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ABSTRACT 
 

Streaming data applications are common due to the advancement of technology to continuously capture or 
produce data, such as sensors for temperature, humidity and precipitation observations, social media or 
chatbots. These data applications receiving massive data in real-time requires an efficient algorithm and 
sufficient memory for analytics. Internet-of-Things (IoT) technologies embedded in a system requires a 
robust algorithm for clustering the streaming data to support decision making by analysing the historical 
sensor payloads. The MuDi-Stream algorithm, a density-based method, has emerged as one of the important 
methods for clustering data streams. The main issue with MuDi-Stream is the number of empty grids 
increased with the dimensional number or the increase of the streaming speed, making it less efficient when 
handling high-dimensional data. Furthermore, each point that came to a grid in the online phase will be saved, 
and with time, these points will consume larger memory space. To overcome these issues, we proposed an 
enhanced version of MuDi-Stream, coded as eMuDiS. Several benchmark datasets have been used in this 
study, and the performance of eMuDiS is compared to the state-of-the-art methods, including MuDi-Stream. 
The experimental results show that the proposed eMuDiS has better memory allocation performance than the 
MuDi-Stream. 

Keywords: Clustering, Data Stream, Multi-Dimensional, Density Grid, Stream Speed. 
 
1. INTRODUCTION  
 

In the Fourth Industrial Revolution era, the 
interconnectivity between cyber-physical systems, 
the Internet-of-Things (IoT) and mobile devices 
produced tremendous amounts of data transmitted in 
a streaming manner. The data stream can be defined 
as any sequence of data transmitted over a 
connection-oriented communication. Large 
corporations and government agencies generate a 
vast amount of data at a higher speed than ever. For 
instance, status changes, precipitation observations, 
and event responses for emergency operations 
between users and chatbot are considered streaming 
data applications [1, 2]. Google treats more than 3.5 
billion searches daily, whereas NASA satellites 
generate approximately 4 TeraBytes of images daily 
[1]. These tremendous amounts of the data stream 
have been flooding the network between embedded 
systems solutions and applications that require 
analysis to inspect or explore for events or hidden 
knowledge of interest.  

 However, the streaming data are so expensive to 
store for analysis because of their enormous size. 
The value of the data is invaluable to be ignored and 
thus attracts data scientists to develop approaches for 
understanding and finding hidden patterns in data 
streams. One of the critical data mining tasks is 
clustering. Clustering is the process of dividing the 
data into similar groups. 

Existing conventional clustering algorithms are 
not fast enough to cluster data streams because 
techniques have been designed to be used with static 
data repositories. The drawbacks of the traditional 
clustering algorithm have attracted researchers to 
improve the data stream, particularly in reducing 
execution time and memory consumption. 
Clustering the data stream has been defined as 
dividing the continuous sequence of data such as 
multimedia, telephone records, and financial 
transactions into similar groups to improve time and 
memory consumption [2, 3].  

There are five main categories of clustering 
algorithms, hierarchical-based, partitioning-based, 
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model-based, grid-based and density-based [4]. 
Hierarchical-based algorithms aim to analyze 
specific data to build a hierarchy of clusters [5]. In 
comparison, partitioning-based algorithms aim at 
dividing data into a number of clusters using seeds 
or centroids [6]. Model-based algorithms optimize 
the fit between the data and some mathematical 
models. Grid-based algorithms try to divide the data 
space amount of cells grouped to form the clusters 
[7]. Finally, density-based algorithms aim at 
accommodating the clustering among the data points 
based on their distribution or density [8].  

The critical advantage behind the density-based 
compared to other clustering algorithms is that it has 
the ability to cluster any data with arbitrary shape. 
Besides, it has the ability to determine the noise 
points within a data [4]. Such privilege provides a 
superiority for the Density-based algorithms 
regarding handling data streams. Data stream 
clustering problems have attracted researchers such 
as [2, 9-11] to propose numerous methods. 
Researchers have shown a great interest in 
developing robust clustering algorithms, including 
DenStream [8], FlockStrream [11], D-Stream [12], 
MR-Stream [13] and MuDI-Stream [9]. 

However, handling the multi-dimensional density 
data is still a challenging obstacle that would face the 
process of data stream clustering concerning the time 
and memory used to accommodate such a process.  

Another issue is the stream speed which can be 
defined as “the number of arriving data points in 
each time unit” [14]. Thus, the memory allocation 
will be affected by increasing the streaming speed 
which means more saved points in the memory.  

From all above, we can conclude there is a need 
for an algorithm that can cluster the data stream 
despite the amount of dimensionality in the data and 
the speed of the stream. 

This paper proposed a new variant of MuDi-
Stream, a multi-density clustering algorithm for 
evolving data streams that can cluster high 
dimensional data with high streaming speed. The rest 
of the paper can be organized as; Section 2 highlights 
the related work, Section 3 discusses the proposed 
method, Section 4 illustrates the experimental 
results, and Section 5 provides a critical discussion. 

 

2. RELATED WORK 

Density-based methods is a vital clustering 
technique that is useful in identifying the noise in the 
database. Among the density-based algorithm that 

has been proposed in the past few years, some of 
them focused on stream clustering include MuDi-
Stream [9], DCUStream [15], DenStream [8]. These 
algorithms used density micro-clustering, grid-
clustering, or a hybrid between the micro and grid. 
However, the main challenge is when there is multi-
density data which means the cluster has several 
densities. In general, not all multi-density clustering 
algorithms are suitable for stream clustering due to 
the need for two passes of the data to get the 
clustering results. High memory allocation is one of 
the common problems in the existing methods, 
which can be increased by either increasing the speed 
of the stream or increasing the dimensionality, which 
means expanding the points that will be saved to the 
memory [11] and that will lead to reserve a massive 
space if memory. 

Several multi-density algorithms have been 
developed in the literature. Forestiero et al. [11]  
overcome the main problem with the single-pass 
paradigm approach. The number of clusters must be 
determined as an input parameter in a single-pass 
approach. Thus, they cannot capture changes in the 
data stream because the exact weight is given to both 
outdated and recent data. Forestiero et al. [11] 
developed a data stream clustering method based on 
a multi-agent system that uses a decentralized 
bottom-up self-organizing strategy to group similar 
data points. Data points are associated with agents 
that work simultaneously by applying a heuristic 
strategy based on a bio-inspired model, known as the 
flocking model.  

Cassisi et al., [17] This method proposed cluster 
density-based data to find the ϵ-neighbourhood by 
using the influence space (I.S. instead of the 
conventional ways. However, this method needs two 
passes for the data, making it not applicable for the 
streaming data. Moreover, IS-DBSCAN cannot 
handle the problem of subspace. DBSCAN-DLP 
[16] is developed with a different strategy where the 
density variation is used to get statistical information 
to divide the data into diverse density levels. The 
algorithm will define ϵ for each of the density levels 
and perform the clustering on that level based on its 
radius value to get the clustering results. This 
approach suffers from high computational time and 
I/O consumption, especially when input data is 
enormously significant. 

High dimensional data is another challenge for 
clustering any data as it faces two main problems: i) 
The clustering tendency and ii) The curse of 
dimensionality [19]. The clustering tendency will 
lose when the dataset contains irrelevant attributes 
[19]. Searching for clusters will be difficult when 
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there are no relevant attributes to build clusters. 
Attribute selection is the best approach to address the 
problem of selecting irrelevant attributes. The 
dimensionality curse is another problem in high 
dimensional data. SUBCLU [17] is a subspace 
clustering algorithm that uses a greedy strategy to 
find clusters in subspaces. For spotting dense areas 
in the subspaces, SUBCLU has two parameters: 
radius and minPts. However, because the distance 
between the objects changes with the change of the 
subspace, the global settings of radius and minPts is 
impossible. Bohm et al. [18] proposed an algorithm 
called PreDeCon based on DBSCAN. It uses the 
subspace preference vector to define a weighted 
Euclidean distance. PreDeCon depends on the value 
of the variance of objects in the radius-
neighbourhood if it is smaller than the threshold or 
not, to adopt the subspace for an object as relevant or 
not. However, for computing the subspace 
preference, this algorithm requires two more 
parameters to the ones needed by DBSCAN In [19] 
to reduce the processing. Not all subspace clusters 
will be processed. Instead of that, only the identified 
promising clusters. The idea of mining only the 
promising clusters is to get enough information to 
start processing on a higher dimension with more 
interest without the need to jump into the between 
subspace. Moreover, this algorithm steers the 
process by avoiding scanning the database for much 
redundant subspace projection. 

As a conclusion from the literature, one can notice 
that there is still a severe drawback that lies behind 
the state of the art of multi-density clustering 
approaches. Such a drawback can be represented by 
the information brought within the online phase, 
which is being stored in the memory that would 
consume memories. 

Amini et al. [9] Proposed a hybrid method 
between a grid and micro method to propose a new 
algorithm called MuDi-Stream. The algorithm 
handles the noise and multi-density by using the 
grid-based method. However, the number of empty 
grids increased with the dimensional number, 
making the algorithm unsuitable for high-
dimensional data. Furthermore, each point that came 
to a grid in the online phase will be saved, and with 
time, these points will reserve a massive space of 
memory, and therefore a larger storage memory will 
be needed.  

The problem with the MuDi-stream algorithm is 
each point that came to a grid in the online phase will 
be saved. Therefore, these points will reserve a 
massive memory space over time, and a bigger 
storage memory will be needed. This needed 

memory space is a result of two reasons: the first one 
appears when the stream speed increases, which 
means more points will be saved in the grids before 
they are converted into cmcs (core mini clusters). 
The second reason will appear when the dimensions 
of issues increase, and these points will also need 
massive storage. 

3. PRELIMINARIES  

In order to understand the workflow of the 
proposed eMuDiS, the following pseudocode shows 
MuDI-Stream [11] with a memory-laden with 
complete information. 

 

 
As shown in the pseudocode above, the problem 

lies in these lines of the algorithm where the points 
that come to grids within the online phase are being 
saved, then the cmc parameters are being computed. 
To this end, five significant parameters are illustrated 
in MuDi-Stream, which are Weight Coefficient, Grid 
Coefficient, Core Mini Cluster (CMC), Mini-Core 
Distance (MCD), and Outlier Weight Threshold 
(OWT). 

 
Weight coefficient 𝑤௫ is a variable associated with 

every data point x within the data stream. Such a 
variable is declining as much as the data point is 
getting old. In other words, over time, each data point 
is getting less important, whereas the coefficient is 
getting decreased. In order to determine the 
coefficient, another variable λ is being used along 
with the time t and current time tc where λ is greater 
than zero. Based on the parameters mentioned above, 
the following equation describes the computation of 
the weight coefficient: 

 
𝑤𝑥(𝑡௖, 𝑡) = 2λ(𝑡௖ , 𝑡) 

 
 

However, the initial value of 𝑤௫ is assigned to 1. 
In addition, the Grid Weight 𝑤௚ is another parameter 
that should be taken into account. It refers to the 
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summation of weight coefficients associated with 
specific data stream points. For grid g at a particular 
current time 𝑡௖, the grid weight is calculated using 
Equation (1). The following discussion shows some 
definitions that have been the foundation in both, 
MuDI-Stream and the proposed EMuDiS algorithm: 

I. Data point's weight coefficient: For each 
data point x in the data stream, a weight 
coefficient (wx) is assigned, which 
decreases exponentially over time, i.e., 
the older a point gets, the less important 
it gets. The parameter λ is used to control 
the importance of the historical data of 
the stream. If x arrives at time t, its 
weight coefficient at tc is (tc4 > t): wx 
(tc,t) = 2λ(tc,t), λ > 0. The initial wx value 
of the data point is 1. 

II. Grid weight: For a grid g at current time 
tc, the grid weight is defined based on the 
sum of the weight coefficients of data 
points mapped to it. 

𝑤௚ = ∑ 𝑥 ∈ 𝑔ଶି஛(௧೎ି௧ೣ)              (1) 

III. Update the grid weight: the update of the 
grid weight in tc using the last updated 
value tp as follows: 

𝑤௚൫𝑡௣ − 𝑡௖൯ = 2ି஛(௧೎ି௧ೣ) ∗ 𝑤௚൫𝑡௣൯ + 1 

(2) 

IV. Dense grid: grid g will consider as dense 
at any time t, if the following equation is 
satisfied: 

𝑤௚(𝑡) = 𝛼/1 − 2ି஛              (3) 

V. Mini-core distance (mcd): mini-core 
distance is the maximum distance 
between the mean of all points to all other 
neighbourhoods 

VI. Core mini-Cluster (cmc): a group of very 
closed points of data pi...pin. 

 

Once the grid and dense are being formed, multiple 
clusters in which the Core Mini Cluster (CMC) is a 
group of very similar/closed data points. Hence, the 
distance between points is formed based on the Mini-
Core Distance (MCD), which refers to the maximum 
distance between the mean average of a group of 
points and the mean average of all points within 
other groups. Therefore, to identify the 
belongingness of any data point, the Outlier Weight 
Threshold (OWT) is used, which can be calculated 
as follow: 

VII. Outlier weight threshold (OWT): is 
defined as: 

𝑂𝑊𝑇(𝑇௉ , 𝑇஼) =
ఈ(ଵିଶషಓ(೟೎ష೟೛శభ)

ே(ଵିଶషಓ)
     (4) 

 

4. eMuDiS ALGORITHM 

The eMuDiS algorithm is an enhanced version 
of the MuDi-Stream algorithm [9]. The proposed 
algorithm can be represented in the pseudocode of 
the MuDi-Stream, which is stated as follow: 

 
Mudi-Stream: online phase. 
Input: a data stream 
Output: core mini-clusters 
Steps: 

1: 𝑡௣௧ = ቒ
ଵ

ఒ
𝑙𝑜𝑔ଶ

ఈ/(ఈିே(ଵିଶషഊ

ቓ 

2: tc            0; 
3: initialize the grid structure using grid      
    granularity; 
4: while not the end of stream do 
5:   Read data point x from DataStream; 
6:   cmcs        find the nearest cmc to x in cmc list; 
7:   if distance (x,ccmc) ≤mcdcmc then 
8:     cmcs  cmcs +x; 
9:   else 
10:     map the new point x to the grid; 
11:      ng ng+1;  
12:      𝑤௚ ← 2ିఒ(௧೎ି)𝑤௚൫𝑡௣൯ + 1; 

13:      tp   tc; 
14:      Update GG.S. ng, tp, wg); 
15:      if ng > 1 and 𝑤௚ >

ఈ

ଵିଶషಓthen 

16:         new wcmc wg; 

17:          𝐶௖௠௖ ←  
∑ ௙(௧೛ି்೔)(௣೔)೙

೔సభ

௪೎೘೎
 

18:           𝑟௖௠௖ ←  
∑ ௙(௧೛ି்೔)೙

೔సభ ௗ௜௦௧௔௡௖௘(௣೔ೕ,௖೎೘೎)

௪೎೘೎
 

19:        for data points pi in the grid g do 
20:            mcdcmc   Maximum {distance(ccmc,pi)}; 
21:         end for 
22:      end if  
23:   end if 
24:   if tc mod tp == 0 then 
25:     update the weight of all grids in the grid list      

𝑤௚(𝑡௖) = 2ି஛൫௧೎ି௧೛൯ ∗ 𝑤௚൫𝑡௣൯ 
26:    for all grid g do 

27:    𝑂𝑊𝑇(𝑇௉ , 𝑇஼) =
ఈ(ଵିଶషಓ(೟೎ష೟೛శభ)

ே(ଵିଶషಓ)
 

28:    if wg < OWT then 
29:        remove grid g from the grid list; 
30:     end if 
31:   end for 
32:   for all { cmc } do 
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33:       if wcmc<
஑

୒(ଵିଶషಓ)
 then 

34:          remove cmc from { cmc  }; 
35:       end if 
36:     end for 

 
 
37:   end if 
38:   tc tc+1; 
39: end while 
40: End 
 
The eMuDiS can be considered a new variant of 

MuDi-Stream. eMuDiS is an online-offline 
algorithm that depends on the recursive methods, 
keeping only the important information about the 
point in the memory instead of the whole point, 
which will require fewer memory allocations. 

 
The online phase summarizes the received 

points' information as cmc, detecting and removing 
the outlier and the pruning process. In the offline 
phase, the final clusters will be shaped. Note that the 
Euclidean distance has been used in this algorithm.  

 
Grid Synopsis (G.S.): The grid synopsis of a 

grid g is a tuple G.S. (ng, tp, wg) where ng is the 
number of data points inside the grid. tp is the last 
updated timestamp of the grid, and wg is the grid 
weight 
 

The points that come to grids in the online phase 
should not be saved to solve these problems. Instead 
of saving points coordinates and then calculating the 
cmc parameters, the cmc parameters will be updated 
recursively for each new point come to a grid before 
it is converted into a cmc. If the point becomes a cmc, 
the calculated parameters will be assigned to that 
cmc.  

The equations which have been used to update the 
centre of cmc and the radios when a new point has 
arrived in the following: 

𝑁𝑒𝑤 𝑐𝑒𝑛𝑡𝑒𝑟

=
2ିఒ൫௧೎ି௧೛൯  ×  𝑂𝑙𝑑 𝑤௚  ×  𝑂𝑙𝑑 𝑐𝑒𝑛𝑡𝑒𝑟 +  𝑁𝑒𝑤 𝑝𝑜𝑖𝑛𝑡

𝑁𝑒𝑤  𝑤௚

   

(5)    

𝑁𝑒𝑤 𝑟𝑎𝑑𝑖𝑜𝑢𝑠 =
ଶషഊ(೟೎ష೟೛)௥೎೘೎௢௟ௗ௪೎೘೎ାௗ௜௦௧(௣೙೐ೢ,௖೎೘೎)

௡௘௪௪೎೘೎
            (6)

  

The above equations can be applied on the MuDi-
stream code, specifically on the update steps (i.e., 
step 17 and step 18):  

14: Update GG.S. ng, tp, wg); 

15: if ng > 1 and 𝑤௚ >
ఈ

ଵିଶషಓthen 

16: new wcmc wg; 

17: 𝐶௖௠௖ ←
ଶషഊ(೟೎ష೟೛)௢௟ௗ௪೒஼೎೘೎ା௣೙೐ೢ

௡௘௪௪೒
 

18:  

𝑟௖௠௖ ←
2ିఒ൫௧೎ି௧೛൯𝑟௖௠௖𝑜𝑙𝑑𝑤௖௠௖ + 𝑑𝑖𝑠𝑡(𝑝௡௘௪ , 𝑐௖௠௖)

𝑛𝑒𝑤𝑤௖௠௖

 

 
5. EXPERIMENT AND RESULTS 

In this section, results and discussion will be 
presented. We applied eMuDiS and made the MuDi-
Stream as a comparative algorithm. The evaluation 
will be mainly based on memory usage in which two 
factors will be considered along with the memory 
allocation, stream speed and dimensionality. 

5.1 Dataset and Setup 
Real and synthetic datasets were used to evaluate 

the number of the saved points of the EMuDiS 
algorithm. Real datasets that were used in this paper 
are 1) Network Intrusion Detection dataset (KDD 
Cup'99) [12], which has almost 5 million connection 
records of training and network-based intrusion sand 
standard data made by DARPA and where used by 
[8, 9, 11, 20].  

This dataset was converted to be a stream data set 
by taking the data input order as the order of stream. 
2) The land sat satellite data consisting of over 4000 
objects, were collected from remote-sensing satellite 
images. 3*3 regions combined to represent each data 
object, where the four intensity measures are taken at 
a different wavelength. Thus, this would lead the 
objects to be composed of 36 attributes. Moreover, 
each data object has been given a class label to show 
the central sub-region type. DS1, DS.2 and DS3 are 
synthetic data sets used in the experiment. They are 
shown in Figures 1a, 1b, and 1c, respectively. DS1 
has a 12% noise out of 8000 data points with six 
clusters. DS2 has 2990 data points having nine 
clusters, and DS3 has 1000 data points with four 
clusters. The parameters of EMuDiS and MuDi-
Stream adopt the following settings for the speed of 
stream experiment: decay factor λ=0.998, the 
minimum number of points MinPts=5, stream speed 
100-1000 with step size 100. In the second 
experiment for dimensionality, a new random point 
for each cluster has been generated depending on the 
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Gaussian distribution; then, some random points will 
be generated around each point to make a dataset 
with a specific number of dimensions. The second 
experiment used the parameters to adopt the 
following settings:  

 

i. decay factor λ=0.998,  

ii. the minimum number of points 
MinPts=5,  

iii. Stream speed 100 

 
 

 
Figure 1: Synthetic Datasets: (A) Dataset 1 (DS1); (B) 

Dataset 2 (DS2) And (C) Dataset 3 (DS3) 

 
 
 

5.2 Results  
 

The experimental results are divided into two 
groups, including stream speed and stream 
dimensionality. In the first group, the proposed 
clustering method of eMuDiS and the baseline 
clustering method of MuDi-stream are examined to 
handle stream data clustering within different speed 
limits. At the same time, the second group examines 
both methods in terms of stream data clustering 
within different dimensions. The results are 
measured based on the number of the saved points in 
the memory by the proposed method and the MuDi-
Stream with the increase of both streaming speed and 
the dimensionality. These sub-sections depict the 
two groups of the experiment. 

5.2.1 Stream Speed 

As mentioned earlier, the results of applying both 
the proposed eMuDiS and the baseline MuDi-stream 
are being highlighted in this section. The stream 
speed is the number of arriving data points in each 
time unit [11]. Note that the results are divided upon 
the four datasets with different speed limits ranging 
from 100 to 1000.   

The first experiment was aimed to explore the 
effect of changing the stream speed on the memory 
allocation of both EMuDiS and MuDi-stream. The 
results have shown that the EMuDiS is superior in 
memory efficiency to the MuDi-stream.  

Figures 2 to 5 show the number of stored points 
for eMuDiS compared to MuDi-Stream on different 
stream speed range between 100-1000 point per time 
unit for the datasets. 

 

Figure 2 Emudis Memory Allocation (Dataset 1) 

a 

c 

b 
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Figure 3 Emudis Memory Allocation (Dataset 2) 

 

 

 

Figure 4 Emudis Memory Allocation (Dataset 3) 

 

 

 

Figure 5 Emudis Memory Allocation (KDDCUP9 
Dataset) 

 

Comparing the different stream speeds reveals 
that our approach is less affected by increasing speed 
than MuDi-stream, which has shown an exponential 

increase in memory allocation as the speed stream 
increases. eMuDiS outperforms MuDi-stream over 
all the time of the experiment. 

Figure 6 to 10 shows the memory allocation 
results through different speed limits, including 100, 
200, 300, 400, 500 and 1000. The charts showed the 
performance of eMuDiS against the MuDi-stream 
when Dataset 1 was applied. 

As shown in Figure 6, the results of memory 
allocation when the stream speed was 100 indicate 
that the proposed eMuDiS method required a lower 
number of data points (i.e., roughly 1000 data points) 
than the baseline method MuDi-stream where more 
than 4000 data points have been occupied. Whereas, 
when the speed of the stream was 200 in Figure 7, 
the proposed method showed a different small 
number of data points occupied (i.e., around 1000 
data points) compared to the huge number of data 
points occupied by the baseline method (i.e., more 
than 9000).  

 

Figure 6 Memory Allocations When Speed Was 100 

 

In addition, when the stream speed reaches 300, as 
shown in Figure 8, the proposed method still 
obtained approximately the same amount of data 
points compared to the baseline method that gained 
a bigger number of data points (i.e., more than 
14000). After that, when the stream speed increased 
to 400, as shown in Figure 9, the proposed method 
slightly got a higher number of data points (i.e., more 
than 1200) compared to the baseline method that 
dramatically witnessed a larger number of data 
points (i.e., more than 20000).  
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Figure 7 Memory Allocations When Speed Was 200 

 

Figure 8 Memory Allocations When Speed Was 300 

 

 

Figure 9 Memory Allocations When Speed Was 400 

 

On the other hand, when stream speed reaches 
500, as shown in Figure 10, the proposed method still 
shows similar and steady performance, whereas the 
baseline method saves more points over time. This 
has continued until the stream speed reaches 1000 in 
Figure 11, where the proposed method shows steady 
performance, and the baseline breaks the number of 
90000 data points. 

 

Figure 10 Memory Allocations When Speed Was 500 

 

 

 

Figure 11 Memory Allocations When Speed Was 1000 

 

5.2.2 Stream Dimension 

 

In terms of dimensionality, this section examines 
the capabilities of both the proposed eMuDiS and the 
baseline of MuDi-Stream regarding stream data 
clustering within different dimensions. Figure 4.6 
shows such results.  

As shown in Figure 12, when the dimension was 
2, the proposed method showed a smaller number of 
data points (i.e., around 50) than the baseline 
methods, which started with 450 as the number of 
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data points. When the dimension adjusted as 3 in 
Figure 13, the proposed method showed an increase 
in the number of data points (i.e., 250), as well as the 
baseline (i.e., 3400).  

 

Figure 12 Stream Dimension = 2 

 

Figure 13 Stream Dimension = 3 

 

 

Figure 14 Stream Dimension = 4 

After that, when the dimension was set to 4, as 
shown in Figure 14, both the proposed and baseline 

methods witnessed a drop in the number of data 
points. The eMuDiS occupied around 200 data points 
and the baseline settled around 1200 data points. 
This has been followed by a gradual increase in the 
number of data points for both the proposed and the 
baseline method until the dimension reaches 10, 
displayed in Figure 15. The proposed method 
showed around 5000 data points, and the baseline 
showed around 6500 data points. 

 

 

Figure 15 Stream Dimension 10 

Note that there are some variations in terms of the 
gap between the proposed and baseline among the 
datasets. The gaps between the proposed eMuDiS 
and MuDi-Stream on synthetic datasets were 
significantly higher than the real datasets (i.e. e 
KDD-CUP99's gaps. The KDD-CUP99 contain 
many data records (i.e., ~ millions). Besides, plenty 
of noisy and duplicated data are located in such a 
dataset. Hence, the superiority of the proposed 
eMuDiS over the MuDi-Stream was comparable to 
the performance in the syntectic datasets.  

Yet, the general results show that the proposed 
work has proven that saving only necessary 
information to the memory by the proposed MDSS-
stream would have better and more efficient 
performance compared to the mechanism of saving 
all the information to the memory. 

6. CONCLUSION 

In this paper, a new algorithm to cluster data 
stream of multi-density high dimensional data with 
fast streaming speed EMuDiS by hybridizing micro 
and grid clustering on the online-offline, respectively 
is proposed. A recursive method was used to 
overcome the memory allocation problem. the 
algorithm recursively updates the cmc parameter for 
each new point instead of saving the point's 
coordinate that comes to the grid in the online phase. 
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This procedure will be repeated until this grid 
became a cmc. The proposed method has been 
examined in terms of two significant criteria (stream 
speed and stream dimension). The results on 
different real and synthetic data sets show that the 
performance of our methods outperforms the MuDi-
Stream. As shown in the above figures, it is obvious 
that the changes and enhancements made on the 
original MuDi-Stream framework have better results 
than the original MuDi-Stream in terms of allocating 
a lower number of memory data points. This has 
occurred in both circumstances of speed change and 
dimension change, as well as for all the five datasets. 
As future work, we will work on the offline phase to 
increase the clustering quality while reducing the 
memory allocation and compare the results with 
more existing algorithms such as D-Stream and 
DenStream.  
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