 

 

 
Figure 4 Sequence Diagram Create Order 

 
 



Journal of Theoretical and Applied Information Technology 
15th May 2022. Vol.100. No 9 
© 2022 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3083 

 

 
Figure 5 Component diagram relationship between microservices 

 
 
 

 
Figure 6 Deployment Diagram 

 

 
 

Figure 7 Use Case Microservice 

 
 



Journal of Theoretical and Applied Information Technology 
15th May 2022. Vol.100. No 9 
© 2022 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3084 

 

In Figure 3 is a class diagram for the 
controller and service when making an order which 
consists of several services including order manager 
service, order service, post order service and so on. 

In Figure 4 is a process view using a 
sequence diagram to explain how microservices 
communicate with each other when making orders, 
and when making insurance requests, until a new 
order id is formed for the transaction. 

In Figure 5 is a development view that uses 
component diagrams to describe the components in 
the system along with the relationships and 
interactions that occur in microservices 

In Figure 6 is a Physical view that uses a 
deployment diagram to describe the process of the 
relationship between software and hardware and 
each part of the device in a system. This system 
already uses continuous delivery, namely using the 
Jenkins application to help the process of deploying 
applications to the google cloud, because it uses the 
google cloud. 

In Figure 7 is a scenario that uses a use case 
to describe the relationship process between 
microservices when making orders and insurance 
requests 

5.4 Step 4 Identify Architectural Approaches 

Based on the information obtained in the 
previous process, namely the proposed architectural 
process, in this process there is an additional layer 
resistance pattern on the microservice order manager 
before making a call to microservice insurance. To 
have a system that can be implemented and 
implemented, the system needs to be tested and 
based on the ATAM scenario that has been 
determined in the previous stage, namely 
Performance and Scalability. 

The system needs to be tested to check 
whether they pass certain tests, the test is carried out 
using JMeter application, this test will display the 
Performance and Scalability of the system to ensure 
the performance is stable. 

 

 
Table 1 General Scenario

QUALITY 
ATTRIBUTE 

GENERAL SCENARIO CONCRETE SCENARIO 
RECOMMENDATION 

INITIAL DESIGN 
QUESTION 

PERFORMANCE service 1 makes an endpoint call to 
service 2, then receives less than n 
responses per millisecond 

It may be necessary to specify a 
certain time limit 

How resilience patterns 
can be 
improve performance?    
Is using a resistance 
pattern better than not 
using it? 

SCALABILITY Service will be called many requests 
n 
percent higher than usual, and 
service is still 
can work as expected 

It may be necessary to specify a 
specific percentage of the increase 
request accepted 

Does the resistance 
pattern need to be 
applied 
to increase availability? 

 
An example where a service would 
be inundated with high demand and 
requests simultaneously from time to 
time, and fixed service 
can work as expected 

It may be necessary to specify the 
number of requests 

Does the resistance 
pattern need to be 
applied 
to increase availability? 

 

 

Table 2 Concrete Scenario Recommendation 

 



Journal of Theoretical and Applied Information Technology 
15th May 2022. Vol.100. No 9 
© 2022 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3085 

 

QUALITY 
ATTRIBUTE 

GENERAL SCENARIO CONCRETE SCENARIO 
RECOMMENDATION 

PERFORMANCE (P) P1 - service 1 makes an endpoint call to service 2, 
then receive a response less than n per 
millisecond 

Systems without resilience patterns and with 
resilience patterns 
Both will serve requests with less than 300ms 
response time 
when tested against 100 concurrent users. 

SCALABILITY (SC) SC1 – An instance where the service will 
suddenly be flooded 
demand is n percent higher than usual, and 
service can still work as expected 

Systems without resilience patterns and with 
resilience patterns 
Both will serve requests with a delay between 
users of 60 seconds 
when tested against 200 to 500 concurrent users.  

SC2 – An instance where the service will be 
flooded with a high amount 
requests simultaneously from time to time, and 
service can still work as expected 

Systems without resilience patterns and with 
resilience patterns 
Both will serve requests with a delay between 
users of 2 seconds 
when tested against 200 to 500 concurrent users.  

SC3 – An example where the service will be 
incrementally called with 
increase simultaneously. 

Systems without resilience patterns and with 
resilience patterns 
Both will serve requests with a delay between 
users of 2 seconds 
when tested against 1000 concurrent users and 
increased delay 
on the 2nd service by 500 milliseconds 

5.5 Step 5 Generate Utility Tree 

Based on the scenarios and architectural 
results, we will discuss Performance and Scalability, 
describing the Utility Tree to ensure each scenario in 
the Utility Tree has the appropriate stimulus and 
response. 

With the proposed architecture, Prototype 
will be in ATAM approach. ATAM is a method for 
developing architectural designs. The focus of this 
evaluation will be placed on attributes, namely 
performance and scalability. The evaluation will be 
carried out in an evaluation based on a scenario 
where each Quality Attribute will have its own view. 
And then the researcher will provide the scenario 
template. The table below shows the general ATAM 
scenario that will be used to develop the prototype. 

Table 2 states several scenarios that will be 
tried in this study. The interoperability quality 
attribute will focus on evaluating service-to-service 
communication in a microservice architecture. In 
addition, the quality of performance attributes will 
be discussed whether the service has a good 
performance. Then the scalability of the attribute 
will develop whether the microservice remains 
responsive when suddenly getting requests many 
times more than usual. Then this general scenario 
will be reduced to a concrete evaluation scenario for 
further evaluation. The Concrete Scenario 
Recommendation is derived from the General 

Scenario and is added based on the existing Quality 
Attributes. 

Table 3 states the Concrete Scenario 
Recommendations which are extended from the 
General Scenario. Quality Attribute Scalability is 
defined to be able to maintain microservices when 
experiencing a growing number of requests to serve 
users given a sudden increase in demand without 
impacting the performance of microservices. Then 
Quality Attribute Performance is defined to keep the 
system able to serve music requests at any time. The 
system scenario will also be tested with several tests 
including trials to be given related to the different 
scalability and availability loads on the system. Load 
testing will be carried out using jmeter. 

5.6 Step 6 Analyze Architectural Approaches 

In the process of designing, analyzing the 
architecture that runs on the company, and 
evaluating the pattern of resilience to overcome 
communication problems between microservices 
using the ATAM method. 

To have a successful and successful system, 
the system needs to be tested and tested. This 
architecture analysis is based on the ATAM scenario 
in the previous process. While the scenario is about 
performance and scalability, systems need to be 
tested to check whether they pass certain tests. The 
tests carried out are ramp ups and test tests. The two 



Journal of Theoretical and Applied Information Technology 
15th May 2022. Vol.100. No 9 
© 2022 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3086 

 

tests will be the performance and scalability of the 
system to ensure stable performance. 

The first test carried out is a load test with 
certain concurrent users. To find out the average 
response time when tested against 100 concurrent 
users for 1 minute. The following is a table of results 
from these tests. 

Based on table 3, what is done in the table 
shows that the pattern of resistance using a circuit 
breaker produces the smallest response, which is 266 
milliseconds, while for throughput it does not 
produce a much larger value of 1.6 to 1.7 
milliseconds, the following are the results of the 
analysis based on the quality of the Performance P1 
attribute. 

In table 4, the second test is carried out, 
namely with the same test, namely load testing with 
simultaneous user time, a pause between users of 60 
seconds and the number of users from 200 to 500. 

the smallest response time is 192, 183, 209, 213 
milliseconds and the next smallest response time is 
the resilience pattern with the timeout pattern 
producing 264, 272, 269, 296. Meanwhile, 
throughput does not produce much value. 

Next, do the third test, which is with the 
same test, namely load testing with simultaneous 
user time, a pause between users of 2 seconds with 
the number of users from 100 to 500. The following 
are the results of the test 

Based on the test in table 5, the circuit 
breaker produces the fastest response, and the largest 
throughput is 884, 2289, 3386, 4252 and 3449 while 
the throughput is 33.1, 43.4, 51.5, 55.9 and 74.0, for 
the fastest and the next fastest response is the timeout 
pattern. In this test the experimental pattern has the 
lowest and smallest values for both the response time 
and throughput and there is an error rate when the 
number of users is 500, namely the system without a 
pattern is 1% and the experimental pattern is 2%

 

Table 3 First Test

 

User 
 

Application layer Average 
(ms) 

Throughput 
(ms) 

100 Without Resilience Pattern 302 1,7 

100 Resilience pattern - 
Circuit Breaker 

266 1,7 

100 Resilience pattern - Retry 
Pattern 

2478 1,6 

100 Resilience pattern - 
Bulkhead Pattern 

341 1,7 

100 Resilience pattern – 
Timeout Pattern 

384 1,7 

 

 

 

 
 
 
 
 
 
 



Journal of Theoretical and Applied Information Technology 
15th May 2022. Vol.100. No 9 
© 2022 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3087 

 

Table 4 Second Test 

 
User  Application layer Average 

(ms) 
Min Max Error (%) Throughput 

(ms) 
200 Without Resilience Pattern 302 169 2331 0% 3.3 

 
Resilience pattern - Circuit 
Breaker 

195 140 606 0% 3.3 

 
Resilience pattern - Retry Pattern 2497 2274 3018 0% 3.2 

 
Resilience pattern - Bulkhead 
Pattern 

271 124 1097 0% 3.3 

 
Resilience pattern – Timeout 
Pattern 

264 129 1378 0% 3.3 

       

300 Without Resilience Pattern 277 176 1405 0% 5.0 

 
Resilience pattern - Circuit 
Breaker 

183 127 548 0% 5.0 

 
Resilience pattern - Retry Pattern 2540 2264 3499 0% 4.8 

 
Resilience pattern - Bulkhead 
Pattern 

266 143 754 0% 5.0 

 
Resilience pattern – Timeout 
Pattern 

272 171 879 0% 5.0 

       

400 Without Resilience Pattern 289 165 1623 0% 6.7 

 
Resilience pattern - Circuit 
Breaker 

209 89 1340 0% 6.7 

 
Resilience pattern - Retry Pattern 2683 2349 3283 0% 6.4 

 
Resilience pattern - Bulkhead 
Pattern 

292 171 856 0% 6.6 

 
Resilience pattern – Timeout 
Pattern 

269 140 671 0% 6.7 

       

500 Without Resilience Pattern 386 161 2245 0% 8.3 

 
Resilience pattern - Circuit 
Breaker 

213 116 1067 0% 8.3 

 
Resilience pattern - Retry Pattern 2900 2309 3580 0% 8.0 

 
Resilience pattern - Bulkhead 
Pattern 

340 169 1649 0% 8.3 

 
Resilience pattern – Timeout 
Pattern 

296 123 768 0% 8.3 

 

 

 

 



Journal of Theoretical and Applied Information Technology 
15th May 2022. Vol.100. No 9 
© 2022 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3088 

 

 Table 5 Third Test  

 
User Application layer Average 

(ms) 
Min Max Error (%) Throughput 

(ms) 

100 Without Resilience Pattern 2392 1391 3894 0% 21.4 
 

Resilience pattern - Circuit 
Breaker 

884 309 1501 0% 33.1 

 
Resilience pattern - Retry Pattern 5270 3282 7315 0% 11.5 

 
Resilience pattern - Bulkhead 
Pattern 

1258 492 2308 0% 26.2 

 
Resilience pattern – Timeout 
Pattern 

2007 382 2949 0% 25.6 

       

200 Without Resilience Pattern 2402 661 4076 0% 36.4 
 

Resilience pattern - Circuit 
Breaker 

2289 494 3850 0% 43.4 

 
Resilience pattern - Retry Pattern 10368 5162 14068 0% 12.7 

 
Resilience pattern - Bulkhead 
Pattern 

2822 1404 4665 0% 33.7 

 
Resilience pattern – Timeout 
Pattern 

2367 992 3817 0% 43.3 

       

300 Without Resilience Pattern 3783 1402 6920 0% 37.9 
 

Resilience pattern - Circuit 
Breaker 

3386 916 5220 0% 51.5 

 
Resilience pattern - Retry Pattern 14963 5207 20630 0% 13.5 

 
Resilience pattern - Bulkhead 
Pattern 

5820 315 7558 0% 34.5 

 
Resilience pattern – Timeout 
Pattern 

5397 618 7525 0% 36.7 

       

400 Without Resilience Pattern 5027 1066 8458 0% 43.1 
 

Resilience pattern - Circuit 
Breaker 

4252 728 6730 0% 55.9 

 
Resilience pattern - Retry Pattern 20059 6942 27975 0% 13.6 

 
Resilience pattern - Bulkhead 
Pattern 

8880 4146 11424 0% 34.8 

 
Resilience pattern – Timeout 
Pattern 

6515 501 9549 0% 40.8 

       

500 Without Resilience Pattern 5650 7 10742 2% 45.9 
 

Resilience pattern - Circuit 
Breaker 

3449 45 6660 0% 74.0 



Journal of Theoretical and Applied Information Technology 
15th May 2022. Vol.100. No 9 
© 2022 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3089 

 

 
Resilience pattern - Retry Pattern 10279 334 22207 1% 21.2 

 
Resilience pattern - Bulkhead 
Pattern 

5658 491 9084 0% 47.7 

 
Resilience pattern – Timeout 
Pattern 

7102 155 11640 0% 41.6 

 
5.7 Step 7 Brainstorm and Prioritize 

Scenarios 

At this writing add a new scenario, to 
ensure performance and scalability are appropriate, 
then perform the fourth test, namely with the same 
test, namely load testing with concurrent user time, 
a pause between users of 2 seconds with 1000 users 
and an additional 500 millisecond response time on 
the service. 

The following are the results of testing the 
system without a pattern of resistance with 1000 
users, the time lag between users is 2 seconds and 
the response time to the service is 500 milliseconds. 

Based on system testing without a pattern 
of resilience, Figure 7 shows that the average 
response time is 13502 milliseconds, resulting in a 
throughput of 26.7 and in this test an error rate of 
5%. 

Based on testing the system with circuit 
breaker pattern resistance, Figure 8 shows that the 
average response time produced is 9253 
milliseconds, resulting in a throughput of 50.6 and 
the test results in an error rate of 17%, the test results 
state that the system with circuit breakers has an 
average response time of - average compared to 
other tough patterns and the largest throughput. 

Based on the system test with the resilience 
pattern retrieval pattern, Figure 9 shows that the 
average response time generated is 45980 
milliseconds, resulting in a throughput of 7.7 and the 
test results in an error rate of 20%. From the test 
results, the retry pattern is the pattern with the 
longest average response time and the smallest 
throughput compared to other resilience patterns. 

Based on testing the system with the 
resilience of the bulkhead pattern, Figure 10 shows 
that the average response time is 16574 
milliseconds, resulting in a throughput of 24.8 and 
an error rate of 13%. 

Based on testing the system with a 
resilience timeout pattern, Figure 11 shows that the 
average response time generated is 10676 
milliseconds, resulting in a throughput of 47.9 and 
an error rate of 10%, the test results state that a 
system with a timeout pattern has an average 
reception time. second fastest and second largest 
throughput after circuit breakers. 

The following are the results of the fourth 
test, in the table below it shows that the circuit 
breaker produces the fastest average response and 
the largest throughput compared to other resistance 
patterns. For the late response time and the smallest 
throughput is the retry pattern.

 



Journal of Theoretical and Applied Information Technology 
15th May 2022. Vol.100. No 9 
© 2022 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3090 

 

 
Figure 8 Without resilience pattern 

 
 

 
Figure 9 Circuit Breaker 

 
 

 
Figure 10 Retry Pattern 

 
 



Journal of Theoretical and Applied Information Technology 
15th May 2022. Vol.100. No 9 
© 2022 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3091 

 

 
Figure 11 Bulkhead Pattern 

 
 

 
Figure 12 Timeout Pattern 

 
 
5.8 Step 8 Re-analyze Architectural 

Approaches and Priorities 

Based on the ATAM process that was 
carried out previously, it was found that with the 
addition of a resilience pattern it can provide a faster 
response time when a failure is found in 
communicating between microservices, but not all 
resilience patterns produce a faster response, there 
are even patterns of resilience that produce a faster 
response. slower than not using the resilience 
pattern, namely the retry pattern. This is very 
understandable because the concept of the retry 
pattern is when trying to repeatedly communicate to 
the microservice there is a failure to communicate. 
The fastest response time is circuit breaker and then 
followed by a timeout pattern. 

5.9 Step 9 Present Consensus Results 

This is the final step of the ATAM 
evaluation. Information collected during the 
evaluation. After going through several phases of 
ATAM, information is obtained that the 
performance and speed of responding to the 
microservice order manager when communicating 
with microservice insurance that is experiencing 
failure to provide a failed response by adding 
components or layer resistance patterns with the aim 
that the system is able to tolerate faults when errors 
occur. communicating between microservices 
obtained results which stated that with the addition 
of a layer resilience pattern could improve 
performance and response speed compared to 
without a layer resilience pattern. 

 



Journal of Theoretical and Applied Information Technology 
15th May 2022. Vol.100. No 9 
© 2022 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3092 

 

6 DISCUSSION 

An important part of building a resilient 
system, especially when functionality is spread 
across a number of different microservices [3] 
maybe there are several microservices that are 
experiencing up or down, this situation is more 
complex when the microservice already supports the 
reactive system because in the reactive system 
everything runs in asynchronous [4], this is the 
ability to degrade functionality in a more secure way. 
There are several patterns, which take together as 
measures for architectural security, that can be used 
to ensure that if something goes wrong, it doesn't 
cause lasting problems namely circuit breakers, 
bulkhead patterns, timeout patterns, and retry 
patterns. With this pattern, it is expected to solve the 
problem, namely a system that is able to tolerate 
faults [6]. This is in line with the manifesto reactive 
characteristics, namely resilience [5]. 

In previous research [9] [1] [11] [8] the 
purpose of the research is broadly in accordance with 
this research, namely to create a system that is able 
to survive in the face of a system failure, so that the 
system can run as expected. 

Finally, based on the evaluation that was 
tested, the following comparisons were made 
between the author of the architecture and several 
other architectures shown in table 6 

Table 6 Comparing with other Architecture 

Work Pattern 

Circuit Bulkhead Timeout Retry 

[9] yes no no no 

[1] yes no no yes 

[11] yes no no no 

[8] yes yes no no 

this 
work 

yes yes yes yes 

 

The main limitation of this research is that 
only four models are presented, namely circuit 
breaker, bulkhead pattern, timeout pattern and retry 
pattern without any modifications or only with basic 
usage. This research captures the response time and 
throughput of two microservices that are connected 
via the HTTP protocol and using REST, one of 

which is intentionally conditioned to experience a 
system failure. 

For resilience patterns that have 
performance and response speed, the size of the test 
results that have been carried out for performance is 
based on the obtained throughput, if a large increase 
in throughput improves microservice performance, 
while for response speed based on the average 
response time obtained, the response will be smaller. 
time microservice. provide a faster response when 
communicating. 

7 CONCLUSION 

Based on the results of the analysis and 
analysis that the authors have described using the 
architectural tradeoff analysis method with the aim 
of comparing patterns of resilience that have good 
performance and fast responses, at the final stage of 
this paper the authors draw several conclusions 
according to the purpose of this paper. After being 
analyzed and explained in the previous process, the 
following conclusions are drawn: 

Based on the previous ATAM process, it 
was found that with the addition of a resilience 
pattern it can provide a faster response time when a 
failure is found in communicating between 
microservices, but there are several patterns of 
resilience that produce a slower response compared 
to not using a resilience pattern, namely the retry 
pattern. 

Based on the testing of the system with 
circuit breaker pattern resistance, the test results 
state that the system with circuit breaker has the 
fastest average response and the largest throughput 
compared to other tough patterns. Then the results of 
testing the system with the resilience timeout pattern 
show the test results stating that the system with the 
timeout pattern has the second fastest average 
response and the second largest throughput after 
circuit breakers. 

In this paper, we only use simple usage in 
the application of resilience patterns. Feedback and 
ideas for the future. The author hopes that in the 
future we can add other pattern resilience models to 
be able to analyze, add or upgrade from existing 
pattern resilience models and combine several 
resilience patterns that are obtained according to 
existing business functions. 



Journal of Theoretical and Applied Information Technology 
15th May 2022. Vol.100. No 9 
© 2022 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3093 

 

REFERENCES: 
 
[1] N. Mendonca, C. Mendes Aderaldo, J. 

Camara, and D. Garlan, “Model-based 
analysis of microservice resiliency 
patterns,” Proc. - IEEE 17th Int. Conf. Softw. 
Archit. ICSA 2020, no. February, pp. 114–
124, 2020, doi: 
10.1109/ICSA47634.2020.00019. 

[2] N. Alshuqayran, N. Ali, and R. Evans, “A 
systematic mapping study in microservice 
architecture,” 2016, doi: 
10.1109/SOCA.2016.15. 

[3] M. Fowler, “Microservice Trade-Offs,” 
2015. 
https://martinfowler.com/articles/microserv
ice-trade-offs.html (accessed Apr. 25, 
2021). 

[4] M. Bernhardt, Reactive Web Applications: 
Covers Play, Akka, and Reactive Streams, 
1st ed. Manning Publications, 2016. 

[5] G. Jansen and P. Gollmar, Reactive Systems 
Explained, 1st ed. United States of America: 
O’Reilly Media, Inc, 2020. 

[6] A. Sari and M. Akkaya, “Fault Tolerance 
Mechanisms in Distributed Systems,” Int. J. 
Commun. Netw. Syst. Sci., vol. 08, no. 12, 
pp. 471–482, 2015, doi: 
10.4236/ijcns.2015.812042. 

[7] E. Troubitsyna, “Model-Driven Engineering 
of Fault Tolerant Microservices,” 
Fourteenth Int. Conf. Internet Web Appl. 
Serv. (ICIW 2019), no. c, pp. 1–6, 2019, 
[Online]. Available: 
https://www.thinkmind.org/index.php?view
=article&articleid=iciw_2019_1_10_20069. 

[8] K. Yin, Q. Du, W. Wang, J. Qiu, and J. Xu, 
“On representing and eliciting resilience 
requirements of microservice architecture 
systems,” arXiv, no. Ddd, pp. 1–15, 2019. 

[9] H. Hameed Addeen, “A Dynamic Fault 
Tolerance Model for Microservices 
Architecture,” South Dakota State 
University, 2019. 

[10] D. Brahneborg and W. Afzal, “A 
Lightweight Architecture Analysis of a 
Monolithic Messaging Gateway,” Proc. - 
2020 IEEE Int. Conf. Softw. Archit. 
Companion, ICSA-C 2020, pp. 25–32, 2020, 
doi: 10.1109/ICSA-C50368.2020.00013. 

[11] F. Montesi and J. Weber, “From the 
decorator pattern to circuit breakers in 
microservices,” Proc. ACM Symp. Appl. 
Comput., pp. 1733–1735, 2018, doi: 
10.1145/3167132.3167427. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


