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ABSTRACT

In this paper, the behavior of the solution of the dynamic problem and the theory of elasticity as A — oo for
the second boundary value problem is studied. An unimprovable estimate of the rate of convergence of the
solution for a compressible medium to an incompressible parameter 1/ A is obtained.
In [1], the following question was considered, approximations of the solution of the problem for an
incompressible medium by the solution of the problem for compressible media as A — o, as well as the
possibility justification for using the difference schemes proposed in [2] to obtain a solution to the problem
under study. In [3,4], the dynamic problem of contact of compressible and incompressible media was
considered, theorems on the existence and uniqueness of a generalized solution were proved, and estimates
were obtained for the proximity of the solution of a contact problem to solutions of problems for
compressible and incompressible media.
In this paper, we have studied the stability of the difference scheme proposed by A.N. Kanavalov for
solving the dynamic problem of elasticity theory. The approximation analysis allows to select the optimal
grid steps associated with the parameter A.
Keywords: Incompressible Medium, Deformations, Displacements, E Task Of The Stokes, Theory Of
Elasticity.

1. INTRODUCTION

Stationary linearized equations of a slightly
compressible liquid have the following form

—VAT, — e lgrad div, = f, in Q, (1)

U, =0on 0Q,fore >0 (2)

Equations (1), (2) are also stationary Lame
equations from the theory of elasticity. In [5] it is
shown that the task (1), (2) has a unique solution
u, for every fixed € > 0 and that U, converges to

the solution U, of the Stokes problem at € — 0.
Initially, equations (1), (2) were used as
"approximating" for the Stokes equations, one of
the ways to overcome the difficulty of “divi =
0”was to solve equations (1), (2) with a sufficiently
small € in order to solve the Stokes equations
themselves. This idea can also be applied to the

dynamic Stokes problem by choosing as € = %
a fixed y; A, are the Lame coefficients. In this

, for
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1 .
case, V= and A > oo,v > > 1e the case of

X
2+
an incompressible medium.

2. MATERIALS AND METHODS OF
RESEARCH

The method of a priori estimates shows the
asymptotic proximity of solutions of compressible
and incompressible media at A — o. At the end of
the article, an analysis of the difference scheme for
solving an incompressible medium is carried out.

Let D c R® be a bounded simply connected
domain with boundary Y. The solution of the
dynamic task of the theory of elasticity for an
incompressible medium satisfies the equation of
motion [5,6,7,8,9,10,11]

2 —pdu-Vp+f=0,x€ D, 3)
incompressibility condition
divu=0, x € D, 4
displacement-strain ratio
2y, = ("i + "’ﬂ) ik =123, (5)
state equations
Ok = —OucD + 2pey (6)

initial conditions

_ o au T
1(x,0) =), 5| _ =¥, ()
and boundary conditions
ou; . OJug
—) - §; = €y,
k- 1[ (6xk+ axi) ’kp]nk 0, x€ey (8)

t € [0,T]

For task (3) - (8), we assume that the
corresponding conditions are met for the matching
of the initial and boundary conditions. Task (3) -
(8) is called task I. Along with task I, we will
consider dynamic task I1.[6]

0%u

ok WAT + (A + WVdiv i + f,

x €D,
=9P(),

_ _ ou
Ulp=o = p(x), E .
t=

O = A(Sike + Zﬂgik,

3
6 = ngkl

2ey = (‘”‘l +25) ik = 1,23

3
Zaiknk=0,xEY,tE[0,T] 9)
k=1

We obtain a priori uniform estimates for the
parameter 7/ for solving task II.

Multiply (9) by ‘;—? scalarly in L,(D), and we
have

zm”” Eaﬂww
22 jawale =
2ha 1 Eln = g
_f _aud
- fat ©
Where

B930Sy TG+ 5D

6vi Z
(a + a)q) dx.
Further, evaluating successively the right part
(10) we get

[ Fueds| < el Wl
D
< Sllull® + Cslif 1%,
Where 6§>0,Cs>0 are
[12,13,14,15].
Using the Gronwall lemma [16], we obtain

constants

— N2 =112
”uf”Lw(O,T; LZ(D)) + ,u”ullwzl(D)

+ A|div 1|? <€ (11
< Aldiv g||I* + C,

Suppose that @(x) such that div § = 0.

Differentiate the equation of motion in (9) with
respect to t, then multiply by U, scalarly in L,(D)
and we will have

2688



Journal of Theoretical and Applied Information Technology S~

30™ April 2022. Vol.100. No 8

I

SMminl

© 2022 Little Lion Scientific

ISSN: 1992-8645

Www.jatit.org

E-ISSN: 1817-3195

Applying the Cauchy inequality to the right side,
then € —inequality, using the Gronwall lemma, and
assuming that div ¢ = 0, we get

— 2 = 112
”uff”Loo(O,T; LZ(D)) + ”ut”Lw(O,T;Wzl(D) +
(13)

A ellf o071,y < C <0,

where C depends on the norms [|@[l, |||, Il i,
We introduce the following notation

L 2 aaik
Ui = Y
] dxy,
multiplying  the first equation (9) by

Ly, scalarly L, (D), taking into account the boundary
conditions in (9) and by virtue of

f fLy, dx=% Df fL,dx — Df fiLydx, (14

D

— 2 .= 2
”ut”Loo(O,T; LZ(D)) + A”dlv ut”Loo(O,T; LZ(D))
=112
+ ”u”Loo(O,T; w%(D)) +

(15)
+A%||grad div ﬁllfm(o,r; Ly(D)) sC<®

Here the assessment of coercivity is taken into
account. Further, by differentiating the first
equation (9) with respect to t, we multiply it by
Ly, scalarly in L,(D), after simple transformations
we get the estimate

_ 2
”uttx”Loo(O,T; L2(D))
1
.= 2
+ E/llldw uttlle(O_T; L>(D))

— 2
T ”uf”Lz(o,T; wzl(D)) T

+/12||divﬁt||z (16)

(01w} (D))

< C(||tee, (x, 0|

1
+ 5 ldiviie (x, 0112 +
HE 5 + 2 div b

-2
+ ”fff”LZ(o,T: L)

Setting that div U.(x,0) =0, we can simplify the
estimate (16), this condition can be satisfied.

Lyl + L e, )
2dt "t 2 qe e et
+ 1L i) =
2% "= gy

= f fuee dx,
D

Indeed, we take the divergence from the first
equation (9) at ¢ = 0, and we get

2
—divu
ot2

=div f_|t=0

t=0

That is, if the vectorf- is solenoidal, then we have
from the last equality
0 2
—divu

3e2 =0.

t=0

If we assume that ||@]|, ||1,l_1||,f_(x, 0) -are smooth

solenoid vectors, then
k
Wdivﬁ i = 0,1 ,k = 1,2,

So we have proven.

Lemma 1. Let [|@]], |||, f(x,0) be smooth
solenoidal vectors. Then for the solution of the

problem (9) there is an estimate
2

||6ﬁ
otk Loo (0,T; w3 (D))
1_|| ok 2
+ =A||=—divu +
K
2 llot Leo (01T L (D))
ak_lﬁ 2 (17)
S — -
k-1
ot L2(0,T; w3 (D))
o |
+)\2 Wdlvu <C< o,

Loo (0,T;w3 (D))

Considering the estimate (17), we proceed to the
limit as A — oo in task (9). Since as A — oo, there is
arelation U - U, weakly in w3(0, T; wZ(D)) as
A—oo Adivu - p weakly in
L, (O,T; w3 (D)), where Uy, p is the solution to task
I. Now we estimate the proximity of the solution of
the task (9) to the solution of task I. Let W = u —
Uy, Adiv U — p = m, where U is the solution of task
(9), Uy, p is the solution of task I, we get the
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problem
0%w _ o
5z = HAW + puVdivw + Vm, x € D, (18)
_ ow
Wltzo =0, E o =0,x €D, (19)
3 owy | 9wj x| =
i=1 [# (ax]- + Bxi) + 5Un]nj 0, x €y, 20)

t €[0,T]

Multiply (18) by W scalarly in L,(D), and we
get

pd  _

—f mdivw,dx =0,
D

w12
S Iml +

21

Estimating the right-hand side of (21) using the
Cauchy inequality, thee-inequality, and using the
Gronwall lemma, we arrive at the estimate

||Wt||iz(0,T; L) T ”"_"”iw(o,T; w3 (D))

<3 (22)

Differentiating equation (18) with t, then

multiplying it by Wy scalarly in L, (D), using the

same argument as in obtaining estimate (13) we
will have

— 2 = |2
W elIE 07 Lo 0y + Il o7, wi(D))

<C-A2 (23)

By virtue of (18) (20) the inequality holds true

||1-[||Em(0,T; Ly (D)) <cC- }l_z, (24)

Turning to (21), taking into account the estimates
(22), (24), we finally get

— 112 — 112
IWellZ o 1 00) T ”W”Loo(O,T; wi(D)) +
(25)

Il o; L0 < €472

That is, the following is proved

Theorem 2. Let the conditions of Lemma 1 be
fulfilled, then the estimate is fair.

2

ak+2W
k+2
ot Loo(0,T; L2(D))
6k+1Vl_/ 2
—_— +
k+1
gt Leo(0,T; Lp(D))
ok 2
.12

Loo(0,T; L2(D))

Further it is possible to formulate

Lemma 2. Estimation of the proximity (25) of
solutions of tasks I and II is best possible with
respect to the parameter A.

Let us suppose that the proof is the contrary that
means

_ 2 12
”Wt”Loo(o,T; L2(D)) + ”W”Lw(O,T; wzl(D)) +
HITIE o oms Loy < € A7FFD

W=u—1Ugm=Adivi—p, a>0
is constant, perhaps small enough, therefore we
have

12 div @ —pll = lIpll = Alldiv ull,

lipll < Alldiv @l + |12 div u — pl|

A
<c(lnl+—).
A 72

(26)

In inequality (26) let us pass to the limit as
A = oo, when we obtain by virtue of (25)
llpllL,my) =0, i.e.p =0.
Thus, for Uyandpwe get the following task
0%, _ _
Froae uAt, —Vp+ f,x €D

diviy=0,p =0, Ys_,04n, =0, ony.

This contradicts our assumption, since the last
problem is unsolvable (the original task I is correct,
and that was required).

It is shown above that the solution of the
dynamic problem of elasticity theory for an
incompressible medium

a%u _ =
ﬁ =,uAu—|7p+f:(), x€D

@7
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— — ou —
oo = To(x), 5| = W(x),x€ D

3
Z oxt)n, =0,x €y, te[0,T]
k=1
where o = —6;p + 21g;  is possible to
obtain by passing to the limit at A — oo, in the
solution of the dynamic problem of elasticity theory

0%u _ o
Frole pAT, + A+ WVdivi+f,x €D,
—_ —_ u —_
Ule=g = Up(x), e =u,(x)x €D 29)
tli=o

3
Z oy (x,t)n, = 0,x €y,t € [0,T]
k=1
where oj, = AS; divl + 2pue;y
For the numerical solution of problem (27) in a
parallelepiped D={0 < x; <;, i = 1,2,3} in [17]
difference schemes in voltages are proposed.

d%¢ii 0 Lig 0 Lo

J 14 J L

a2z~ ox; + dx; T9ip
j=123,x€D

- Jd Lo
Z Tox, 8| ZOx€ED (29)
i=1
3
Z oix (X, )ng = 0,x Ey,t € [0, T]
k=1

do;
e LO’—ZJ 15 =4

_1(9fi 9
g” _2 (6}()' + 6xi
The initial conditions take the form

&;j(x,0) = a;;(x), ae,] o B;(x),x €D

ij = —0ip + 2ugy;,

(30)

Equation (29) is obtained from (27) for the
displacement @ using the displacement-strain ratio

d 3 o
gk = —( oy uk) In addition, we assume that the
Xi

initial cond1t10ns are such that

div g (x)= div 1, (x)=0, 31)

is easy to show that problem (27) and problem (29)
are equivalent to [2].

Similarly, excluding the displacementiiin
problem (28) we come to the statement of the
dynamic problem of the theory of elasticity in
stresses

ey _ oLy aL1
2 a2z 0X]- + +g1],XE D
I’31 —
81](X 0) 0(1] ( ) )} - = i)}(x)' X €D (32)
3
Z o (x,t)n; = 0,x € y,t € [0, T]
j=1
81
where ocf (1) =o¢; ()~ 5 B0 =
ﬁij ().

As we know, in [2] is shown that problem (28) is
equivalent to problem (32). Next, we consider an
explicit difference scheme for problem (32),
following [3,4]

286 (LinOh + fin)x; T (LjnOh + fin)x,

O-L(;h oclj’(alj h)t :31]

oiin=0x; =01,i,j=123 (33)
where

_ 3
;= u(uoi'xj + Ugj, xi) + A8ij Xie=1 Uok Xk

PN 1;2 azo'ij
ij 0T e |,
H(uu,xj + ulj'xi) + A8 Yie1 Ut X
926,
] —
S| | @adt + S
t=0

+ (Ljnay + )j-‘,’l)xi] +
+ 281 Tiz1 Lin0y + fen)xer

LinSp = (Oirn)z, T (Oi2n)z, + (Oizn)z,

Oin=A8;j Loy Exien + 2UEijp

fr=fmo),of, =f(t+71)— ), 1fe
=fi—f¢

The solution of the scheme (33) is defined in the
grid area D = {(lh,, mhy, khs), | =
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01..,Nm=0,1,..,N;,k=0,1,..N3,h; - N; =
l;, TN = T}. The structure of the difference scheme
(33) is such that the difference analogs of the
corresponding theorems for the dynamic problem
of elasticity theory are fulfilled for it. The
difference scheme (33) approximates the original
differential problem with an accuracy of

0(z2 + |h)).
Let's write the scheme (33) in canonical form [3]
Bo) + t?°R6,,+AG =7, (34)
6%, set, in our case B=0, &=
(011, 022,033,012,013, 023 )T
abb000
bab000
2 bba000 Atu
r“R = ,a= ,
000c00 u@BA+2p)
0000cO
00000c
- r
2u(3a+2u)’
c=——A=
U
A 00 S PRRVACE 0
0 A,y O Aoy 0 Ay
_|f o 0 Ajg 0 A3zq Az
A2 Az O N1 +Az Az3 N3
Az 0 Agg A3z N1+N33 Nz
0 Azz Ags N31 A21 NaatAz3

Aij('):(')xifj-
Operators A and R of scheme (32) such that
A=A">0,R=R">0, and R—5A >0,
If
72 1

R — 35
hZ = 3(31 + 2u) (35)

Indeed, by virtue of the Koshi-Bunyakovskii’s
inequality and the e-inequality, with subsequent
application of the difference analog of the
embedding theorem [4].

lyzll* < IIyII2

=%
It will have

(AGy,0p) <=
on the other hand

(t*R5,,,5,)= k(5,,5), ), rae k =

(Ghrch)

3A+2u
the smallest eigenvalue of the matrix T2R there

fore R — %A > 0, if the condition (35) is done for

the solution 6}, of scheme (34) a priori estimate [16]

is valid.
[l

< [0 fle + 17° o +
n
£ gl + 15
k=1
Where

_ 2 1, _
||O_n+1” I ”0_n+1

- c7"||f1 n
_ 2
i PR

We note that from the last equality, considering
condition (35), it follows

(36)
+||5n+1 _

6™ e < 6™ la + lTg" ll2p, (37

If " is the solution of the difference scheme
(34), and G is the solution of problem (32), then

taking into account the method of approximation of
problem (32) by scheme (34) from (35) it follows

15° 1, =—I|yf|—0(T + hy),

" —A

where y" —-o".

Hereafter,
(Ay" y > 2u(t?Ry",y") 2

S
3A+2y” I

Eor(A)™ > 3%5

31+2u

E is the identity matrix. Thus

_ 34+ 2u 1 1
7™ 142 < f 20 Iy™ Il = 0 (Azh; + A2t?)

n
Z e |74, = O (A2h; + 2722
k=1
where
1712 = ™, 7™, (wv)=5. T2 52w v H
H isa volume element which sets in accordance
with the point M (x4, x,, x3), consequently
H=h, - h, - hs, if the point M is internal;
H=05-hy;h, h;, if M is a boundary;
H=0,25+ h; - h, - h; if the point M lies on the
edge and H= 0,125 - h, - h, - h;. Returning to (36),
we come to an estimate for the discrepancy

1 1
15" Iy = 0 (Aze? + 22k, (38)
Having an estimate of (38), we consider the
behavior of the solution of the scheme (34) when
A— 0.
Theorem. The

solution of the difference

2692



Journal of Theoretical and Applied Information Technology S~

30™ April 2022. Vol.100. No 8

I

SMminl

© 2022 Little Lion Scientific

ISSN: 1992-8645

Www.jatit.org

E-ISSN: 1817-3195

problem (34) G converges to the solution of the
dynamic problem of elasticity theory for an
incompressible medium 0 (29) when A — o0, T—0,

h;—0, and estimate is fair

h2 = 3(3/1+2 )

lat -3, <o (ﬁhi + 52+ D)
Proof.
By the triangle inequality

lo? = all, < llot —al, + o —all, (o)
As G} —G* =§", then for the first syllable of

the right part (40), the score (38) is valid. Let us
denote

@=06" -5
Then
@™, < @™, + N&E Ml o2g (41)
We have

a1, = JZ?:1||L,hwn+1|| 007 +h)
Further

”5n+1”2 ” n+1
2R T L]t

(SA + 2u) {Z” Ztl

*2 Z ij= 1”‘*’3?1 }}"Ltl” }, as
[l ?ﬁl” = l2ueltt|” = 072 + b))
ot = o =l2ncens -
11;+t1” =022+ hy)
1DF 112 2=0(A72 + hD),
for (41) we will have
[5* -5ll, = 0~ + hy)

Continuing (40), using (35) and the last estimate,
we will get (41). Let us note that due to condition
(35), the estimate (38) can be written as
—2

I

|[5% - (42)

=0 (A%hi + A‘1>
The construction of the estimate (42) shows that
at a fixed A, with respect to refinement of the grid
step h;, starting from a certain one, it cannot be
expected increases in accuracy.
A similar situation occurs if you increase A for a
fixed h;. It would appear reasonable to require that

the terms of the evaluation (42) have the same
order. Then, assuming that h;=0(17%/2), the rate of
convergence of the solution of the difference
scheme (34) to the solution of the dynamic problem
of elasticity theory for an incompressible medium
(29) can be expressed in terms of

2
A ”6£ - 6”{ =0 G) if we take A= 0 (hi_§>,

the estimate takes the next view

2
lo? ~all, = 0 (hf‘),

By changing the method of approximation of
volume forces vectorfin scheme (34) so that

(flh)x] + (f]h) = _+ ai + O(hz)

Then the difference scheme will have the
order O(t2? + h?).  Therefore, the rate of
convergence of its solutions to the solution of the
problem of elasticity theory for an incompressible
material is expressed by the estimate

o).

In general, for approximation of the problem
(32), a difference scheme can be constructed with

(43)

5% -3l =

3. CONCLUSIONS

the approximation order 0(1’“ + hfg ), where the
parameters T and h; are subordinated to the
condition 71 < ch!*, then from (40) follows

5% —3ll, < Il - 5" [l +II5* -3l =

= o= +1f) - 22+ 271

¥z L
=0 <hi“ +h?>-/15+,1—1 ,

if now it has completed
2B
B <2 by takingd =0 (h 3 >, in place of

(43) we w1ll find

i s
Io# -l = (+").

We present the results of numerical calculations.
Numerical experiments were carried out to test the
possibilities of practical use of the difference
scheme (32, 33) in solving the dynamic problem of
elasticity theory for an incompressible medium (3-
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8). The exact solution is chosen as the test
a={x—-1)sint; (1 —y)sint}
011 = 2u(1 — x? — y?) sint,
032 = —2u(1 + x2 + y?) sint,
01, =0
a plane dynamic problem of elasticity theory for an
incompressible medium
3
0%Ui do;
-5 = ——134'ﬁ
6t2 an
k=1
divu = 0.
f={(@4ux+1—x)sint; (4py +y — 1)sint},

duq du,
u;(x,0) =0, — -1, =1—y:
1( ) ) ) at t=0 ) ot t=0 y:

Dr={0<xy<1}x [0<t<

In the area
0,5]

As the approximate solution of the formulated
problem was the solution of the difference scheme
(32, 33).

Calculations were carried out for dimensionless

Lame coefficients,

A=2 ﬁz% for

5 E=50 MPa. Foru=20,5
solutions of the difference scheme were obtained at
different values of the A, on the grids 10X 10, 20X
20, 40x 40. The time step of the T was chosen
based on the stability conditions of the difference
scheme. The analysis of the numerical results
shown on the tables showed the validity of the
evaluation A = 0(h™*/2), definitely on the grid 10x
10 a with step h =0,1 value A, according to this
formula A = 20, and the score for smaller A or
larger 20 as can be seen from the table leads to an
increase in the error rate. A similar situation occurs
on a20x 20 grid.

h =0,05, the value of the A ~ 50 according to the
formula is optimal because the norm of discrepancy
is minimal. And finally, on the 40X 40 grid, h =
=0,025 the optimal value of the A ~ 150, which
confirms the validity of the relationship between
Aand h.

The tables show the error W = ||u* — u||L_h a
1,

depending on A.

N-1N-1

W=t =y = Z (ui);'n —uf)zh?

i=

for a fixed time, layer i.e., n=15, n=100, n=120,
t, = nT, n- number of a certain layer h; = h, =
h=0,1.

Table 1: Grid 10X 10, A, = 20.

h N XN n A w
0,1 10x 10 15 10 0, 0836
0,1 10x 10 100 10 0, 0942
0,1 10x 10 120 10 0, 0967
0,1 10x 10 15 50 0, 0996
0,1 10x 10 100 50 0, 0987
0,1 10x 10 120 50 0, 0998
0,1 10x 10 15 20 0,0112
0,1 10x 10 100 20 0,0108
0,1 10x 10 120 20 0,0124

Table 2: Grid 20X 20, 2y ~ 50

h N XN n A W
0,05 | 20x 20 15 20 0, 0847
0,05 | 20x20 100 20 0, 0975
0,05 | 20x20 120 20 0, 0963
0,05 | 20x20 15 50 0,0114
0,05 | 20x 20 100 50 0,0110
0,05 | 20x20 120 50 0, 0107
0,05 | 20x20 15 100 0, 0765
0,05 | 20x20 100 100 0, 0836
0,05 | 20x20 120 100 0,0912

Table 3: Grid 40X 40, A4y, = 150.

h N XN n ) W
0,025 40x% 40 15 100 0, 0938
0,025 40%x 40 100 100 0, 0879
0,025 40% 40 120 100 0,0798
0,025 40%x 40 15 150 0,0142
0,025 40%x 40 100 150 0,0132
0,025 40%x 40 120 150 0,0127
0,025 40%x 40 15 250 0, 0786
0,025 40%x 40 100 250 0, 0862
0,025 40%x 40 120 250 0, 0987

4. CONCLUSION

Then, with numerical realizations, schemes are
indicated, the order of approximation error has the

2
form proposed above ||Gh — 6”5 = (hiEB), which

allows calculations to be carried out with such an
error.
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