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ABSTRACT 
 

In huge multivariate data set with a number of variables greater than the number of samples, the standard 
linear model (or ordinary least squares method) performs badly. In such situations, a better option is penalized 
regression, which allows you to design a linear regression model that is penalized for having too many 
variables by adding a constraint to the equation Shrinkage or regularization procedures are other names for 
this. The penalty has the effect of reducing (i.e. shrinking) the coefficient values towards zero. This permits 
the coefficients of the less important variables to be near to or equal to zero. By decreasing the number of 
coefficients and maintaining those with coefficients greater than zero, penalized regression models improve 
prediction in new data when compared to traditional methods. We demonstrate that the proposed regularizer 
is capable of achieving competitive results as well as exceedingly compact networks. Extensive tests are 
carried out on a number of benchmark datasets to demonstrate the effectiveness of the method. 

Keywords: Lasso, Ridge, Adaptive Lasso, Elastic-Net, Vgg-19, MNIST, CIFAR-10, ImageNet  
 
 
1. INTRODUCTION  
 

Regularization, or penalized logistic 
regression, is a sort of logistic model that penalizes 
or minimizes the impact of specific variables. When 
a dataset contains a large number of variables and 
there is no way of knowing which ones would be 
useful in the regression model, regularization 
techniques are applied. Regularization approaches 
impose a penalty to minimize the effect of some 
variables without completely deleting them from the 
equation in order to avoid overfitting the model to 
the data. This should result in a model that shows 
which variables have a greater impact on the 
predictive value than others. There are other 
approaches for creating a penalized regression 
model. 
  Penalized regression methods are a 
valuable theoretical strategy for both creating 
prediction models and choosing essential indicators 
from a pool of data that is typically much bigger. By 
decreasing the number of coefficients and 
maintaining those with coefficients greater than 
zero, penalized regression models improve 
prediction in new data when compared to traditional 
methods. 
  The performance and selection of 
indicators, on the other hand, are dependent on the 
algorithm used. The procedure of regularization 

used in penalized regression is another factor to 
consider when balancing the accuracy and 
generalizability of predictive models. Regularization 
is an automated process for reducing the strength of 
coefficients for predictive variables that are thought 
to be irrelevant in predicting the outcome to zero. 

In terms of complexity, regularization also 
aids in balancing the accuracy and generalizability 
of predictive models. The number of indicators in the 
final model is typically referred to as complexity. 
The regularization process shrinks the coefficients of 
irrelevant variables to zero for numerous penalized 
regression algorithms (i.e., excluded from the 
model). 

By balancing the bias-variance trade-off, 
regularizations also help to reduce overfitting [1].  
The model becomes less sensitive to the properties 
of the training data by reducing the magnitude of the 
estimated coefficients (i.e., adding bias and reducing 
accuracy in the training data), resulting in fewer 
variations in predictions when estimating the same 
model in the testing data (i.e., reducing variation and 
increasing generalizability). Various penalized 
regression methods are discussed and summarized in 
Table 1 as: 

 

 



 Journal of Theoretical and Applied Information Technology 

30th April 2022. Vol.100. No 8 
© 2022 Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
2471 

 

Table 1: Summarized penalized regression methods 
Penalty 
regression 
Method 

Description Penalty 

 
L0 Regression  
method 

 
Sometimes known by the name L0 penalty method. 
Penalizes the coefficients or parameters to some 
different smaller values rather than approaching them 
to zero values. Because of its non-convexity, it is an 
NP-hard problem, and finding a minimum is very 
difficult.  
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Lasso (L1 
Regression)  
Method. 

 
This regularization method actually penalizes the 
absolute values of the coefficients. Makes the value of 
inapplicable things to zero. Also helps in removing too 
many redundant features in the model.   
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Ridge 
Regression (L2 
Regression) 
Method. 

 
Instead of penalizing the absolute coefficients, it 
penalizes the square of the magnitude of coefficients. 
It makes   values very small but not zero. It doesn’t 

help in removing too many redundant features in the 
model but to some extent can minimize their impact 
on the model. 
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[4] 

 
Adaptive-Lasso 
Regression 
Method. 

 
It has a property of selection consistency that is it 
assures that once the size of the sample tends to 
approach infinity, the selected predictor variables 
approach towards true values with the probability of 
1. Secondly, it also gives assurance about the 
asymptotical standardization of the estimators with the 
similar mean and covariance they already have with 
maximum likelihood estimation. 
 

1
ˆ

q
k

k k

t



 
  

 
  

 
[5] 

 
Elastic-Net 
Regression  
Method. 

 
This method actually makes use of a weighted 
combination of both L1 and L2 regularization methods. 
It combines the advantages provided by both methods 
and comes to exist as the most efficient regularization/ 
regression technique. 
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1.1 Summary of Main Contributions of the 
Work  

In this paper, various penalized regression methods 
are discussed with their penalized factor. A detailed 
literature review of all the regression methods has 
been jotted down.  

After doing a comprehensive literature 
review and critical analysis of various penalized 
regression methods, a novel penalized regression 
method known as e-norm is proposed to minimize 
the cost function and is far more efficient as 
compared to the already existing start of art 
penalized regression methods.  

The regularizer for generic neural networks 
based on e-norm with batch normalization is used in 
this work.  

The proposed regularization method is 
embedded in the vgg-19 model in addition to batch 
normalization implemented on three datasets to 
achieve the results.  

2. RELATED WORK 

(Jian Huang, Yuling Jiao et al in 2018) The 
authors suggested a novel method for estimating 
sparse, high-dimensional linear regression models 
that is constructive. The method is a computer 
algorithm based on the KKT criteria for 0-penalized 
least-squares solutions. It iteratively develops a 
series of solutions based on support detection using 
primal and dual information, as well as root finding 
[2].  

(Hiroaki Fukunishi, Mitsuki Nishiyama et 
al in 2020) Using routinely gathered claim data from 
health insurance and long-term care insurance 
databases in Japan, this study established 
Alzheimer's-type dementia predictions for those 
over 75 who do not receive long-term care services. 
To select influential features from a large number of 
feature candidates, a sparse logistic regression model 
with L0 regularization (SLR-L0) was used and 
compared to a sparse logistic regression model with 
L1 regularization (SLR-L1). AUC predictions for 
SLR-L0 were 0.663 and 0.660, respectively, while 
the average number of selected features was 13 out 
of 611 for SLR-L0 and 253 for SLR-L1 [7]. 

(Sushrut Karmalkar, Eric Price in 2019) 
For the problem of sparse robust linear regression, 
we provide a simple and effective approach. In this 

task, the authors estimated a sparse vector * nw R  

using linear measurements that have been corrupted 
by sparse noise that can arbitrarily change a   

fraction of observed responses y, as well as introduce 
bounded norm noise to the responses. The authors 
observed that for Gaussian observations, a basic L1 

regression method can effectively predict *w  for 

any 0 0.239    and that this threshold is too 

high for the algorithm. For k-sparse estimation, the 
number of measurements required by the approach 

is  O logk nk , which is within constant factors of 

the number required without any sparse noise [8]. 
(Ramy Hussein, Mohamed Elgendi et al in 

2018) This research demonstrates a reliable seizure 
detection system that performs well in both real-
world and ideal situations. To determine the most 
prominent features important to epileptic seizures, a 
feature learning method based on L1-penalized 
robust regression is devised and applied to the EEG 
spectra. For seizure detection, the collected features 
are loaded into a random forest classifier. The 
performance of this seizure detection algorithm is 
superior to previous studies, according to results 
from a public benchmark dataset. Under ideal 
conditions, it achieves 100 percent sensitivity, 100 
percent specificity, and 100 percent classification 
accuracy for seizure detection. The proposed 
technique has also been shown to be reliable in the 
face of white noise and EEG artifacts, particularly 
those caused by muscular activity and eye blinking 
[9]. 

(Edgar Dobriban, Stefan Wager et al in 
2018) In a dense random-effects model, the authors 
presented a unified analysis of the predictive risk of 
ridge regression and regularized discriminant 
analysis. The authors operate in a high-dimensional 

asymptotic regime where ,p  n , 0
p

n
  and 

allow for arbitrary feature covariance. They gave an 
explicit and computationally efficient expression for 
the limiting prediction risk for both techniques, 
which is dependent only on the spectrum of the 
feature-covariance matrix, the signal strength, and 
the aspect ratio [10]. 

(Sifan Liu, Edgar Dobriban et al in 2019) 
The authors looked at the following three 
fundamental ridge regression issues:  

i.    What is the estimator's structure? 
ii.  How do you choose the regularization 
parameter using cross-validation correctly?  
iii.  How can I speed up computation without 
sacrificing accuracy?  

In a unified large-data linear model, we consider the 
three difficulties. Ridge regression is represented as 
a covariance matrix-dependent linear combination of 
the real parameter and the noise in this paper. The 
bias of K-fold cross-validation for determining the 
regularization parameter is investigated, and a 
simple bias-correction is proposed. For ridge 
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regression, they investigated the accuracy of primal 
and dual sketching, and find that they are both 
surprisingly accurate. Simulations and empirical 
data analysis are used to demonstrate our findings 
[11]. 

(Gholamreza Hesamian, Mohammad 
Ghasem Akbari in 2019) The Lasso approach was 
expanded for multiple linear regression models with 
non-fuzzy explanatory variables and fuzzy answers 
in this study. By removing variables that are 
unnecessary to the fuzzy response variables, the 
fuzzy Lasso approach can improve the model's 
interpretability. A fuzzy penalized technique was 
used to estimate unknown fuzzy regression 
coefficients and tuning constants for this purpose. 
The proposed method's performance was also 
evaluated using certain common goodness-of-fit 
metrics. Two real-world instances and a simulation 
study were used to evaluate the suggested method's 
effectiveness [12]. 

(Nima S. Hejazi, Jeremy R. Coyle et al in 
2020) The authors developed hal9001 R package 
implements the highly adaptive lasso (HAL), a 
flexible nonparametric regression and machine 
learning approach with various theoretically useful 
qualities, in a computationally efficient manner. In 
order to improve the algorithm's scalability, hal9001 
combines an implementation of this estimator with a 
set of useful variable selection tools and appropriate 
defaults. The hal9001 R package provides a family 
of highly adaptive lasso estimators suitable for use 
in both modern large-scale data analysis and cutting-
edge research efforts at the intersection of statistics 
and machine learning, including the emerging 
subfield of computational causal inference, by 
building on existing R packages for lasso regression 
and leveraging compiled code in key internal 
functions. 2020 (Wong) [13]. 

(Rahim Alhamzawi, Haithem Taha 
Mohammad Ali in 2018) The scale mixture of 
truncated normal (with exponential mixing 
densities) representation of the Bayesian adaptive 
lasso prior is used in this research to propose a novel 
hierarchical representation of Bayesian adaptive 
lasso. A full Bayesian treatment was examined, 
which resulted in a novel Gibbs sampler with 
tractable full conditional posterior distributions. We 
evaluate the performance of the new Gibbs sampler 
with some current Bayesian and non-Bayesian 
approaches using simulations and real data analysis. 
The new approach outperforms previous Bayesian 
and non-Bayesian approaches, according to the 
findings [14]. 

(Kazim Topuz, Hasmet Uner, in 2018) The 
elastic net (EN) variable-selection methodology is 

combined with probabilistic Bayesian Belief 
Network (BBN) in this study to create a hybrid 
probabilistic prediction framework. The study uses 
demographics, socioeconomic status, current 
appointment information, and the patient's and 
family’s appointment attendance history to estimate 
the “no-show probability of the patient(s)”. The 
proposed approach is supported by ten years of data 
from a local pediatric clinic. This EN-based BBN 
framework is proved to be a similar prediction 
methodology when compared to the top 
methodologies in the literature [15]. 

(Achim Ahrens, Christian B. Hansen et al 
in 2020) Developed LASSOPACK, which is a 
collection of programmers for penalized regression 
methods in high-dimensional settings, such as when 
the number of predictors p is big and possibly 
exceeds the number of data. Both lasso and logistic 
lasso regression are supported by LASSOPACK. 
There are six primary programmers in the package: 
Lasko2, square-root lasso, elastic net, ridge 
regression, adaptive lasso, and post-estimation OLS 
are all implemented in lasso2. For cross-section, 
panel, and time-series data, cv lasso provides K-fold 
cross-validation and rolling cross-validation. For 
cross-section and panel data, r lasso implements 
theory-driven penalization for the lasso and square-
root lasso. The related programs for logistic lasso 
regression are lasso logit, cv lasso logit, and r lasso 
logit [16]. 

(Sara van Erp, Daniel L. Oberski et al in 
2019) To make comparisons easier, we present a 
theoretical and conceptual comparison of nine 
distinct shrinkage priors and, if possible, parametrize 
the priors in terms of scale mixture of normal 
distributions. In simulation research, we show the 
distinct properties and behaviour of shrinkage priors 
and compare their performance in terms of 
prediction and variable selection. We also present 
two empirical examples to demonstrate how 
Bayesian penalization can be used. Finally, 
researchers can use the R package bayesreg 
(https://github.com/sara-vanerp/bayesreg) to do 
Bayesian penalized regression with innovative 
shrinkage priors in a simple way [17]. 
 
3. MAIN CONTRIBUTION OF THE WORK 
 
In this work, various penalized regression methods 
are discussed with their penalized factor. A detailed 
literature review of all the regression methods has 
been jotted down in this paper. After doing a 
comprehensive literature review and critical analysis 
of various penalized regression methods.  
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A novel penalized regression method 
known as e-norm is proposed to minimize the cost 
function and is far more efficient as compared to the 
already existing start of art penalized regression 
methods.  
 
4. PROPOSED WORK 
 
  The most frequent choice for using the 
regularization method in deep learning models is the 
l2 norm which is also known by the name weight 
decay or ridge regression. The mathematical 
formulation of L2 norm is basically a vector form and 
for complex vector, it is depicted as: 

 1 2

T

ny y y y   and is given by 

2
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m

j
j

y y

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For real vectors the L1 norm for vector 

 1 2

T
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1 2 ny y y y     

Penalizing property of weight decay varies directly 
with the magnitude of weights i.e more penalty for 
greater weights and less penalty for smaller weights. 
This method is not able to shrink the values of 
weights to zero. Thus is not able to introduce any 
kind of sparsity required for dense neural networks. 
This lack of introducing sparsity makes this 
regularization unfit for current dense neural 
networks. Though L1 regularizer is best choice to 
introduce the sparsity, but the major drawback of the 
regression method is that it makes choice for only 
non-zero parameters and excludes others. The L0 is 
the norm is given as: 
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Finding the solution of this l0 regularization method 
is an NP-hard problem so we relax this solution from 
L0 to novel e-norm which is given as  

We define the new norm .
e

 as 
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T n
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The function .
e

 defines a norm on nR , which 

can be verified easily. 
The LeCP estimator is given by  
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in quadratic form as   T
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Putting,  2 1 2     , the optimization 

problem (1) is equivalent to    
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Where, 1 2    . Hence, the problem (1) is 

equivalent to finding  
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Where,   is the positive hyper parameter 
responsible for controlling the effect of 
regularization term and the loss term 

   ˆ , arg min y


  


  xβ given in 

equation (4). This loss function is meant to make the 
comparison between the predicted value and ground 
truth output. The loss function depends upon the 
task performed by us. If our task is a classification 
problem, then the default loss function used is cross-
entropy and for regression problems, it is either 
Mean square error loss function or Mean absolute 
error loss function. Which are given in the equation 
below.  And 
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To enforce sparsity in the dense neural networks, our 
main motive was to construct the best fit 
regularization method so that proper balance is 
maintained between negative as well as non-
negative para meters This novel e-norm enforces 
sparsity in the neural network by doing the shrinkage 
of weight values to zero. This e-norm has unique 
property as compared to l0 norm as it takes into 

consideration non –negative real numbers and does 
not exclude any other numbers. Thus becomes more 
efficient and feasible solution for introducing 
sparsity in the dense neural networks in the current 
era of IOT constrained technology, whose 
requirements are constrained like power constraints, 
memory constraint’s, and resource constraints.   

5. NUMERICAL EXPERIMENTS AND 
SIMULATIONS 

  Baseline Networks and Datasets used for 
simulation: The basic vgg-19 Network is trained 
with the l1, l2 and the proposed novel e-norm regular 
subjected to following datasets. 
MNIST [18]:  This dataset consists of seventy 
thousand hand written digit images each of 

dimensionality 28 28  belonging to 10 classes. 
Total number of training samples images are 60,000 
and total number of test images are 10,000.  
CIFAR-10[19]:  The dataset consists of 60,000 
images belonging to 10 different classes, each of 

dimensionality 32 32 . The dataset consists of 
5,000 training images and 1000 testing images. 
ImageNet20]: A very large scale database 
consisting of 1,386,167 image samples belonging to 
1000 different categories. Every image sample of 

dimensionality 256 256 . It consists of 1,281,167 
training sample images, 100,000 testing sample 
images, and 50,000 validation image samples. 

The network used for numerical experiments is 
given as in [21] and the graphical visualization of the 
network is depicted in figure 1 as:  

 

 
 Figure 1: Graphical description of VGG-19 model for numerical evaluation 
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The VGG-19 model was implemented on all 
three datasets and the results are observed for the 
initial learning rate of 0.001. For every 60 epochs, 
and learning rate decays by a factor of 0.1. No other 
regularization method like dropout is used. Except 
the network implements batch normalization 
regularization method in combination with the 
proposed e-norm regularizer for varying values of 

(0.1, 0.2, 0.3, 0.4, 0.5)  . The observed results 

are recorded in Table 2 as below: This table 
summarizes the results for testing error rate, sparsity 
of weights, and neuron sparsity across 10 runs of 
vgg-19 model after every 250 epochs.  

 
Table 2: Average test error, weight sparsity and 

Neuron sparsity for MNIST dataset 
Avg. test 
error(%) 

L0 L1 Proposed 
e-norm 

0.1   0.8261 0.7321 0.6521 

0.2   0.9321 0.7104 0.722 

0.3   0.9856 0.7421 0.656 

0.4   0.9923 0.7856 0.742 

0.5   1.0345 0.7320 0.6102 

 
Avg. 
weight 
Sparsity 

L0 L1 Proposed 
e-norm 

0.1   42.11 10  0.5962 0.896 

0.2   42.15 10  0.6861 0.921 

0.3   42.19 10  0.7032 0.932 

0.4   42.05 10  0.7102 0.953 

0.5   42.28 10  0.7201 0.964 

 
Avg.Neuron 
Sparsity 

L0 L1 Proposed 
e-norm 

0.1   0.5201 0.6896 0.6923 

0.2   0.5628 0.6923 0.7102 

0.3   0.6102 0.7123 0.7532 

0.4   0.6143 0.7256 0.7821 

0.5   0.6326 0.7899 0.8123 

 
 

a) Graphical simulated results on MNIST Dataset depicted in fig 2. a) test error rate b) weight 
sparsity c) neuron sparsity  
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Figure 2:  Graphical visualization of Table 1. On MNIST dataset 
 
For MNIST dataset vgg-19 across all the 

parameters and methods achieves the highest neuron 
weight sparsity of 81%, weight sparsity of 96%, and 

least error rate of 61% at 0.5   as is clear from 
the above graphical observations and tabular results 
recorded. 

 
b) Average error rate of CIFAR-10 dataset. 

 
 

Figure 3:  Graphical visualization of Avg. test error. On CIFAR-10 dataset 
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c)  Average test error rate on ImageNet dataset. 

 
 

Figure 3:. Graphical visualization of Avg. test error. On ImageNet dataset 
 

From the above graphical results obtained it is 
clear that our proposed method achieves the least 
error rate on testing all the three databases across all 
parameters and methods. On varying values of   
the proposed network with the novel achieves weight 
sparsity of 42% and average neuron sparsity of 54% 
on Cifar-10 dataset, and achieves 45% of weight 
sparsity and 79% of neuron sparsity on ImageNet 
database. Thus outperforming all the existing 
regularization method by gaining remarkable results.  
 

6. CONCLUSION 

   The regularizer for generic neural network 
based on e-norm with batch normalization is used in 
this work. The proposed regularization method is 
embedded in vgg-19 model in addition with batch 
normalization implemented on three datasets to 
achieve the results. The experimental results obtained 
demonstrate that in general our proposed novel 
regularizer achieves least test error rate and achieves 
greater sparsity thus greatly helps in compressing 
dense neural networks. 

The experimental results obtained 
demonstrate that in general our proposed novel 
regularizer achieves least test error rate and achieves 
greater sparsity thus greatly helps in compressing 
dense neural networks. 

 
 

7. CRITICS OF THE RESEARCH WORK  

According to the numerical results, on any CNN 
trained on a given dataset, no single sparse 
regularizer outperforms all others. One regularizer 
may be effective in one scenario while it may 
perform worse on a another case. Due to the plethora 
of sparse regularizer available and the numerous 
parameters to fine-tune, particularly for one CNN 
that has been trained on. One approach is to create 
an automatic classification system for a given 
dataset. A framework for machine learning that 
efficiently identifies the best candidates regularizer 
as well as parameters Automatic systems have been 
used in recent works. Matrix completion can be used 
to depict machine learning. a statistical learning 
issue and a problem. These Frameworks can be 
tweaked to find the best sparse data.  
 

8. FUTURE SCOPE  

  In Future the novel regularizer will be 
implemented on other types of networks such as 
LSTM and RNN’s across other benchmark datasets. 
we will also focus on constructing even deeper 
convolutional neural networks using transfer 
learning and data augmentation on all the layers of 
the network for biomedical applications with even 
lesser training time and improved accuracy rate. 
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