
Journal of Theoretical and Applied Information Technology
15th May 2022. Vol.100. No 9
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3012

AN ENHANCED MUDI-STREAM ALGORITHM FOR
CLUSTERING DATA STREAM

MAYAS ALJIBAWI1,2, MOHD ZAKREE AHMAD NAZRI3 AND NOR SAMSIAH SANI4

1,3,4Center for Artificial Intelligence Technology, Faculty of Information Science and Technology,

Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
2Department of computer engineering techniques, Al-Mustaqbal University College, Hillah 51001, Iraq

E-mail: 1mayasaljibawi@gmail.com, 3zakree@ukm.edu.my, 4norsamsiahsani@ukm.edu.my

ABSTRACT

Streaming data applications are common due to the advancement of technology to continuously capture or
produce data, such as sensors for temperature, humidity and precipitation observations, social media or
chatbots. These data applications receiving massive data in real-time requires an efficient algorithm and
sufficient memory for analytics. Internet-of-Things (IoT) technologies embedded in a system requires a
robust algorithm for clustering the streaming data to support decision making by analysing the historical
sensor payloads. The MuDi-Stream algorithm, a density-based method, has emerged as one of the important
methods for clustering data streams. The main issue with MuDi-Stream is the number of empty grids
increased with the dimensional number or the increase of the streaming speed, making it less efficient when
handling high-dimensional data. Furthermore, each point that came to a grid in the online phase will be saved,
and with time, these points will consume larger memory space. To overcome these issues, we proposed an
enhanced version of MuDi-Stream, coded as eMuDiS. Several benchmark datasets have been used in this
study, and the performance of eMuDiS is compared to the state-of-the-art methods, including MuDi-Stream.
The experimental results show that the proposed eMuDiS has better memory allocation performance than the
MuDi-Stream.

Keywords: Clustering, Data Stream, Multi-Dimensional, Density Grid, Stream Speed.

1. INTRODUCTION

In the Fourth Industrial Revolution era, the
interconnectivity between cyber-physical systems,
the Internet-of-Things (IoT) and mobile devices
produced tremendous amounts of data transmitted in
a streaming manner. The data stream can be defined
as any sequence of data transmitted over a
connection-oriented communication. Large
corporations and government agencies generate a
vast amount of data at a higher speed than ever. For
instance, status changes, precipitation observations,
and event responses for emergency operations
between users and chatbot are considered streaming
data applications [1, 2]. Google treats more than 3.5
billion searches daily, whereas NASA satellites
generate approximately 4 TeraBytes of images daily
[1]. These tremendous amounts of the data stream
have been flooding the network between embedded
systems solutions and applications that require
analysis to inspect or explore for events or hidden
knowledge of interest.

 However, the streaming data are so expensive to
store for analysis because of their enormous size.
The value of the data is invaluable to be ignored and
thus attracts data scientists to develop approaches for
understanding and finding hidden patterns in data
streams. One of the critical data mining tasks is
clustering. Clustering is the process of dividing the
data into similar groups.

Existing conventional clustering algorithms are
not fast enough to cluster data streams because
techniques have been designed to be used with static
data repositories. The drawbacks of the traditional
clustering algorithm have attracted researchers to
improve the data stream, particularly in reducing
execution time and memory consumption.
Clustering the data stream has been defined as
dividing the continuous sequence of data such as
multimedia, telephone records, and financial
transactions into similar groups to improve time and
memory consumption [2, 3].

There are five main categories of clustering
algorithms, hierarchical-based, partitioning-based,

Journal of Theoretical and Applied Information Technology
15th May 2022. Vol.100. No 9
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3013

model-based, grid-based and density-based [4].
Hierarchical-based algorithms aim to analyze
specific data to build a hierarchy of clusters [5]. In
comparison, partitioning-based algorithms aim at
dividing data into a number of clusters using seeds
or centroids [6]. Model-based algorithms optimize
the fit between the data and some mathematical
models. Grid-based algorithms try to divide the data
space amount of cells grouped to form the clusters
[7]. Finally, density-based algorithms aim at
accommodating the clustering among the data points
based on their distribution or density [8].

The critical advantage behind the density-based
compared to other clustering algorithms is that it has
the ability to cluster any data with arbitrary shape.
Besides, it has the ability to determine the noise
points within a data [4]. Such privilege provides a
superiority for the Density-based algorithms
regarding handling data streams. Data stream
clustering problems have attracted researchers such
as [2, 9-11] to propose numerous methods.
Researchers have shown a great interest in
developing robust clustering algorithms, including
DenStream [8], FlockStrream [11], D-Stream [12],
MR-Stream [13] and MuDI-Stream [9].

However, handling the multi-dimensional density
data is still a challenging obstacle that would face the
process of data stream clustering concerning the time
and memory used to accommodate such a process.

Another issue is the stream speed which can be
defined as “the number of arriving data points in
each time unit” [14]. Thus, the memory allocation
will be affected by increasing the streaming speed
which means more saved points in the memory.

From all above, we can conclude there is a need
for an algorithm that can cluster the data stream
despite the amount of dimensionality in the data and
the speed of the stream.

This paper proposed a new variant of MuDi-
Stream, a multi-density clustering algorithm for
evolving data streams that can cluster high
dimensional data with high streaming speed. The rest
of the paper can be organized as; Section 2 highlights
the related work, Section 3 discusses the proposed
method, Section 4 illustrates the experimental
results, and Section 5 provides a critical discussion.

2. RELATED WORK

Density-based methods is a vital clustering
technique that is useful in identifying the noise in the
database. Among the density-based algorithm that

has been proposed in the past few years, some of
them focused on stream clustering include MuDi-
Stream [9], DCUStream [15], DenStream [8]. These
algorithms used density micro-clustering, grid-
clustering, or a hybrid between the micro and grid.
However, the main challenge is when there is multi-
density data which means the cluster has several
densities. In general, not all multi-density clustering
algorithms are suitable for stream clustering due to
the need for two passes of the data to get the
clustering results. High memory allocation is one of
the common problems in the existing methods,
which can be increased by either increasing the speed
of the stream or increasing the dimensionality, which
means expanding the points that will be saved to the
memory [11] and that will lead to reserve a massive
space if memory.

Several multi-density algorithms have been
developed in the literature. Forestiero et al. [11]
overcome the main problem with the single-pass
paradigm approach. The number of clusters must be
determined as an input parameter in a single-pass
approach. Thus, they cannot capture changes in the
data stream because the exact weight is given to both
outdated and recent data. Forestiero et al. [11]
developed a data stream clustering method based on
a multi-agent system that uses a decentralized
bottom-up self-organizing strategy to group similar
data points. Data points are associated with agents
that work simultaneously by applying a heuristic
strategy based on a bio-inspired model, known as the
flocking model.

Cassisi et al., [17] This method proposed cluster
density-based data to find the ϵ-neighbourhood by
using the influence space (I.S. instead of the
conventional ways. However, this method needs two
passes for the data, making it not applicable for the
streaming data. Moreover, IS-DBSCAN cannot
handle the problem of subspace. DBSCAN-DLP
[16] is developed with a different strategy where the
density variation is used to get statistical information
to divide the data into diverse density levels. The
algorithm will define ϵ for each of the density levels
and perform the clustering on that level based on its
radius value to get the clustering results. This
approach suffers from high computational time and
I/O consumption, especially when input data is
enormously significant.

High dimensional data is another challenge for
clustering any data as it faces two main problems: i)
The clustering tendency and ii) The curse of
dimensionality [19]. The clustering tendency will
lose when the dataset contains irrelevant attributes
[19]. Searching for clusters will be difficult when

Journal of Theoretical and Applied Information Technology
15th May 2022. Vol.100. No 9
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3014

there are no relevant attributes to build clusters.
Attribute selection is the best approach to address the
problem of selecting irrelevant attributes. The
dimensionality curse is another problem in high
dimensional data. SUBCLU [17] is a subspace
clustering algorithm that uses a greedy strategy to
find clusters in subspaces. For spotting dense areas
in the subspaces, SUBCLU has two parameters:
radius and minPts. However, because the distance
between the objects changes with the change of the
subspace, the global settings of radius and minPts is
impossible. Bohm et al. [18] proposed an algorithm
called PreDeCon based on DBSCAN. It uses the
subspace preference vector to define a weighted
Euclidean distance. PreDeCon depends on the value
of the variance of objects in the radius-
neighbourhood if it is smaller than the threshold or
not, to adopt the subspace for an object as relevant or
not. However, for computing the subspace
preference, this algorithm requires two more
parameters to the ones needed by DBSCAN In [19]
to reduce the processing. Not all subspace clusters
will be processed. Instead of that, only the identified
promising clusters. The idea of mining only the
promising clusters is to get enough information to
start processing on a higher dimension with more
interest without the need to jump into the between
subspace. Moreover, this algorithm steers the
process by avoiding scanning the database for much
redundant subspace projection.

As a conclusion from the literature, one can notice
that there is still a severe drawback that lies behind
the state of the art of multi-density clustering
approaches. Such a drawback can be represented by
the information brought within the online phase,
which is being stored in the memory that would
consume memories.

Amini et al. [9] Proposed a hybrid method
between a grid and micro method to propose a new
algorithm called MuDi-Stream. The algorithm
handles the noise and multi-density by using the
grid-based method. However, the number of empty
grids increased with the dimensional number,
making the algorithm unsuitable for high-
dimensional data. Furthermore, each point that came
to a grid in the online phase will be saved, and with
time, these points will reserve a massive space of
memory, and therefore a larger storage memory will
be needed.

The problem with the MuDi-stream algorithm is
each point that came to a grid in the online phase will
be saved. Therefore, these points will reserve a
massive memory space over time, and a bigger
storage memory will be needed. This needed

memory space is a result of two reasons: the first one
appears when the stream speed increases, which
means more points will be saved in the grids before
they are converted into cmcs (core mini clusters).
The second reason will appear when the dimensions
of issues increase, and these points will also need
massive storage.

3. PRELIMINARIES

In order to understand the workflow of the
proposed eMuDiS, the following pseudocode shows
MuDI-Stream [11] with a memory-laden with
complete information.

As shown in the pseudocode above, the problem

lies in these lines of the algorithm where the points
that come to grids within the online phase are being
saved, then the cmc parameters are being computed.
To this end, five significant parameters are illustrated
in MuDi-Stream, which are Weight Coefficient, Grid
Coefficient, Core Mini Cluster (CMC), Mini-Core
Distance (MCD), and Outlier Weight Threshold
(OWT).

Weight coefficient 𝑤௫ is a variable associated with

every data point x within the data stream. Such a
variable is declining as much as the data point is
getting old. In other words, over time, each data point
is getting less important, whereas the coefficient is
getting decreased. In order to determine the
coefficient, another variable λ is being used along
with the time t and current time tc where λ is greater
than zero. Based on the parameters mentioned above,
the following equation describes the computation of
the weight coefficient:

𝑤𝑥(𝑡௖, 𝑡) = 2λ(𝑡௖ , 𝑡)

However, the initial value of 𝑤௫ is assigned to 1.
In addition, the Grid Weight 𝑤௚ is another parameter
that should be taken into account. It refers to the

Journal of Theoretical and Applied Information Technology
15th May 2022. Vol.100. No 9
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3015

summation of weight coefficients associated with
specific data stream points. For grid g at a particular
current time 𝑡௖, the grid weight is calculated using
Equation (1). The following discussion shows some
definitions that have been the foundation in both,
MuDI-Stream and the proposed EMuDiS algorithm:

I. Data point's weight coefficient: For each
data point x in the data stream, a weight
coefficient (wx) is assigned, which
decreases exponentially over time, i.e.,
the older a point gets, the less important
it gets. The parameter λ is used to control
the importance of the historical data of
the stream. If x arrives at time t, its
weight coefficient at tc is (tc4 > t): wx
(tc,t) = 2λ(tc,t), λ > 0. The initial wx value
of the data point is 1.

II. Grid weight: For a grid g at current time
tc, the grid weight is defined based on the
sum of the weight coefficients of data
points mapped to it.

𝑤௚ = ∑ 𝑥 ∈ 𝑔ଶି஛(௧೎ି௧ೣ) (1)

III. Update the grid weight: the update of the
grid weight in tc using the last updated
value tp as follows:

𝑤௚൫𝑡௣ − 𝑡௖൯ = 2ି஛(௧೎ି௧ೣ) ∗ 𝑤௚൫𝑡௣൯ + 1

(2)

IV. Dense grid: grid g will consider as dense
at any time t, if the following equation is
satisfied:

𝑤௚(𝑡) = 𝛼/1 − 2ି஛ (3)

V. Mini-core distance (mcd): mini-core
distance is the maximum distance
between the mean of all points to all other
neighbourhoods

VI. Core mini-Cluster (cmc): a group of very
closed points of data pi...pin.

Once the grid and dense are being formed, multiple
clusters in which the Core Mini Cluster (CMC) is a
group of very similar/closed data points. Hence, the
distance between points is formed based on the Mini-
Core Distance (MCD), which refers to the maximum
distance between the mean average of a group of
points and the mean average of all points within
other groups. Therefore, to identify the
belongingness of any data point, the Outlier Weight
Threshold (OWT) is used, which can be calculated
as follow:

VII. Outlier weight threshold (OWT): is
defined as:

𝑂𝑊𝑇(𝑇௉ , 𝑇஼) =
ఈ(ଵିଶషಓ(೟೎ష೟೛శభ)

ே(ଵିଶషಓ)
 (4)

4. eMuDiS ALGORITHM

The eMuDiS algorithm is an enhanced version
of the MuDi-Stream algorithm [9]. The proposed
algorithm can be represented in the pseudocode of
the MuDi-Stream, which is stated as follow:

Mudi-Stream: online phase.
Input: a data stream
Output: core mini-clusters
Steps:

1: 𝑡௣௧ = ቒ
ଵ

ఒ
𝑙𝑜𝑔ଶ

ఈ/(ఈିே(ଵିଶషഊ

ቓ

2: tc 0;
3: initialize the grid structure using grid
 granularity;
4: while not the end of stream do
5: Read data point x from DataStream;
6: cmcs find the nearest cmc to x in cmc list;
7: if distance (x,ccmc) ≤mcdcmc then
8: cmcs cmcs +x;
9: else
10: map the new point x to the grid;
11: ng ng+1;
12: 𝑤௚ ← 2ିఒ(௧೎ି)𝑤௚൫𝑡௣൯ + 1;

13: tp  tc;
14: Update GG.S. ng, tp, wg);
15: if ng > 1 and 𝑤௚ >

ఈ

ଵିଶషಓthen

16: new wcmc wg;

17: 𝐶௖௠௖ ←
∑ ௙(௧೛ି்೔)(௣೔)೙

೔సభ

௪೎೘೎

18: 𝑟௖௠௖ ←
∑ ௙(௧೛ି்೔)೙

೔సభ ௗ௜௦௧௔௡௖௘(௣೔ೕ,௖೎೘೎)

௪೎೘೎

19: for data points pi in the grid g do
20: mcdcmc  Maximum {distance(ccmc,pi)};
21: end for
22: end if
23: end if
24: if tc mod tp == 0 then
25: update the weight of all grids in the grid list

𝑤௚(𝑡௖) = 2ି஛൫௧೎ି௧೛൯ ∗ 𝑤௚൫𝑡௣൯
26: for all grid g do

27: 𝑂𝑊𝑇(𝑇௉ , 𝑇஼) =
ఈ(ଵିଶషಓ(೟೎ష೟೛శభ)

ே(ଵିଶషಓ)

28: if wg < OWT then
29: remove grid g from the grid list;
30: end if
31: end for
32: for all { cmc } do

Journal of Theoretical and Applied Information Technology
15th May 2022. Vol.100. No 9
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3016

33: if wcmc<
஑

୒(ଵିଶషಓ)
 then

34: remove cmc from { cmc };
35: end if
36: end for

37: end if
38: tc tc+1;
39: end while
40: End

The eMuDiS can be considered a new variant of

MuDi-Stream. eMuDiS is an online-offline
algorithm that depends on the recursive methods,
keeping only the important information about the
point in the memory instead of the whole point,
which will require fewer memory allocations.

The online phase summarizes the received

points' information as cmc, detecting and removing
the outlier and the pruning process. In the offline
phase, the final clusters will be shaped. Note that the
Euclidean distance has been used in this algorithm.

Grid Synopsis (G.S.): The grid synopsis of a

grid g is a tuple G.S. (ng, tp, wg) where ng is the
number of data points inside the grid. tp is the last
updated timestamp of the grid, and wg is the grid
weight

The points that come to grids in the online phase
should not be saved to solve these problems. Instead
of saving points coordinates and then calculating the
cmc parameters, the cmc parameters will be updated
recursively for each new point come to a grid before
it is converted into a cmc. If the point becomes a cmc,
the calculated parameters will be assigned to that
cmc.

The equations which have been used to update the
centre of cmc and the radios when a new point has
arrived in the following:

𝑁𝑒𝑤 𝑐𝑒𝑛𝑡𝑒𝑟

=
2ିఒ൫௧೎ି௧೛൯ × 𝑂𝑙𝑑 𝑤௚ × 𝑂𝑙𝑑 𝑐𝑒𝑛𝑡𝑒𝑟 + 𝑁𝑒𝑤 𝑝𝑜𝑖𝑛𝑡

𝑁𝑒𝑤 𝑤௚

(5)

𝑁𝑒𝑤 𝑟𝑎𝑑𝑖𝑜𝑢𝑠 =
ଶషഊ(೟೎ష೟೛)௥೎೘೎௢௟ௗ௪೎೘೎ାௗ௜௦௧(௣೙೐ೢ,௖೎೘೎)

௡௘௪௪೎೘೎
 (6)

The above equations can be applied on the MuDi-
stream code, specifically on the update steps (i.e.,
step 17 and step 18):

14: Update GG.S. ng, tp, wg);

15: if ng > 1 and 𝑤௚ >
ఈ

ଵିଶషಓthen

16: new wcmc wg;

17: 𝐶௖௠௖ ←
ଶషഊ(೟೎ష೟೛)௢௟ௗ௪೒஼೎೘೎ା௣೙೐ೢ

௡௘௪௪೒

18:

𝑟௖௠௖ ←
2ିఒ൫௧೎ି௧೛൯𝑟௖௠௖𝑜𝑙𝑑𝑤௖௠௖ + 𝑑𝑖𝑠𝑡(𝑝௡௘௪ , 𝑐௖௠௖)

𝑛𝑒𝑤𝑤௖௠௖

5. EXPERIMENT AND RESULTS

In this section, results and discussion will be
presented. We applied eMuDiS and made the MuDi-
Stream as a comparative algorithm. The evaluation
will be mainly based on memory usage in which two
factors will be considered along with the memory
allocation, stream speed and dimensionality.

5.1 Dataset and Setup
Real and synthetic datasets were used to evaluate

the number of the saved points of the EMuDiS
algorithm. Real datasets that were used in this paper
are 1) Network Intrusion Detection dataset (KDD
Cup'99) [12], which has almost 5 million connection
records of training and network-based intrusion sand
standard data made by DARPA and where used by
[8, 9, 11, 20].

This dataset was converted to be a stream data set
by taking the data input order as the order of stream.
2) The land sat satellite data consisting of over 4000
objects, were collected from remote-sensing satellite
images. 3*3 regions combined to represent each data
object, where the four intensity measures are taken at
a different wavelength. Thus, this would lead the
objects to be composed of 36 attributes. Moreover,
each data object has been given a class label to show
the central sub-region type. DS1, DS.2 and DS3 are
synthetic data sets used in the experiment. They are
shown in Figures 1a, 1b, and 1c, respectively. DS1
has a 12% noise out of 8000 data points with six
clusters. DS2 has 2990 data points having nine
clusters, and DS3 has 1000 data points with four
clusters. The parameters of EMuDiS and MuDi-
Stream adopt the following settings for the speed of
stream experiment: decay factor λ=0.998, the
minimum number of points MinPts=5, stream speed
100-1000 with step size 100. In the second
experiment for dimensionality, a new random point
for each cluster has been generated depending on the

Journal of Theoretical and Applied Information Technology
15th May 2022. Vol.100. No 9
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3017

Gaussian distribution; then, some random points will
be generated around each point to make a dataset
with a specific number of dimensions. The second
experiment used the parameters to adopt the
following settings:

i. decay factor λ=0.998,

ii. the minimum number of points
MinPts=5,

iii. Stream speed 100

Figure 1: Synthetic Datasets: (A) Dataset 1 (DS1); (B)

Dataset 2 (DS2) And (C) Dataset 3 (DS3)

5.2 Results

The experimental results are divided into two
groups, including stream speed and stream
dimensionality. In the first group, the proposed
clustering method of eMuDiS and the baseline
clustering method of MuDi-stream are examined to
handle stream data clustering within different speed
limits. At the same time, the second group examines
both methods in terms of stream data clustering
within different dimensions. The results are
measured based on the number of the saved points in
the memory by the proposed method and the MuDi-
Stream with the increase of both streaming speed and
the dimensionality. These sub-sections depict the
two groups of the experiment.

5.2.1 Stream Speed

As mentioned earlier, the results of applying both
the proposed eMuDiS and the baseline MuDi-stream
are being highlighted in this section. The stream
speed is the number of arriving data points in each
time unit [11]. Note that the results are divided upon
the four datasets with different speed limits ranging
from 100 to 1000.

The first experiment was aimed to explore the
effect of changing the stream speed on the memory
allocation of both EMuDiS and MuDi-stream. The
results have shown that the EMuDiS is superior in
memory efficiency to the MuDi-stream.

Figures 2 to 5 show the number of stored points
for eMuDiS compared to MuDi-Stream on different
stream speed range between 100-1000 point per time
unit for the datasets.

Figure 2 Emudis Memory Allocation (Dataset 1)

a

c

b

Journal of Theoretical and Applied Information Technology
15th May 2022. Vol.100. No 9
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3018

Figure 3 Emudis Memory Allocation (Dataset 2)

Figure 4 Emudis Memory Allocation (Dataset 3)

Figure 5 Emudis Memory Allocation (KDDCUP9
Dataset)

Comparing the different stream speeds reveals
that our approach is less affected by increasing speed
than MuDi-stream, which has shown an exponential

increase in memory allocation as the speed stream
increases. eMuDiS outperforms MuDi-stream over
all the time of the experiment.

Figure 6 to 10 shows the memory allocation
results through different speed limits, including 100,
200, 300, 400, 500 and 1000. The charts showed the
performance of eMuDiS against the MuDi-stream
when Dataset 1 was applied.

As shown in Figure 6, the results of memory
allocation when the stream speed was 100 indicate
that the proposed eMuDiS method required a lower
number of data points (i.e., roughly 1000 data points)
than the baseline method MuDi-stream where more
than 4000 data points have been occupied. Whereas,
when the speed of the stream was 200 in Figure 7,
the proposed method showed a different small
number of data points occupied (i.e., around 1000
data points) compared to the huge number of data
points occupied by the baseline method (i.e., more
than 9000).

Figure 6 Memory Allocations When Speed Was 100

In addition, when the stream speed reaches 300, as
shown in Figure 8, the proposed method still
obtained approximately the same amount of data
points compared to the baseline method that gained
a bigger number of data points (i.e., more than
14000). After that, when the stream speed increased
to 400, as shown in Figure 9, the proposed method
slightly got a higher number of data points (i.e., more
than 1200) compared to the baseline method that
dramatically witnessed a larger number of data
points (i.e., more than 20000).

Journal of Theoretical and Applied Information Technology
15th May 2022. Vol.100. No 9
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3019

Figure 7 Memory Allocations When Speed Was 200

Figure 8 Memory Allocations When Speed Was 300

Figure 9 Memory Allocations When Speed Was 400

On the other hand, when stream speed reaches
500, as shown in Figure 10, the proposed method still
shows similar and steady performance, whereas the
baseline method saves more points over time. This
has continued until the stream speed reaches 1000 in
Figure 11, where the proposed method shows steady
performance, and the baseline breaks the number of
90000 data points.

Figure 10 Memory Allocations When Speed Was 500

Figure 11 Memory Allocations When Speed Was 1000

5.2.2 Stream Dimension

In terms of dimensionality, this section examines
the capabilities of both the proposed eMuDiS and the
baseline of MuDi-Stream regarding stream data
clustering within different dimensions. Figure 4.6
shows such results.

As shown in Figure 12, when the dimension was
2, the proposed method showed a smaller number of
data points (i.e., around 50) than the baseline
methods, which started with 450 as the number of

Journal of Theoretical and Applied Information Technology
15th May 2022. Vol.100. No 9
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3020

data points. When the dimension adjusted as 3 in
Figure 13, the proposed method showed an increase
in the number of data points (i.e., 250), as well as the
baseline (i.e., 3400).

Figure 12 Stream Dimension = 2

Figure 13 Stream Dimension = 3

Figure 14 Stream Dimension = 4

After that, when the dimension was set to 4, as
shown in Figure 14, both the proposed and baseline

methods witnessed a drop in the number of data
points. The eMuDiS occupied around 200 data points
and the baseline settled around 1200 data points.
This has been followed by a gradual increase in the
number of data points for both the proposed and the
baseline method until the dimension reaches 10,
displayed in Figure 15. The proposed method
showed around 5000 data points, and the baseline
showed around 6500 data points.

Figure 15 Stream Dimension 10

Note that there are some variations in terms of the
gap between the proposed and baseline among the
datasets. The gaps between the proposed eMuDiS
and MuDi-Stream on synthetic datasets were
significantly higher than the real datasets (i.e. e
KDD-CUP99's gaps. The KDD-CUP99 contain
many data records (i.e., ~ millions). Besides, plenty
of noisy and duplicated data are located in such a
dataset. Hence, the superiority of the proposed
eMuDiS over the MuDi-Stream was comparable to
the performance in the syntectic datasets.

Yet, the general results show that the proposed
work has proven that saving only necessary
information to the memory by the proposed MDSS-
stream would have better and more efficient
performance compared to the mechanism of saving
all the information to the memory.

6. CONCLUSION

In this paper, a new algorithm to cluster data
stream of multi-density high dimensional data with
fast streaming speed EMuDiS by hybridizing micro
and grid clustering on the online-offline, respectively
is proposed. A recursive method was used to
overcome the memory allocation problem. the
algorithm recursively updates the cmc parameter for
each new point instead of saving the point's
coordinate that comes to the grid in the online phase.

Journal of Theoretical and Applied Information Technology
15th May 2022. Vol.100. No 9
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3021

This procedure will be repeated until this grid
became a cmc. The proposed method has been
examined in terms of two significant criteria (stream
speed and stream dimension). The results on
different real and synthetic data sets show that the
performance of our methods outperforms the MuDi-
Stream. As shown in the above figures, it is obvious
that the changes and enhancements made on the
original MuDi-Stream framework have better results
than the original MuDi-Stream in terms of allocating
a lower number of memory data points. This has
occurred in both circumstances of speed change and
dimension change, as well as for all the five datasets.
As future work, we will work on the offline phase to
increase the clustering quality while reducing the
memory allocation and compare the results with
more existing algorithms such as D-Stream and
DenStream.

Acknowledgement:

This research is supported by the Universiti
Kebangsaan Malaysia Research University Grant
GUP-2020-091 and FTSM Community
Transformation Grant TT-2020-016.

REFERENCES:

[1] Ma, W.H. Survey on data streams clustering
techniques. in Advanced Materials Research.
2014. Trans Tech Publ.

[2] Jung, J.J.J.E.S.w.A., Semantic preprocessing
for mining sensor streams from heterogeneous
environments. 2011. 38(5): p. 6107-6111.

[3] Aggarwal, C.C., N. Ashish, and A. Sheth, The
internet of things: A survey from the data-
centric perspective, in Managing and mining
sensor data. 2013, Springer. p. 383-428.

[4] Han, J., J. Pei, and M. Kamber, Data mining:
concepts and techniques. 2011: Elsevier.

[5] Aljibawi, M., M.Z.A. Nazri, and Z.J.I.J.E.T.
Othman, A survey on clustering density based
data stream algorithms. 2018. 7(36): p. 147-
153.

[6] Wei, C.-P., Y.-H. Lee, and C.-M.J.E.S.w.a. Hsu,
Empirical comparison of fast partitioning-
based clustering algorithms for large data sets.
2003. 24(4): p. 351-363.

[7] Wu, B. and B.M.J.I.T.o.I.I. Wilamowski, A fast
density and grid based clustering method for
data with arbitrary shapes and noise. 2016.
13(4): p. 1620-1628.

[8] Cao, F., et al. Density-based clustering over an
evolving data stream with noise. in Proceedings
of the 2006 SIAM international conference on
data mining. 2006. SIAM.

[9] Amini, A., et al., MuDi-Stream: A multi density
clustering algorithm for evolving data stream.
Journal of Network and Computer Applications,
2016. 59: p. 370-385.

[10] Aggarwal, C.C. and C.K. Reddy, Data
clustering: algorithms and applications. Chap
man and Hall. 2013, CRC Press, Boca Raton,
Florida.

[11] Forestiero, A., et al., A single pass algorithm for
clustering evolving data streams based on
swarm intelligence. Data Mining and
Knowledge Discovery 2013. 26(1): p. 1-26.

[12] Tu, L. and Y.J.A.T.o.K.D.f.D. Chen, Stream
data clustering based on grid density and
attraction. 2009. 3(3): p. 1-27.

[13] Wan, L., et al., Density-based clustering of data
streams at multiple resolutions. ACM
Transactions on Knowledge discovery from
Data (TKDD) 2009. 3(3): p. 14.

[14] Amini, A., T.Y. Wah, and H. Saboohi, On
density-based data streams clustering
algorithms: A survey. Journal of Computer
Science and Technology, 2014. 29(1): p. 116-
141.

[15] Yang, Y., et al. Dynamic density-based
clustering algorithm over uncertain data
streams. in 2012 9th international conference
on fuzzy systems and knowledge discovery.
2012. IEEE.

[16] Xiong, Z., et al., Multi-density DBSCAN
algorithm based on density levels partitioning.
2012. 9(10): p. 2739-2749.

[17] Kailing, K., H.-P. Kriegel, and P. Kröger.
Density-connected subspace clustering for
high-dimensional data. in Proceedings of the
2004 SIAM international conference on data
mining. 2004. SIAM.

[18] Bohm, C., et al. Density connected clustering
with local subspace preferences. in Fourth
IEEE International Conference on Data Mining
(ICDM'04). 2004. IEEE.

[19] Jahirabadkar, S. and P.J.I.J.o.C.A. Kulkarni,
Clustering for high dimensional data: density
based subspace clustering algorithms. 2013.
63(20).

[20] Li, X., et al., On cluster tree for nested and
multi-density data clustering. 2010. 43(9): p.
3130-3143.

