
Journal of Theoretical and Applied Information Technology 
15th May 2022. Vol.100. No 9 
© 2022 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3022 

 

NOVEL TECHNIQUES FOR COMPONENTS 
CLASSIFICATION AND ADAPTATION 

 
1Dr.SAMPATH KORRA, 2Dr.V.BIKSHAM  

1Associate Professor, Department of CSE, Sri Indu College of Engineering &Technology (A), Hyderabad  

2Associate Professor, Department of CSE, Sreyas Institute of Engineering & Technology, Hyderabad 

E-mail:  1sampath_korra@yahoo.co.in,2vbm2k2@gmail.com   
 
 
 

ABSTRACT 
 

More than thirty years have passed since the software introduced the idea of reuse. There are many 
successful cases that have been reported, but people believe that the programs are still in the re-
development phase and are not reaching its full potential. The software requires us to anticipate the future 
needs of software systems so that new units can be built, some functions, features are fragmented and 
reused easily by the engineers. These tools are designed to achieve this aspect of software reuse through 
component adaptation and enhance existing applications. Use software information to reuse a large number 
of platforms and tools in the presence. This work does not think of the classification based on the naming 
services and components, but this work tries to use the most relevant features of components such as 
software developers and it explains the functional requirements to make a definite decision. In the way,  the 
proposed algorithm is very generic and widely available to all technologies. It is only for a short period of 
time for the selection of software components and all types of services. 

Keywords: Software Reuse, Architecture, Domain Engineering, Indicators, Components. 
 
1. INTRODUCTION  
 
  This article debates the summary of some 
important aspects of component classification 
technique. Because the main purpose of reusable 
components is to increase efficiency and reduce 
costs, which ultimately affects the economy of the 
software industries and summarized in three ways to 
reuse the software[1]. 

  The reuse of software is considered to be the 
ability to increase productivity in software 
development and quality of software. The key 
benefits of newly introduced software are the support 
for the design method and the important event is not 
the construction of the new system from scratch, but 
the modification of the integration and the description 
of the existing ones. CBSE was used to support 
evolution [2] of the components of the different 
technologies. However, it is sufficient to keep the 
repository empty outstanding, types of software 
reuse: One is the software component management 
that consists of the specification, classification, and 
extracts of the existing components, and the other is 
the integration part which includes integration of the 
reusable component into the application. Several 
approaches are developed in recent years to address 

the issues of reuse. However, the lack of approaches 
to smooth integration constitutes a significant 
obstacle to effective recovery. Reusability tools that 
can be used to reactivate low functionality changes or 
modify the source code [3]. 

 Reusability is a basic concept of software 
engineering. The new software engineering research 
and practices are dealing with reducing the cost as 
well as reduces time with better quality and apart 
according to the development of reusability is a 
matter about creating a library element, thus allowing 
the development of new programs, applications of 
available components. Reusability software is the use 
of engineering knowledge or software component 
objects that are available. Creating a new system 
reusability is the main paradigm in increasing the 
quality of software development. This is an important 
area of technical research software that tends to 
improve software significantly for production and 
quality. The main advantage CBSD is a cheap and 
quality solution. Higher productivity, Flexibility, and 
quality applications changing capacity, efficient 
storage and resizing are some of the additional 
benefits CBSD. If there are many components 
available, it is necessary to develop certain software 
metrics for different feature components. It is 



Journal of Theoretical and Applied Information Technology 
15th May 2022. Vol.100. No 9 
© 2022 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3023 

 

necessary to measure components in order to realize 
the reuse of the benefit. It can also measure 
reusability of a component by indirectly, the 
complexity, arrangement, and monitoring can be also 
measured to reusable of a component indirectly [4]. 

 A software component is a standalone entity 
that provides services and interacts with the 
environment through all defined interfaces that 
require the functionality of other components. One of 
the main drivers behind the Plug-in technology is 
reused. A series of reusable software components can 
create the application by grouping the existing 
component together. Other drivers of component 
technology are the independent development of 
application components, increased flexibility, 
adaptation, and maintenance of software systems. To 
successfully connect components together, each 
component's interface must match the requirements 
of other components [5]. In this way, the "nodes" are 
defined among the components are good. Therefore, 
the development of component-based applications 
depends on the constrained components and 
compliance with a compatible interface with standard 
interactive protocols [6]. Due to fierce competition in 
the market for software components, many types of 
research have focused on the software components 
over the past few years, how to find them, how to 
choose them, and how to make them work as 
integrated software [7]. 

 Available methodology and techniques are 
used for the classification of the components [8]. 
However, what happens when changing the existing 
dependencies in the evolution process is largely 
ignored. By re-using contracts, we can make this 
change and assess its impact by registering these 
dependencies and using the operators again. In 
addition, the scope of reuse agreements is wider than 
managing changes in a continuously changing 
system: it exposes the architecture of the system and 
can be used as a structural document, often in the 
system of software engineers to adapt to their needs 
[9]. 

 To improve the software system's 
adaptability mainly refers to the software system's 
ability to adapt to the needs changes in the external 
environment. 

 The software system update is mostly 
possible from the following ways: [10] Improving 
software compatibility: The design software is based 
on the business requirements that cannot be 
responded at this time, but should be commonality, 
which means that different changes may be the 
account that the system design process should be 
carried out. If the condition changes outside, the 

system should be able to improve and maintain stable 
operation. The software updates itself-description: 
The system has a certain capacity, a self-explanatory, 
and an external condition change can be explained by 
using as many parameters as possible. If the update 
conditions are changed, the related parameters are 
needed, but the large area of the software is not 
required [11].  

 Software update tool used for a large 
component which requires no changes or is often 
called the modules; they will be seen as the tool that 
handles what is in the design process, which 
increases the flexibility and performance of the 
system.  

 Software update module is going to create a 
powerful and independent module requires different 
functions, that should be done through the modules to 
do all the information to simplify the process. 

  Software updates try to make free software 
design platform unlimited software and hardware 
platforms [12]. 

 It is not easy to include recovery software 
during the programming process. When the 
investment is restored, but even after the expected 
learning curve is not bothered, we can re-enter the 
recovery option later. In other words, although we are 
ready to use managed software, it is important to 
know as much as possible how to develop recovery 
procedures in the right direction. Ensure that there are 
sufficient resources and means to reuse the software, 
including technical knowledge (domain analysis, 
reusable resources, storage resources, and 
identification creation), resources and incentives to 
create and use reusable objects. Resources with any 
long-term investment, we should be able to ensure 
that investors things are pending in accordance with 
the plan, and this requires an effective feedback loop. 
In addition, to reuse manage, we should also invest in 
refining judgment, measure and review the project 
development process. Obligations must be 
determined specifically to acquire and maintain the 
reusable components of the project[13].  

 Profitability is the main objective of all 
software organizations. In recent years, software 
development paradigm has become tremendously 
important due to the rapid changes in company needs. 
Customers are now demanding that their desired 
products are delivered in a minimal period of time. 
To meet these needs, various rapid development 
techniques are called agile development and reuse is 
introduced in the software industry. With the help of 
reusable components, the development and 
implementation of software products can be much 



Journal of Theoretical and Applied Information Technology 
15th May 2022. Vol.100. No 9 
© 2022 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3024 

 

simpler and cheaper. Such approaches may help to 
save costs and working hours so that the developing 
country can use its terrible resources in other 
projects[14] [15].  

 Appropriate archiving installation of 
reusable components is necessary if an organization 
can store important data and, if necessary, bring 
many standard repositories which are used by 
different organizations. For this purpose, as important 
data is stored and downloaded. However, in fact, 
each repository contains a vast amount of data and 
generally, the adequate commercial standards for the 
storage mechanism do not apply. While some 
repository maintenance software is available on the 
market, it provides only a mechanism for archiving 
artifacts. The retention of a large amount of data 
requires the opening of an extensive research and the 
procedure for the submission of recommendations to 
precise reusable components; therefore, researchers 
must investigate a large amount of data in the 
repository in order to find the desired component. In 
this paper, we discussed the new concept of central 
values-based software repository(CBVSR). The 
proposed approach helps users find the most 
appropriate artifact because it gives the best match 
possible to the user's query. To capture, delete, 
modify and destroy the CBVSR data, appropriate 
standards have been complied with. Software reuse 
was taken of the quality, safety, and integrity of the 
data, and submitted for developers’ technical 
assistance indices, marking and classification [16]. 

 The software repository stores various 
software components or objects for future reuse. It is 
placed through a local or global network based on 
organizational requirements. The user can access the 
software repository directly or indirectly without 
physically moving to its location [17]. Software 
archives are designed to be malware-free and 
maintain reusable and valuable artifacts. 

 Software companies develop products to 
gain a higher market share by attracting customers or 
stakeholders. The entire software development 
process has been modified with the introduction of 
agile techniques. The developers now aim to provide 
the required products for a minimum period of time. 
Due to this, reuse of different software components is 
ideal in these situations. However, the recovery has 
some limitations. For example, incorrect integration 
of the reusable code may damage the whole system 
architecture. It may also increase the complexity of 
detecting defects and its elimination during the test 
phase. Injecting an inappropriate component into the 
software design can also compress the entire system, 
and so on. The problems mentioned in the earlier 
reuse of software may cost organizations a lot of time 

and money. To resolve these problems, the software 
repository is required based on the value that the 
various software components can be stored in the 
repository. Categorize them into different categories; 
Indicating the sets and then at different intervals so 
that the recovery process designed for the reused 
element is quick and easy. The Securities-Based 
repository may contribute to a key role of software 
engineering to make the reuse more accurate [18]. 

 Reuse is the possibility of reusing source 
code to add new features with little or no change. 
Reusable modules and classes are reduced during 
deployment, increasing the likelihood that past tests 
and applications will eliminate errors and, if 
necessary, identifying changes in the code to change 
of implementations. All routines or functions are the 
simplest forms of reuse. Code reusable components 
are periodically arranged using modules or 
namespaces in the layer [19]. 

 Software Engineers believes that software 
objects and components provide a more advanced 
form of reuse, although it is difficult to measure and 
objectively define levels or reuse results. 

 Reuse means direct management of 
problems with drafting, packaging, distribution, 
installation, configuration, implementation, 
maintenance, and updating. If these problems are not 
taken into account, the software may be useful for the 
project, but it will no longer be used in practice. 

 The reuse of software is a method that has 
been practiced for a long time. Programmers are 
copied and pasted code long from the early days of 
programming. Although it can accelerate the 
development process [20]. 

 The word reuse is very limited and does not 
apply to larger projects. The full benefits of software 
reuse can only be achieved through system reuse, and 
system reuse is an integral part of the software 
development lifecycle. Some of the key aspects of 
software recovery research and presents a rough for a 
reusable software repository. The next step is to 
further going into depth of the concept and 
implement the prototype to ensure its effectiveness. 
We examine the history of software reliability 
engineering, current trends and problems, and 
specific difficulties. Future trends and promising 
research issues for reliability engineer software have 
also been taken into account. We created current and 
future potential trends for software reliability 
engineering based on industry and customer needs 
[21]. 

 While the software process proposals are 
continually being displayed, it is difficult to adapt 



Journal of Theoretical and Applied Information Technology 
15th May 2022. Vol.100. No 9 
© 2022 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3025 

 

them to a particular business. Therefore, certain types 
of customization are always necessary. Although 
process customization is a mandatory activity in most 
software process proposals, it is usually carried out 
after an ad hoc approach and a lot of research has 
been done so far reuse can be considered to be 
minimal. We provide a systematic overview of the 
adaptation of the software processes, analyzing 
existing approaches, discussing the main problems of 
the operation, and establishing a new and 
comprehensive new research framework [22]. 

 Reusing software is the process of creating a 
software system for existing software rather than 
creating a software system from scratch. What was 
originally written in another project and the 
implementation of universally recognized recovery? 
Code recovery means that a partial or complete 
computer program written at the same time may use 
or may not be used in another program[23]. Code 
reprogramming is a common technique that saves 
time and effort by reducing overwork. Resources or 
software elements include all software products, 
including requirements and recommendations, 
descriptions and designs, advanced projects, data 
formats, algorithms, user manuals, and test suites. 
Things created by the development software can be 
reused. The software has been developed and reused 
by the same person, and the use and recovery of 
operating systems, database management systems and 
other system tools are different in the same project 
and implementation, product maintenance and new 
product versions. Software Engineering is focused on 
more initial development, but now it is recognized to 
get better, faster and cheaper software, the design 
process based on systematic software reuse is 
required [24][25]. 

 Software reuse provides the basis for 
components and interfaces about interoperability 
standards and can be defined metadata for component 
customization and composition. Component 
customization the ability to adapt component prior to 
a consumer's setup or use, components are usually 
treated in black box fashion, their application can be 
customized using only the clearly defined 
customization interfaces, exposing the components as 
little as possible. Customization and deployment 
tools, customizing functionality to modify simple 
properties or even complex behavior by providing 
instances of other components as parameters to 
customization interface enables [26].  

 Software Development using components 
(development components, CBD) [27]. By using the 
software system, plans, structures, and components of 
the new software that will lead to support the reuse of 
the software component. Reducing delivery time in 

essence this software development is based on two 
components the way reuse, and structure of the 
system. Therefore, some documents are called part of 
the system reuse core technology that supports the 
software for reuse as a software component of 
technology. This CBD is an important area in the 
field of reusable components has evolved very 
quickly in recent years. Given components, models, 
language descriptions, classification and extracts, 
complex assemblies, made as primary studies. The 
deep insight of introduced software, component 
concepts have been deleted for a more restrictive time 
to source codes, intermediate codes, but requirements 
extensions, software architecture, documents, testing, 
and other useful data development information. 
These messages contain a variety of new active 
components. In olden days the era of software 
architecture, but a special time is a long time, the 
lowest of the deployment has been ignored. Due to 
the complexity of the software system continues to 
grow, component customization, assembly, and 
collaboration technologies cannot create an easy to 
understand deployment mechanism, easy to assemble 
and the high automation. For then need to design 
according to the requirements of the software, select 
the system and adapt it to a high level of components 
that use the system of abstract architecture 
software[28]. 

 Software components are a software unit 
that communicates with other independently 
developed components. Component-based software 
engineering focuses primarily on package software, 
independent units, to allow maximum re-usability. A 
component-based software development (CBSD) is 
the customization of object-oriented software 
development (OOSD) and share the goal of software 
recoverability [6]. Object-oriented software 
development is a method of implementation and 
software development is an interface methodology. In 
component-based software development, the 
importance of the standardization interface is the best 
components, without limitation, on how to implement 
achieved. Therefore, the component-based software 
development is closely linked to the module design in 
a separate interface and implementation [29]. 

 For object-oriented software development, 
code reuse is the competent code for implementing 
the succession. Although object-oriented a language 
also allows for partitioning implementation and 
interface, class libraries and procedural libraries 
designed to equate with larger applications are a 
successful example of software reuse. 

2. RELATED WORK 



Journal of Theoretical and Applied Information Technology 
15th May 2022. Vol.100. No 9 
© 2022 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3026 

 

 In this research article, we presented some 
basic concepts and principles of component models 
and component model applications. The component 
models define interfaces, naming, interoperability, 
customization, composition, evolution, packaging, 
and distribution standards. In addition, the 
specifications of the run-time environments and 
services are required to standardize the component 
models. Typically, there are component model 
implementations on top of an operating system, but 
some operating systems, such as Microsoft Windows, 
have already begun to include component model 
implementations. Finally, operating systems can 
serve as component model applications directly to the 
CBSE [30]. 
 
 The adaptability of the system means that 
the system can easily adapt to a diverse environment. 
The object-oriented software can easily adapt to new 
requirements because of the high level of abstraction. 
It models problems with the set of types or classes 
from which objects are created. 
 
 In particular, Java is compiled with a low-
level, machine-independent code called bytecode. 
This bytecode is then interpreted as a Java virtual 
machine running on a particular machine. This 
converts Java code to platform independence, which 
means that the same bytecode can be adapted to any 
machine that has a different operating system. 
Migrating Java programs to another machine does 
not even require recompiling[31]. 
 
 We must define the component model 
independently of the distributable so that components 
can be packaged. If a component is installed and 
configured in the component infrastructure, it is 
deployed. The component manufacturer expects the 
component to be packaged with anything that does 
not exist in the infrastructure. This can include 
program code, configuration data, other components, 
and additional resources. Component-based systems 
require support for the development of the system. 
Components that act as a server for other components 
may need to be replaced by new versions that provide 
new or improved functionality. A new version can 
only be a different application but can provide 
modified or new interfaces. Existing clients of such 
components are not ideally affected or should be 
affected as little as possible. Also, older and new 
versions of a component may need to reside on the 
same system. The rules and standards for component 
development and versioning are therefore an 
extremely important part of a component model [32]. 
 

 To improve the quality and productivity of 
the software, we need to modify the existing 
software. The software's quality and capacity 
improvement method, which changes the existing 
software changes, is called software recovery. It is 
more expedient to make changes to existing software 
instead of creating new software from scratch. 
Software reuse is the process of creating software 
systems for existing software instead of creating 
them from scratch. The following concept will be 
used for recovery. Reuse determines the extent of 
software reuse. It depends on the new features of the 
software, which become software and features of 
existing software [33]. 
 
3. PROPOSED WORK 

 The reuse of software components is 
becoming increasingly important in all aspects of 
software engineering. A software component can be 
any part of the software required to use the software, 
which can be a module or function. Components can 
be considered part of an identifiable and reusable 
software system. Components can be reusable 
functions such as statistical libraries, digital libraries 
or packages, modules, subsystems, and classes. The 
success of recovery depends on the quality of the 
components. If the project provides the behavior 
required in the recommended situation, the project 
can be reused. We want to achieve a high level of 
reuse, should consider the different situations in 
which the components are used. This software 
component can be used in many different 
applications in a variety of commercial and technical 
environments, with a variety of programmers using a 
variety of technologies and tools for various users of 
different organizations. 
 
 Many different products use many ideas and 
algorithms for any document generated by the 
software lifecycle. The source code is more common; 
therefore, many people misunderstand the reuse of 
software as the sole reuse of source code. Recently, 
the source code and reuse of projects have become 
popular in class libraries (object-oriented), 
application frameworks, and design drawings. 
Software components provide tools for regular and 
system recovery. Today, the term component is often 
used as a synonym for an object, but it also means a 
module or function. Recently, the concept of 
developing some software or components has 
become popular [34]. 
 
 Reusing software components is critical to 
increasing productivity. However, in order to take 
full advantage of this potential, we need to focus on 
reuse development, a process that produces 



Journal of Theoretical and Applied Information Technology 
15th May 2022. Vol.100. No 9 
© 2022 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3027 

 

potentially reusable components. Systematic reuse of 
software and reuse of components can affect the 
entire software development process. Software 
process models have been developed to provide 
instructions for creating high-quality software teams 
to achieve predictable costs. The original model is 
based on the belief that the system is built on stable 
scratch-based requirements. The software process 
model has a customized experience and many 
changes and improvements are recommended. As 
software is reused, new software engineering models 
are emerging. The new model is based on system 
reuse of defined components developed in various 
projects [35]. 
 
 The focus should be on the development of 
reuse, not just the recovery process, which is the 
normal process of system development. The 
development of reuse software requires planning, 
developing and transferring documentation and 
recovery. The priority of documents in software 
projects is traditionally low. However, the right 
documentation is critical to system reuse 
components. We continue to skip the documentation, 
will not be able to use components to improve 
performance. Detailed information about the 
components is necessary [36]. The development of 
potentially reusable components depends to a large 
extent on the definition of functions such as 
functionality and language domains. These features 
can be clearly reflected in the reuse guide. Therefore, 
we must develop objective guidelines and reuse. 
 
 Although the software engineer life cycles 
may vary very much, they are all about the same 
breakdown analysis, requirements, design, 
implementation, testing and debugging. These same 
phases, though not necessarily in that order or with 
the same emphasis, are the stages of the framework.  
In this section, the use of concrete has been based on 
the findings described in the previous two sections. 
 
 It is possible to change the part of the 
product before making the change.  We must apply 
tests before debugging starts. Before it can be tested, 
planned and/or implemented do so, etc. but it is 
necessary to have the requirements ready before 
reviewing the design phase.  As people may be seen 
as an opportunistic process, and as always use past 
experience. It must be known whether they are 
applicable before the requirements are terminated. To 
make a selection of alternatives better reuse, ease of 
implementation, and risks one must look 
forward[37].   
 The issue can only be noted in the direction 
of a possible solution, one of them will be 

reconsidered.  The changing insights and bugs one 
have to go back to previous stages and one has to 
look back to be able to learn.  Because of all these 
reasons, the Yoyo approach is recommended when 
ordering the stages were going down and up will be 
controlled “is required" strategy. 
 
The only component that is approaching through the 
interface is one of the solutions to lift the reusability 
of the components. The interface acts as to show the 
element into the unit of the external software by 
abstracting the function of the element, and it also 
acts as the media to receive external contacts to use 
the service of the component. 
 
 The interface simply displays the type of 
service that supplies the component, but it does not 
display the internal portion of the component, such as 
how the component supplies the service. This is a 
substance of abstraction as an agent of encapsulation, 
and a hidden data or encapsulation of the 
composition is a combination of data and operations 
as a component and also takes advantage of hidden 
data [38]. 
 
 When the external interface of a component 
is explicitly defined to reduce the subordination share 
that is made better component and the encapsulation 
component, it is created in order to use only through 
the internal interface. Outside of the details should be 
hidden inside of the encapsulation components, and 
hidden data can protect the internal awareness of the 
components from the near, and the errors can be local 
in the internal language of encapsulation components 
and hidden data also reduce the number of interfaces. 
Each component and those components do not affect 
the changes in the execution of other components 
because uses components that are not related to other 
component operations. So it is good and easy to get 
not only maintenance but also extend to other new 
programs. Reuse of components is a method that will 
contain a system builder consisting of components 
such as blocks made. Reuse of black boxes without 
any changes in the detailed events that occur in the 
internal components generally. In the case of a black 
box for recovery, the most important idea is to hide 
the data. When using a black box, there is a hidden 
reason for the main concept is that it can extend the 
reuse of the component because it is not necessary to 
know the details of such components, because this 
hide is good enough to abstract [39]. 
 
 In each stage, the understanding of the 
problem, focusing on reuse and learning is 
emphasized.  Understanding is emphasized because 
the correct problem needs to be solved. 



Journal of Theoretical and Applied Information Technology 
15th May 2022. Vol.100. No 9 
© 2022 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3028 

 

 
 The components must be in the environment 
so that they can be reused. The components base is 
connected means to select potentially useful 
components. 
 
4. EXPERIMENTAL RESULTS AND   

DISCUSSION 

 We developed a tool to use the association 
rules for component classification. Python, C, C++ 
and Java code in banking applications have evolved 
separately and are constantly evolving, as shown in 
the illustration below; each of these tools depends on 
or affects other tools [40]. It creates a multi-
dimensional development and configuration 
management that can be difficult to make the cluster. 
In one case, we have realized that could not involve 
two different subgroups in the same cluster because 
they are based on the logic used in the different 
versions used in the programming languages [41]. All 
of these applications are developed for banking 
applications. 

The algorithm is divided into steps:  

1. Keywords Database used to find all frequently 
items in a text file.  
2. frequent keywords are identified and subsets are 
formed 

 
 In the above algorithm, we had taken 
Component item set size is T, and candidates are 
generated for Lk-1.In the above algorithm software, 
developers will take the function minSupport to 
extract the frequently appearing items. Frequent 
items are generated from Lk-1 using the Cartesian 
product and stored in the array Ck[i]. Further, we are 

taking the subsets of generated subsets to classify the 
components which are extracted from different 
technologies and finally, the algorithm will return the 
components which are ready to adapt. 

Banking application data developed by each 
technology's input tools, and thus have the 
opportunity to know what components are typically 
adapted within one. This algorithm is going to figure 
out a new way to build a list of frequently used 
keyword pairs of these data [19]. After classification 
the  database of components  consist of the sets 
{2,3,4}, {1,2,3,}, {2,3,4}, {2,3,1}, {1,2,4}, {1,3,4}, 
{3,4,2}, {1,3,4,2}[20] . The first step of this tool is to 
find the most frequent items, called the keywords 
and, of each component separately and at the end 
result is how to form the component adaptation 
subsets that are shown in below figures.       

  Source  code for banking application in C: 

 
Source code for banking application in C++: 

 
 
 
 



Journal of Theoretical and Applied Information Technology 
15th May 2022. Vol.100. No 9 
© 2022 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3029 

 

Source code for banking application in Java: 

 
Source code for banking application in Python: 

 

Proposed Algorithm: 
 
Start  
 
S1 and S2 are subsets of ∑(S1, S2) S. 
S3-> (S1^S2) 
if   S1  and S2 are the subsets 
    then 
         S4->S1 && S2 
If   S1 and S2 or S4 and S3 are the Subsets 
then 

S->∑(S1,S2) + (S3&&S4) 
S1->Selective component 1 
S2->Selective component 2 
S3->Adaptive component 
S4-> Adaptive component 
∑->superset of S1, S2 

for  each s1 ,  s3 and s4 
if(s4 >s2) 

then 
Sk-> s2^ (s4 % s3) + s1 

else 
Se->Sp+Sk*s2*s3; 

for all s1,s2,s3,s4 
Sa=Se/(Sk + Sp); 

Sa->Code based self adaptive reuse. 
Sk->Code based adaptive reuse 
Sp->Selective product component 

 end  
 
<< ->Inner to Outer loop and vice versa 

% ->Modulus Operator for Reverse the loop 

& ->Similarities between two logic of the code 
 

Table 1.Software Metrics with range values 

Software Metric Range 

CEM 1.5 to 12.0 

CSEM 1.0 to 9.0 

CRM 2.0 to 11.0 

CFM 1.0 to 10.0 

CCSM 1.0 to 15.0 

CCM 3.0 to 11.0 

 

 In the below Figure.1 we had taken sample 
banking code of different technologies and the 
classification measurement is set to middle the source 
code is supplied as the input values. The result is 
shown in next figure 4. 
 

 
Figure 1: Illustration of Tool using Apriori Algorithm 

 
 In Figure.2, we had taken sample banking 
code of different technologies and the classification 
measurement is set to middle. The source code is 
supplied as the input values. And if the source code is 
executed with the classification we will get c and cpp 
are in the same cluster. The components are shown in 
the Figure.2 bank.c and bank.cpp are ready for 
adaptation because they are in the same cluster. 



Journal of Theoretical and Applied Information Technology 
15th May 2022. Vol.100. No 9 
© 2022 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3030 

 

 
Figure 2: Illustration of selecting different technologies as 

input 
 In the above figure.2, we had taken a sample 
banking code of different technologies and the 
classification measurement is calculated using the 
efficiency metrics. 
 In Table.2, we allotted not accepted metric 
values for compatibility test metrics. We supplied 
here values out of bound. Hence none of the 
components is compatible with adaptation. CSEM 
metric, CCSM metrics are an upper bound, CRM and 
CCM are lower bound, CEM and CFM metrics are 
within the range 

 
Table 2.Software metrics with actual values 

Software 
Metric 

Not accepted 
metric values 

CEM 3.0 

CSEM 30.0 

CRM 0.0 

CFM 2.0 

CCSM 20.0 

CCM 0.0 

 

In Figure.5  given in the form of various high value 
for the different criteria and finally, none of its 
components are adaptive in nature this way because 
of our selection of metrics not satisfied the 
requirements. Hence none of the components for 
adaptive is selected.  
 
In the below Figure.3, we had taken the values within 
the range of all metrics. The graph will provide the 
pictorial representation of metric values when the 
metrics are having actual values of the given range. 
This graph will show the metric vs. resource when 
the values are in within the range of actual. 

 
Figure.3 Metric Vs resources graph with not accepted 

metric values 
 In  Figure.4 we had taken the values within 
the range of all metrics. The metrics we are provided 
are supplied as the input for the interface. The graph 
will provide the information about the software 
metric vs resources when the metrics are in the given 
range that is shown in Figure 4. 

 
Figure.4Metrics Vs resource actual value graphs 

 In Figure.5, we have been assigned the 
values within the range of all metrics. The metrics we 
are provided are supplied as the input for the 
interface. The component classification interface will 
generate the components which are ready for 
adaptation.comp2 and comp3 are ready to adapt as 
they get classified in the same cluster. 

 
Figure 5: Illustration of Adaptive components are subsets 



Journal of Theoretical and Applied Information Technology 
15th May 2022. Vol.100. No 9 
© 2022 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3031 

 

 This is not always the case, that most 
popular components give better performance or better 
matches the needs of the first user [42]. Finally, the 
rating depends on the similarity of the code because 
it is a good choice [43]. Our algorithm uses only the 
keywords as the first user requirements (functional 
and non-functional), but also consider that the 
component is a value that is included in the text file 
pheromone and a specific impact on the performance 
of the components Field.  

 The resulting list of components not only 
meet the requirements of the first user because our 
algorithm provides better results, but also to provide 
an approach to the performance of the component, 
regardless of the popularity of the components.  

 A matter of security, isolation, securing, 
saving the time, core components, code in order to 
get the security applied in the form of the white box 
must be. The change is the most important quality of 
the white box applied. [44] This is the reason why the 
change is the principle of recovery. The white boxes 
are the reuse of existing components as much as cost, 
and the change attempts are becoming small. The 
component should support the user to change its 
properties or methods, which the components must 
suit their own purposes. There is a change in the 
components that require we to enter more time to 
understand the elements and therefore be able to 
understand it is necessary for the anxiety changes. 
The white Box brings their claims related to reuse 
and then reuse. Therefore, a very large majority of 
can be extended. Check the specific function of the 
security component. The main component is to reuse 
the appropriate white box. 

 Our functional and non-functional 
requirements to run the algorithm. So many tests re-
conducted and the results are very similar. The 
results are very interesting because they show the 
logic to select the software components based on the 
similarities [45]. 

 In addition to the general challenges 
associated with the development algorithm to create 
stochastic time, another challenge is that one 
algorithm is not always suitable and available to all 
possible situations besides this is also common for 
decision-making, to compare a number of algorithms 
to choose one that is a specific scenario or using 
different algorithms under different conditions. The 
architecture of the software is flexible and easy to 
iron, with these required solutions. The challenge is 
to solve possible conflicts between different 

algorithms, entering their data and their export 
requirements. Not an interesting task . have 
developed a system part of the design, their 
algorithms and procedures are independent 
components connected to an ill-defined interface as 
specified before every three steps. Where we can 
work freely and their results are meaningful, this may 
be interested in the end user. Only the last step is the 
time set[46].  

 There are also additional coupled 
components such as storage (for example, time series 
storage), User interface and Timing visualization The 
architecture is more flexible, such as the application 
can store information from different third 
programming languages Java, C, C++, Python. The 
user interface is switched better the specific platform 
components that are merged. Different visualization 
components can be developed by third parties to 
create other specific time sets using algorithms. 
Another feature of this platform is to improve 
Components are intended for this architecture but can 
be replaced by new components. This action is only 
used with storage components designed to handle the 
external I/O data files as soon as the new version of 
the application is built. In addition to the new 
emerging storage components, they can be replaced 
with old ones in the most easily composed 
components. Exportable each component is a stand-
alone software that can be thoroughly tested as a 
separate module[47]. 

 These changes occur in almost every aspect 
of society and everyone has their own needs and 
requirements. They need to adapt and implement 
change in a timely manner. Recently, the 
development of business processes and online social 
networks have become increasingly active. Software 
engineers participate in various regional cooperation 
and exchange ideas of research and expertise [48]. 
Software reuse requires us to predict the future needs 
of the software system, so the new synergies that can 
be built and some of their functions and features can 
be modularized so that engineers can easily reuse it. 

5. CONCLUSION 

 The purpose of the clustering of components 
is to customize reusable software components. 
Components must be adjusted to reuse components. 
Customization should be done through clustering. 
Component-based system development is 
accomplished by using the reusable components of 
software systems, and the functionality supported by 
these components varies greatly according to quality 



Journal of Theoretical and Applied Information Technology 
15th May 2022. Vol.100. No 9 
© 2022 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3032 

 

and complexity. The application context of the 
component application is also very different. 

The aim of this tool is to provide an open platform to 
use the adaptation of future researchers. Software 
reuse has made new developments in the use of 
software adaptation, business processes, and efficient 
technologies, encourage researchers to enrich 
potential researchers and adopt new technologies, 
which will provide new and improved technologies 
based on some areas. 

REFERENCES:  
 
[1] Andrew Begel , Jan Bosch , Margaret-Anne 

Storey, Bridging Software Communities through 
Social Networking, IEEE Software, v.30 n.1, 
p.26-28, January 2013.   

  [2] Andrew Begel , Yit Phang Khoo , Thomas 
Zimmermann, Codebook: discovering and 
exploiting relationships in software repositories, 
Proceedings of the 32nd ACM/IEEE International 
Conference on Software Engineering, May 01-08, 
2010, Cape Town, South Africa.  

[3] Hans-Jörg Beyer , Dirk Hein , Clemens Schitter , 
Jens Knodel , Dirk Muthig , Matthias Naab, 
Introducing Architecture-Centric Reuse into a 
Small Development Organization, Proceedings of 
the 10th international conference on Software 
Reuse: High Confidence Software Reuse in Large 
Systems, May 25-29, 2008, Beijing, China.   

[4]  Christian Bird , David Pattison , Raissa D'Souza , 
Vladimir Filkov , Premkumar Devanbu, Latent 
social structure in open source projects, 
Proceedings of the 16th ACM SIGSOFT 
International Symposium on Foundations of 
software engineering, November 09-14, 2008, 
Atlanta, Georgia.  

[5]  Joel Brandt , Philip J. Guo , Joel Lenstein , Mira   
Dontcheva , Scott R. Klemmer, Opportunistic 
Programming: Writing Code to Prototype, 
Ideate, and Discover, IEEE Software, v.26 n.5, 
p.18-24, September 2009   

 [6] Constantinou, E., Naskos, A., Kakarontzas, G., 
Stamelos, I.: Extracting reusable components: A 
semi-automated approach for complex 
structures. Inf. Process. Lett. 1153, 414---417 
2015. 

 [7] Laura Dabbish , Colleen Stuart , Jason Tsay  
James Herbsleb, Leveraging Transparency, IEEE 
Software, v.30 n.1, p.37-43, January 2016. 

   [8] David Garlan , Robert Allen , John Ockerbloom,  
Architectural Mismatch: Why Reuse Is So Hard, 
IEEE Software, v.12 n.6, p.17-26, November 
1995.  

 [9] David Garlan , Robert Allen , John Ockerbloom,  
Architectural Mismatch: Why Reuse Is Still So 
Hard, IEEE Software, v.26 n.4, p.66-69, July 
2009.  

[10]Hans-Jörg Happel , Thomas Schuster , Peter 
Szulman, Leveraging Source Code Search for 
Reuse, Proceedings of the 10th international 
conference on Software Reuse: High Confidence 
Software Reuse in Large Systems, May 25-29, 
2008, Beijing, China.  

[11]Reid Holmes , Robert J. Walker, Systematizing 
pragmatic software reuse, ACM Transactions on 
Software Engineering and Methodology 
(TOSEM), v.21 n.4, p.1-44, November 2012.  

[12] Oliver Hummel , Colin Atkinson, Using the b as 
a reuse repository, Proceedings of the 9th 
international conference on Reuse of Off-the-
Shelf Components, June 12-15, 2006, Turin, 
Italy.  

[13]Korra, Sampath, A. Vinaya Babu, and S.   
Viswanadha Raju. "The adaptive approach to 
software reuse." Contemporary Computing and 
Informatics (IC3I), 2014 International 
Conference on. IEEE, 2014.  

 [14]Andrew J. Ko , Robert DeLine , Gina Venolia, 
Information Needs in Collocated Software 
Development Teams, Proceedings of the 29th 
international conference on Software Engineering, 
p.344-353, May 20-26, 2007.  

[15]Charles W. Krueger, Software reuse, ACM 
Computing Surveys (CSUR), v.24 n.2, p.131-183, 
June 1992.  

[16]Otávio Augusto Lazzarini Lemos , Sushil 
Bajracharya , Joel Ossher , Paulo Cesar Masiero , 
Cristina Lopes, A test-driven approach to code 
search and its application to the reuse of auxiliary 
functionality, Information and Software 
Technology, v.53 n.4, p.294-306, April, 2011. 

[17]Josip Maras , Maja Štula , Ivica Crnković, 
Towards specifying pragmatic software reuse, 
Proceedings of the 2015 European Conference on 
Software Architecture Workshops, September 07-
11, 2015, Dubrovnik, Cavtat, Croatia.  

[18]Nan Niu , Steve Easterbrook, Exploiting COTS-
Based RE Methods: An Experience Report, 
Proceedings of the 10th international conference 
on Software Reuse: High Confidence Software 
Reuse in Large Systems, May 25-29, 2008, 
Beijing, China.  

[19]Niu, N., Jin, X., Niu, Z., Cheng, J.-R., Li, L., 
Kataev, M.: A clustering-based approach to 
enriching code foraging environment. IEEE 
Trans. Cybern. to appear. 

[20]Nan Niu , Anas Mahmoud , Gary Bradshaw, 
Information foraging as a foundation for code 
navigation (NIER track), Proceedings of the 33rd 



Journal of Theoretical and Applied Information Technology 
15th May 2022. Vol.100. No 9 
© 2022 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3033 

 

International Conference on Software 
Engineering, May 21-28, 2011, Waikiki, 
Honolulu, HI, USA. 

[21]Niu, N., Savolainen, J., Niu, Z., Jin, M., Cheng, 
J.-R.: A systems approach to product line 
requirements reuse. IEEE Syst. J. 83, 827-836 
2014 

[22]Niu, N., Yang, F., Cheng, J.-R., Reddivari, S.: 
Conflict resolution support for parallel software 
development. IET Softw. 71, 1-11 2013 

[23]M. Morisio, M. Ezran, and C. Tully, “Success 
and Failure Factors in Software Reuse,” IEEE 
Transactions on Software Engineering, vol. 28, 
no. 4, pp. 340-357, April 2002 

[24]Juha Savolainen , Nan Niu , Tommi Mikkonen , 
Thomas Fogdal, Long-Term Product Line 
Sustainability with Planned Staged Investments, 
IEEE Software, v.30 n.6, p.63-69, November 
2013.  

[25]Jonathan Sillito , Gail C. Murphy , Kris De 
Volder, Asking and Ansring Questions during a 
Programming Change Task, IEEE Transactions 
on Software Engineering, v.34 n.4,p.434-451, 
July  2008.   

[26]Algestam, H., Offesson, M., Lundberg, L.: Using 
Components to Increase Maintainability in a 
Large Telecommunication System. Proc. 9th 
International AsiaPacific Software Engineering 
Conference (APSEC’02), 2002, pp. 65-73.  

[27]Baldassarre, M.T., Bianchi, A., Caivano, D., 
Visaggio, C.A., Stefanizzi, M.: Towards a 
Maintenance Process that Reduces Software 
Quality Degradation Thanks to Full Reuse. Proc. 
8th IEEE Workshop on Empirical Studies of 
Software Maintenance (WESS’02), 2002, 5 p  

[28]Basili, V.R: Viewing Maintenance as Reuse-
Oriented Software Development. IEEE Software, 
7(1): 19-25, Jan. 1990. 

[29] Bennett, K.H., Rajlich, V.: Software Maintenance 
and Evolution: a Roadmap. In ICSE’2000 - Future 
of Software Engineering, Limerick, 2000, pp. 73-
87. 

[30]Damian, D., Chisan, J., Vaidyanathasamy, L.,   Pal, 
Y.: An Industrial Case Study of the Impact of 
Requirements Engineering on Downstream 
Development. Proc. IEEE International Symposium 
on Empirical Software Engineering (ISESE’03), 
2003, pp. 40-49.  

[31]Jørgensen, M.: The Quality of Questionnaire 
Based Software Maintenance Studies, ACM 
SIGSOFT - Software Engineering Notes, 1995, 
20(1): 71-73.  

[32]Lehman, M.M.: Laws of Software Evolution 
Revisited. In Carlo Montangero (Ed.): Proc. 
European Workshop on Software Process 

Technology (EWSPT96), Springer LNCS 1149, 
1996, pp. 108-124.   

[33]Lientz, B.P., Swanson, E.B., Tompkins, G.E.: 
Characteristics of Application Software 
Maintenance. Communications of the ACM, 
21(6): 466-471, June 1978.  

[34]Malaiya, Y., Denton, J.: Requirements Volatility 
and Defect Density. Proc. 10th IEEE International 
Symposium on Software Reliability Engineering 
(ISSRE’99), 1999, pp. 285-294.  

[35]Basalla, G. (1988) The Evolution of Technology, 
Cambridge University Press, New York. Brown, 
J. S. & Duguid, P. (2000)  

[36]K.Venugopal Reddy, Sampath Korra,”Object-      
Oriented Analysis and Design Using UML”,       
BS Publications, 2018. 

[37]Dawkins, R. (1987) The Blind Watchmaker, 
W.W. Norton and Company, New York - 
London. Fischer, G. (1987) "Cognitive View of 
Reuse and Redesign," IEEE Software, Special 
Issue on Reusability, 4(4), pp. 60-72.  

[38]Fischer, G. (1994) "Domain-Oriented Design 
Environments," Automated Software 
Engineering, 1(2), pp. 177-203.  

[39]Knowledge-Based Design Environments, Ph.D. 
Dissertation, Department of Computer Science, 
University of Colorado at Boulder, Boulder, CO. 
Greenbaum, J. & Kyng, M. (Eds.) (2011)  

[40]Design at Work: Cooperative Design of 
Computer Systems, Lawrence Erlbaum 
Associates, Inc., Hillsdale, NJ. Grudin, J. (1994) 
"Groupware and social dynamics: Eight 
challenges for developers," Communications of 
the ACM, 37(1), pp. 92-105. 

 [41]Henderson, A. & Kyng, M. (1991) "There's No 
Place Like Home: Continuing Design in Use." In 
J. Greenbaum & M. Kyng (Eds.), Design at 
Work: Cooperative Design of Computer Systems, 
Lawrence Erlbaum Associates, Inc., Hillsdale, 
NJ, pp. 219-240.  

[42]Henninger, S. R. (1993) Locating Relevant    
Examples for Example-Based Software Design, 
Ph. D Dissertation, Department of Computer 
Science, University of Colorado at Boulder, 
Boulder, CO. Kintsch, W. (1998). 

[43]Comprehension: A Paradigm for Cognition, 
Cambridge University Press, Cambridge, 
England. Nakakoji, K. –July 2003. 

[44]The Role of a Specification Component, Ph.D. 
Dissertation, Department of Computer Science, 
University of Colorado at Boulder, Boulder, CO. 
Nardi, B. A. (1993) A Small Matter of 
Programming, The MIT Press, Cambridge, MA. 

 
 



Journal of Theoretical and Applied Information Technology 
15th May 2022. Vol.100. No 9 
© 2022 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3034 

 

[45]B.H. Liskov and S.N. Zilles, “Specification 
Techniques for Data Abstractions,” IEEE 
Transactions on Software Engineering, vol. SE-
1, no. 1, March 1975, pp. 7-19.  

[46]Sullivan,K.J.;Knight,J.C.;“Experience assessing 
an architectural approach to large-scale, 
systematic reuse,” in Proc. 18th Int’l Conf. 
Software Engineering, Berlin, Mar. 2006, pp. 
220–229  

[47] D'Alessandro, M. Iachini, P.L. Martelli, “A The 
generic reusable component: an approach to 
reuse hierarchical OO designs” appears in: 
software reusability,1993  

[48] Pamela Samuelson, “Is copyright law steering 
the right course?,” IEEE Software, September 
2016, pp. 78-86. 

 
 
 

 
 
 
 
 
 
 
 


