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ABSTRACT 

 
In this paper, the behavior of the solution of the dynamic problem and the theory of elasticity as λ → ∞ for 
the second boundary value problem is studied. An unimprovable estimate of the rate of convergence of the 
solution for a compressible medium to an incompressible parameter 1/ λ is obtained. 
In [1], the following question was considered, approximations of the solution of the problem for an 
incompressible medium by the solution of the problem for compressible media as λ → ∞, as well as the 
possibility justification for using the difference schemes proposed in [2] to obtain a solution to the problem 
under study. In [3,4], the dynamic problem of contact of compressible and incompressible media was 
considered, theorems on the existence and uniqueness of a generalized solution were proved, and estimates 
were obtained for the proximity of the solution of a contact problem to solutions of problems for 
compressible and incompressible media. 
In this paper, we have studied the stability of the difference scheme proposed by A.N. Kanavalov for 
solving the dynamic problem of elasticity theory. The approximation analysis allows to select the optimal 
grid steps associated with the parameter λ.  
Keywords: Incompressible Medium, Deformations, Displacements, E Task Of The Stokes, Theory Of 

Elasticity. 
 
1. INTRODUCTION 
  

Stationary linearized equations of a slightly 
compressible liquid have the following form  

−ν∆uതக − εିଵgrad div uതக = f,̅ in Ω, (1) 
uതக = 0 on  ∂Ω, for ε > 0  (2) 
Equations (1), (2) are also stationary Lame 

equations from the theory of elasticity. In [5] it is 
shown that the task  (1), (2) has a unique solution 
uതக for every fixed ε > 0 and that uതக converges to 

the solution uതக  of the Stokes problem at ε → 0.  
Initially, equations (1), (2) were used as 
"approximating" for the Stokes equations, one of 
the ways to overcome the difficulty of “divuത =
0”was to solve equations (1), (2) with a sufficiently 
small ε in order to solve the Stokes equations 
themselves. This idea can also be applied to the 

dynamic Stokes problem by choosing as ε =
ଵ


, for 

a fixed μ;  λ, μ are the Lame coefficients. In this 
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case, ν =


ଶ(ାஜ)
and λ → ∞, ν →

ଵ

ଶ
, i.e. the case of  

an incompressible medium. 
 

 
2. MATERIALS AND METHODS OF 

RESEARCH 
 

The method of a priori estimates shows the 
asymptotic proximity of solutions of compressible 
and incompressible media at λ → ∞. At the end of 
the article, an analysis of the difference scheme for 
solving an incompressible medium is carried out. 

Let 𝐷 ⊂ 𝑅ଷ be a bounded simply connected 
domain with boundary Υ. The solution of the 
dynamic task of the theory of elasticity for an 
incompressible medium satisfies the equation of 
motion [5,6,7,8,9,10,11] 

డమ௨ഥ

డ௧మ =µ∆𝑢ത-𝛻𝑝+𝑓=̅0, x ∈ 𝐷, (3) 

incompressibility condition 

div 𝑢ത=0,  x ∈ 𝐷, (4) 

displacement-strain ratio 

2𝜀 = ቀ
డ௨

డ௫ೖ
+

డ௨ೖ

డ௫
ቁ, 𝑖, 𝑘 = 1,2,3, (5) 

state equations 

𝜎 = −𝛿𝑝 + 2𝜇𝜀 (6) 

initial conditions 

𝑢ത(𝑥, 0) = 𝜑ത(𝑥),  
డ௨ഥ

డ௧
ቚ

௧ୀ
= 𝜓ത(𝑥), (7) 

and boundary conditions 

∑ ቂ𝜇 ቀ
డ௨

డ௫ೖ
+

డ௨ೖ

డ௫
ቁ − 𝛿𝑝ቃ

ೖ

ଷ
ୀଵ =0,  𝑥 ∈ ɣ,

𝑡 ∈ [0, Т] 
(8) 

For task (3) - (8), we assume that the 
corresponding conditions are met for the matching 
of the initial and boundary conditions. Task (3) - 
(8) is called task I. Along with task I, we will 
consider dynamic task II.[6] 

𝜕ଶ𝑢ത

𝜕𝑡ଶ
=  µ∆𝑢ത + (𝜆 + 𝜇)𝛻𝑑𝑖𝑣 𝑢ത + 𝑓,̅

𝑥 ∈ 𝐷, 
 

𝑢ത|௧ୀ = 𝜑ത(𝑥),
𝜕𝑢ത

𝜕𝑡
ฬ

௧ୀ
= 𝜓ത(𝑥), 

𝜎 = 𝜆𝛿𝜃 + 2𝜇𝜀,   

 

𝜃 =  𝜀 ,   

ଷ

ୀଵ

 

2𝜀 = ቀ
డ௨

డ௫ೖ
+

డ௨ೖ

డ௫
ቁ, 𝑖, 𝑘 = 1,2,3, 

 𝜎

ଷ

ୀଵ

𝑛 = 0, 𝑥 ∈ ɣ, 𝑡 ∈ [0, Т] (9) 

We obtain a priori uniform estimates for the 
parameter 1/𝜆 for solving task II. 

Multiply (9) by 
డ௨ഥ

డ௧
  scalarly in  Lଶ(D), and we 

have 

1

2

𝑑

𝑑𝑡
ฯ

𝜕𝑢ത

𝜕𝑡
ฯ

ଶ

+
1

2

𝑑

𝑑𝑡
𝜇𝐸(𝑢ത, 𝑢ത)

+
1

2
𝜆

𝑑

𝑑𝑡
‖𝑑𝑖𝑣 𝑢ത‖ଶ = 

= න 𝑓̅


𝜕𝑢ത

𝜕𝑡
𝑑𝑥,       

(10) 

Where  

E(𝑢ത, �̅�)=
ଵ

ଶ
𝜇 ∫ ∑ (

డ௨

డ௫ೕ
+

డ௨ೕ

డ௫
)ଷ

,ୀଵ
∙

൬
డ௩

డ௫ೕ
+

డ௩ೕ

డ௫
൰ 𝑑𝑥. 

 

Further, evaluating successively the right part 
(10) we get 

ቮන 𝑓𝑢௧𝑑𝑥



ቮ ≤ ‖𝑢௧‖ ∙ ‖𝑓‖మ()

≤ 𝛿‖𝑢௧‖ଶ + 𝐶ఋ‖𝑓‖ଶ,   

 

Where  δ > 0, Cஔ > 0 are constants 
[12,13,14,15]. 

Using the Gronwall lemma [16], we obtain 

‖𝑢ത௧‖
ಮ൫,்; మ()൯
ଶ + 𝜇‖𝑢ത‖

௪మ
భ()

ଶ

+ 𝜆‖𝑑𝑖𝑣 𝑢ത‖ଶ ≤ 

≤ 𝜆‖𝑑𝑖𝑣 𝜑ത‖ଶ + 𝐶, 

(11) 

Suppose that  𝜑ഥ (𝑥) such that  𝑑𝑖𝑣 𝜑ത = 0. 
Differentiate the equation of motion in (9) with 

respect to t, then multiply by  uത୲୲  scalarly in Lଶ(𝐷) 
and we will have 
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Applying the Cauchy inequality to the right side, 
then ε −inequality, using the Gronwall lemma, and 
assuming that div ψഥ = 0, we get 

 

‖𝑢ത௧௧‖
ಮ൫,்; మ()൯
ଶ + ‖𝑢ത௧‖

ಮ(,்;௪మ
భ()

ଶ + 

+𝜆‖𝑑𝑖𝑣 𝑢ത௧‖ಮ(,்; మ())
ଶ ≤ 𝐶 < ∞,  

(13) 

where C depends on the norms ‖𝜑ത‖, ฮ𝜓തฮ, ‖𝑓௧‖మ() 
We introduce the following notation 

𝐿௨
= 

𝜕𝜎

𝜕𝑥

ଷ

ୀଵ

,  

multiplying the first equation (9) by 
𝐿௨

scalarly Lଶ(D), taking into account the boundary 
conditions in (9) and by virtue of 

න 𝑓𝐿௨



𝑑𝑥 =
𝜕

𝜕𝑡
න 𝑓𝐿௨𝑑𝑥



− න 𝑓௧



𝐿௨𝑑𝑥, (14) 

 

‖𝑢ത௧‖
ಮ൫,்; మ()൯
ଶ + 𝜆‖𝑑𝑖𝑣 𝑢ത௧‖

ಮ൫,்; మ()൯
ଶ

+ ‖𝑢ത‖
ಮቀ,்; ௪మ

మ()ቁ

ଶ + 

+𝜆ଶ‖𝑔𝑟𝑎𝑑 𝑑𝑖𝑣 𝑢ത‖
ಮ൫,்; మ()൯
ଶ ≤ 𝐶 < ∞ 

(15) 

Here the assessment of coercivity is taken into 
account. Further, by differentiating the first 
equation (9) with respect to t, we multiply it by 
L୳౪౪

scalarly in Lଶ(D), after simple transformations 
we get the estimate 

ฮ𝑢ത௧௧ೣ
ฮ

ಮ൫,்; మ()൯

ଶ

+
1

2
𝜆‖𝑑𝑖𝑣 𝑢ത௧௧‖

ಮ൫,்; మ()൯
ଶ

+ ‖𝑢ത௧‖
మቀ,்; ௪మ

భ()ቁ

ଶ + 

+𝜆ଶ‖𝑑𝑖𝑣𝑢ത௧‖
ಮቀ,்;௪మ

భ()ቁ

ଶ

≤ 𝐶(ฮ𝑢ത௧௧ೣ
(𝑥, 0)ฮ

ଶ

+
1

2
‖𝑑𝑖𝑣𝑢ത௧௧(𝑥, 0)‖ଶ + 

+ฮ𝜓ത(𝑥)ฮ
௪మ

మ()

ଶ
+ 𝜆ଶฮ𝑑𝑖𝑣 𝜓തฮ

ଶ

+ ฮ𝑓௧̅௧ฮ
మ൫,்; మ()൯

ଶ
),                                     

(16) 

Setting that 𝑑𝑖𝑣 uത୲୲(x,0) =0, we can simplify the 
estimate (16), this condition can be satisfied. 

Indeed, we take the divergence from the first 
equation (9) at t = 0, and we get 

 
𝜕ଶ

𝜕𝑡ଶ
𝑑𝑖𝑣 𝑢തቤ

௧ୀ

= 𝑑𝑖𝑣 𝑓ห̅
௧ୀ

 

 
That is, if the vectorf-̅ is solenoidal, then we have 

from the last equality 
𝜕ଶ

𝜕𝑡ଶ
𝑑𝑖𝑣 𝑢ഥ ቤ

௧ୀ

= 0. 

 
If we assume that ‖𝜑ത‖, ฮ𝜓തฮ, 𝑓(̅𝑥, 0)-are smooth 

solenoid vectors, then 
𝜕

𝜕𝑡
𝑑𝑖𝑣 𝑢തቤ

௧ୀ

= 0,1 , 𝑘 = 1,2, … 

So we have proven. 
 
Lemma 1. Let ‖𝜑ത‖, ฮ𝜓തฮ, 𝑓(̅𝑥, 0) be smooth 

solenoidal vectors. Then for the solution of the 
problem (9) there is an estimate 

ฯ
∂uത

∂t୩
ฯ

ಮቀ,; ୵మ
భ(ୈ)ቁ

ଶ

 

+
1

2
λ ብ

∂୩

∂t୩
divuതብ

ಮ൫,; మ(ୈ)൯

ଶ

+ 

+ ብ
∂୩ିଵuത

∂t୩ିଵ
ብ

మቀ,; ୵మ
మ(ୈ)ቁ

ଶ

+ 

+λଶ ብ
∂୩ିଵuത

∂t୩ିଵ
divuതብ

ಮ(,;୵మ
భ(ୈ))

ଶ

≤ C < ∞, 

(17) 

 
Considering the estimate (17), we proceed to the 

limit as λ → ∞ in task (9). Since as λ → ∞, there is 
a relation  uഥ → uത weakly in wଶ

ଶ൫0, T; wଶ
ଶ(D)൯ as  

λ→∞   λ div uത → p weakly in 
Lଶ൫0, T; wଶ

ଵ(D)൯, where  uഥ , p is the solution to task 
I. Now we estimate the proximity of the solution of 
the task (9) to the solution of task I. Let wഥ = uത −
uത, λ div uത − p = π, where uത is the solution of task 
(9),  uത, p is the solution of task I, we get the 

1

2

𝑑

𝑑𝑡
‖𝑢ത௧௧‖ଶ +

1

2

𝑑

𝑑𝑡
𝜇𝐸(𝑢ത௧ , 𝑢ത௧)

+
1

2
𝜆

𝑑

𝑑𝑡
‖𝑑𝑖𝑣𝑢ത௧‖ଶ = 

= න 𝑓௧𝑢௧௧


𝑑𝑥,   

(12) 
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problem 

𝜕ଶ𝑤ഥ

𝜕𝑡ଶ
=  µ∆𝑤ഥ + 𝜇𝛻𝑑𝑖𝑣𝑤ഥ + 𝛻𝜋, 𝑥 ∈ 𝐷, (18) 

 

wഥ|୲ୀ = 0,
∂wഥ

∂t
ฬ

୲ୀ
= 0, x ∈ Dഥ,                (19) 

 

∑ 𝜇 ൬
డ௪

డ௫ೕ
+

డ௪ೕ

డ௫
൰ + 𝛿𝜋൨

ೕ

ଷ
ୀଵ =0, 𝑥 ∈ ɣ,

𝑡 ∈ [0, Т] 
(20) 

Multiply (18) by wഥ ୲ scalarly in  Lଶ(D), and we 
get 

1

2

𝑑

𝑑𝑡
‖𝑤ഥ௧‖ଶ +

𝜇

2

𝑑

𝑑𝑡
𝐸(𝑤ഥ, 𝑤)

− න 𝜋 𝑑𝑖𝑣 𝑤ഥ௧


𝑑𝑥 = 0,   
(21) 

Estimating the right-hand side of (21) using the 
Cauchy inequality, theε-inequality, and using the 
Gronwall lemma, we arrive at the estimate 

‖wഥ ୲‖మ(,; మ(ୈ))
ଶ + ‖wഥ‖

ಮ(,; ୵మ
భ(ୈ))

ଶ

≤ C ∙ λିଶ,   (22) 

Differentiating equation (18) with t, then 
multiplying it by wഥ ୲୲ scalarly in Lଶ(D), using the 
same argument as in obtaining estimate (13) we 
will have 

‖wഥ ୲୲‖ಮ(,; మ(ୈ))
ଶ + ‖wഥ ୲‖

ಮ(,; ୵మ
భ(ୈ))

ଶ

≤ C ∙ λିଶ, (23) 

By virtue of (18) (20) the inequality holds true 

‖π‖ಮ(,; మ(ୈ))
ଶ ≤ C ∙ λିଶ, (24) 

Turning to (21), taking into account the estimates 
(22), (24), we finally get 

‖𝑤ഥ௧‖
ಮ൫,்; మ()൯
ଶ + ‖𝑤ഥ‖

ಮቀ,்; ௪మ
భ()ቁ

ଶ + 

+‖𝜋‖ಮ(,்; మ())
ଶ ≤ 𝐶 ∙ 𝜆ିଶ, 

(25) 

That is, the following is proved 
 
Theorem 2. Let the conditions of Lemma 1 be 

fulfilled, then the estimate is fair. 

ብ
𝜕ାଶ𝑤ഥ

𝜕𝑡ାଶ
ብ

ಮ൫,்;  మ()൯

ଶ

+ ብ
𝜕ାଵ𝑤ഥ

𝜕𝑡ାଵ
ብ

ಮ൫,்;  మ()൯

ଶ

+ 

+ ብ
𝜕𝜋

𝜕𝑡
ብ

ಮ(,்;  మ())

ଶ

≤  𝐶 ∙ 𝜆ିଶ. 

 

 
Further it is possible to formulate 
Lemma 2. Estimation of the proximity (25) of 

solutions of tasks I and II is best possible with 
respect to the parameter   λ. 

 
Let us suppose that the proof is the contrary that 

means  

‖𝑤ഥ௧‖
ಮ൫,்; మ()൯
ଶ + ‖𝑤ഥ‖

ಮቀ,்; ௪మ
భ()ቁ

ଶ + 

+‖𝜋‖ಮ(,்; మ())
ଶ ≤ 𝐶 ∙ 𝜆ି(ଶାఈ) 

 

wഥ = uത − uത, π = λ div uഥ − p,   α > 0  
is constant, perhaps small enough, therefore we 
have 

‖𝜆 𝑑𝑖𝑣 𝑢ത − 𝑝‖ ≥ ‖𝑝‖ − 𝜆‖𝑑𝑖𝑣 𝑢ത‖,  

‖𝑝‖ ≤ 𝜆‖𝑑𝑖𝑣 𝑢ത‖ + ‖𝜆 𝑑𝑖𝑣 𝑢ത − 𝑝‖

≤ 𝐶 ቆ‖𝜋‖ +
𝜆

𝜆ଵା
ఈ
ଶ

ቇ, (26) 

 
In inequality (26) let us pass to the limit as   
λ → ∞, when we obtain by virtue of (25) 

‖𝑝‖మ() = 0, 𝑖. 𝑒. 𝑝 = 0. 
Thus, for uതandpwe get the following task  

𝜕ଶ𝑢ത

𝜕𝑡ଶ
=  µ∆𝑢ത − 𝛻𝑝 + 𝑓,̅ 𝑥 ∈ 𝐷 

 
div 𝑢ഥ =0, 𝑝 = 0, ∑ 𝜎𝑛 = 0,ଷ

ୀଵ   on ɣ. 
 
This contradicts our assumption, since the last 

problem is unsolvable (the original task I is correct, 
and that was required). 

It is shown above that the solution of the 
dynamic problem of elasticity theory for an 
incompressible medium 

డమ௨ഥ

డ௧మ =µ∆𝑢ത-𝛻𝑝+𝑓=̅0, x∈ 𝐷 (27) 
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𝑢ത|୲ୀ = 𝑢ത(x),  
ப୳ഥ

ப୲
ቚ

୲ୀ
= 𝑢തଵ(x), x∈ D 

 σ୧୩(x, t)

ଷ

୩ୀଵ

n୩ = 0, x ∈ ɣ, t ∈ [0, Т] 

where    σ୧୩ = −δ୧୩p + 2με୧୩  is possible to 
obtain by passing to the limit at λ → ∞, in the 
solution of the dynamic problem of elasticity theory 

∂ଶuത

∂tଶ
=  µ∆uത + (λ + μ)∇ div uത + f,̅ x ∈ D, 

𝑢ത|௧ୀ = 𝑢ത(𝑥),
𝜕𝑢ത

𝜕𝑡
ฬ

௧ୀ
= 𝑢തଵ(𝑥)𝑥 ∈ 𝐷 (29) 

 𝜎

ଷ

ୀଵ

(𝑥, 𝑡)𝑛 = 0, 𝑥 ∈ ɣ, 𝑡 ∈ [0, Т]  

where σ୧୩ = λδ୧୩div𝑢ത + 2με୧୩ 
For the numerical solution of problem (27) in a 

parallelepiped D={0 ≤ 𝑥 ≤ 𝑙 , 𝑖 = 1,2,3} in [17] 
difference schemes in voltages are proposed. 

 

2
డమఌೕ

డ௧మ =
డ ఙഥ

డ௫ೕ
+

డ ೕఙഥ

డ௫
+𝑔 , 𝑖, 

𝑗 = 1,2,3, 𝑥 ∈ 𝐷 
 

 ቈ
∂ L୧σഥ

∂x୧

+ g୧୧

ଷ

୧ୀଵ

= 0, x ∈ D (29) 

 σ୧୩

ଷ

୩ୀଵ

(x, t)n୩ = 0, x ∈ ɣ, t ∈ [0, Т]  

где 𝐿𝜎 = ∑
డఙೕ

డ௫ೕ

ଷ
ୀଵ , 𝜎 = −𝛿𝑝 + 2𝜇𝜀 ,  

𝑔=
ଵ

ଶ
൬

డ

డ௫ೕ
+

డೕ

డ௫
൰ 

The initial conditions take the form 

ε୧୨(x, 0) = α୧୨(x), 
பகౠ

ப୲
ቚ

୲ୀ
= β୧୨(x), x ∈ D  

α୧୨ =
1

2
ቆ

∂u୧

∂x୨

+
∂u୨

∂x୧

ቇ,  

β୧୨ =
1

2
ቆ

∂uଵ୨

∂x୧

+
∂uଵ୧

∂x୨

ቇ 

(30) 

Equation (29) is obtained from (27) for the 
displacement 𝑢 ഥ  using the displacement-strain ratio 

ε୧୩ =
ଵ

ଶ
ቀ

డ௨

డ௫ೖ
+

డ௨ೖ

డ௫
ቁ. In addition, we assume that the 

initial conditions are such that 

𝑑𝑖𝑣 𝑢ത(x)= 𝑑𝑖𝑣 𝑢തଵ(x)=0, (31) 

is easy to show that problem (27) and problem (29) 
are equivalent to [2]. 

Similarly, excluding the displacement𝑢തin 
problem (28) we come to the statement of the 
dynamic problem of the theory of elasticity in 
stresses 

 

2
பమகౠ

ப୲మ =
பഥ

ப୶ౠ
+

பഥ

ப୶ౠ
+g୧୨, x ∈ D  

ε୧୨(x, 0)=∝୧୨
 (x),

பகౠ

ப୲
ቚ

୲ୀ
= β୧୨

 (x), x ∈ Dഥ (32) 

 σ୧୨

ଷ

୨ୀଵ

(𝑥, 𝑡)n = 0, x ∈ ɣ, t ∈ [0, Т]  

where ∝
ఒ (𝑥) =∝ (𝑥) −

ஔౠ

ଷఒାଶஜ
, 𝛽

ఒ (𝑥) =

𝛽 (𝑥). 
 
As we know, in [2] is shown that problem (28) is 

equivalent to problem (32). Next, we consider an 
explicit difference scheme for problem (32), 
following [3,4] 

2ε୧୨,௧̅௧(𝐿σഥ
 + 𝑓

)௫ೕ
+(𝐿σഥ

 + 𝑓
 )௫

  

𝜎,
 =∝ , (𝜎,

ଵ )௧̅ = 𝛽෨   

𝜎,
 = 0, 𝑥 = 0, 𝑙 , 𝑖, 𝑗 = 1,2,3 (33) 

where 

∝ = μ൫𝑢 , 𝑥 + 𝑢, 𝑥൯ + λδ୧୨ ∑  u୩,ଷ
୩ୀଵ 𝑥   

𝛽መ = 𝛽 +  
ఛమ

ଶ

డమೕ

డ௧మ ฬ
୲ୀ

,  

𝛽= μ൫𝑢ଵ , 𝑥 + 𝑢ଵ , 𝑥൯ + λδ୧୨ ∑  uଵ୩,ଷ
୩ୀଵ 𝑥  

𝜕ଶ𝛿

𝜕𝑡ଶ
ቤ

௧ୀ

 𝜇 ቂ (𝐿𝜎ത
 + 𝑓

 )௫ೕ

+ ൫𝐿𝜎ത
 + 𝑓

 ൯
௫

ቃ + 

+ 𝜆𝛿 ∑  (𝐿𝜎ത
 + 𝑓

 )௫ೖ
ଷ
ୀଵ , 

 

 

𝐿σഥ = (σଵ,)௫̅భ
+ (σଶ,)௫̅మ

+ (σଷ,)௫̅య
  

𝜎ଵ,=𝜆𝛿 ∑ 𝜀,
ଷ
ୀଵ + 2𝜇𝜀,  

𝑓 = 𝑓(𝑛𝜏), σf௧ = 𝑓(𝑡 + 𝜏) − 𝑓(𝜏), 𝜏𝑓௧̅௧

= 𝑓௧ − 𝑓௧̅ 
 

 
The solution of the scheme (33) is defined in the 

grid area D = {(𝑙ℎଵ, 𝑚ℎଶ, 𝑘ℎଷ),   𝑙 =
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0, 1, … , 𝑁ଵ, 𝑚 = 0, 1, … , 𝑁ଶ, 𝑘 = 0,1, … 𝑁ଷ, ℎ ∙ 𝑁 =
𝑙 , 𝜏𝑁 = 𝑇}. The structure of the difference scheme 
(33) is such that the difference analogs of the 
corresponding theorems for the dynamic problem 
of elasticity theory are fulfilled for it. The 
difference scheme (33) approximates the original 
differential problem with an accuracy of  
0(𝜏ଶ + |ℎ|). 

Let's write the scheme (33) in canonical form [3] 

𝐵σഥ௧ 
 + 𝜏ଶ𝑅σഥ௧௧ +Aσഥ =𝑔 ഥ , (34) 

 
σഥ , σഥଵ  set, in our case В=0, σഥ =

(σଵଵ, σଶଶ, σଷଷ, σଵଶ, σଵଷ, σଶଷ )் 
 

𝑟ଶ𝑅 =
ቱ

ቱ

a b b 0 0 0
b a b 0 0 0 
b b a 0 0 0 
0 0 0 c 0 0 
0 0 0 0 c 0 
0 0 0 0 0 c

ቱ

ቱ
,  𝑎 =

ఒାఓ

ఓ(ଷఒାଶఓ)
,

𝑏=−
ఒ

ଶఓ(ଷఒାଶఓ)
,  

𝑐 =
1

𝜇
− 𝐴 = 

=
ቱ

ቱ

∧ଵଵ 0 0
0 ∧ଶଶ 0
0 0 ∧ଷଷ

∧ଵଶ ∧ଵଷ       0
∧ଶଵ           0 ∧ଶଷ

0 ∧ଷଵ ∧ଷଶ

∧ଶଵ ∧ଵଶ 0
∧ଷଵ 0 ∧ଵଷ

0 ∧ଷଶ ∧ଶଷ

   ∧ଵଵ+∧ଶଶ ∧ଶଷ ∧ଵଷ

∧ଷଶ ∧ଵଵ+∧ଷଷ ∧ଵଶ

∧ଷଵ ∧ଶଵ ∧ଶଶ+∧ଷଷ

ቱ

ቱ
 

 

Λ(∙)=(∙)௫௫̅ೕ
.  

Operators A and R of scheme (32) such that 

А=А∗ > 0, 𝑅 = 𝑅∗ > 0,  and  𝑅 −
ଵ

ସ
𝐴 ≥ 0, 

If 

 
𝜏ଶ

ℎ
ଶ ≤

1

3(3𝜆 + 2𝜇)
,  (35) 

Indeed, by virtue of the Koshi-Bunyakovskii’s 
inequality and the ε-inequality, with subsequent 
application of the difference analog of the 
embedding theorem [4]. 

‖𝑦௫̅‖ଶ ≤
4

ℎଶ
‖𝑦‖ଶ 

It will have  

(Aσഥ , σഥ ) ≤
ଵଶ


మ (σഥ , σഥ ), 

on the other hand  

(𝜏ଶ𝑅σഥ , σഥ )≥ 𝑘൫σഥ , σഥ ൯, где 𝑘 =
ଵ

ଷఒାଶఓ
 

the smallest eigenvalue of the matrix 𝜏ଶ𝑅 there 

fore R −
ଵ

ସ
A ≥ 0, if the condition (35) is done for 

the solution σഥ of scheme (34) a priori estimate [16] 
is valid.   

ฮσഥାଵฮ
క

≤ ฮσഥ ฮ
క

+ ฮ𝑦ത ฮ
షభ + 

+  𝜏



ୀଵ

ฮ�̅�௧
ฮ

షభ + ฮ𝑦തାଵฮ
షభ , 

Where 

ฮ𝜎തାଵฮ
క

ଶ
=

1

4
ฮ𝜎തାଵ − 𝜎ത ฮ



ଶ
+ 

+ฮ𝜎തାଵ − 𝜎ത ฮ
ோି

ଵ
ସ



ଶ
 

(36) 

We note that from the last equality, considering 
condition (35), it follows 

‖𝜎ത ‖క ≤ ‖𝜎ത ‖ + ‖𝜎ത௧
‖ఛమோ,  (37) 

If  σഥ   is the solution of the difference scheme 

(34), and σഥఒ  is the solution of problem (32), then 
taking into account the method of approximation of 
problem (32) by scheme (34) from (35) it follows 

ฮyത ฮ
క

=
ଵ

√ఓ
‖yത௧

‖ = 0(𝜏ଶ + ℎ),  

where  yഥ  = σഥ − σഥఒ . 
Hereafter,  

(Ayത , yത ≥ 2𝜇(𝜏ଶ𝑅yത , yത ) ≥
ଶఓ

ଷఒାଶఓ
‖yത ‖ଶ  i.e. 

𝐴 ≥
ଶఓ

ଷఒାଶఓ
𝐸 or (𝐴)ିଵ ≥ 3

ఒାଶఓ

ଶఓ
𝐸 

 
E is the identity matrix. Thus 

‖𝑦ത ‖షభ ≤ ඨ
3𝜆 + 2𝜇

2𝜇
‖yത ‖ = 𝑂 (𝜆

ଵ
ଶℎ + 𝜆

ଵ
ଶ𝑡ଶ) 

 𝜏



ୀଵ

ฮ𝑦ത௧
ฮ

షభ =  𝑂 (𝜆
ଵ
ଶℎ + 𝜆

ଵ
ଶ𝜏ଶ) 

where 

‖𝑦ത ‖ଶ = (𝑦ത , 𝑦ത ), (𝑢, 𝜈)=∑ ∑ ∑ 𝑢 ∙ 𝜈 ∙
య
య

మ
మ

భ
భ

𝐻 

H isa volume element which sets in accordance 
with the point M (𝑥ଵ, 𝑥ଶ, 𝑥ଷ), consequently  
H=ℎଵ ∙ ℎଶ ∙ ℎଷ, if the point M is internal; 

H= 0,5 ∙ ℎଵ ∙ ℎଶ ∙ ℎଷ, if М is a boundary; 
H= 0,25 ∙  ℎଵ ∙ ℎଶ ∙ ℎଷ if the point М lies on the 
edge and H= 0,125 ∙ ℎଵ ∙ ℎଶ ∙ ℎଷ. Returning to (36), 
we come to an estimate for the discrepancy 

‖𝑦ത ‖క = 𝑂 ൬𝜆
ଵ
ଶ𝜏ଶ + 𝜆

ଵ
ଶℎ൰ (38) 

Having an estimate of (38), we consider the 
behavior of the solution of the scheme (34) when 
λ→ ∞. 

Theorem. The solution of the difference 
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problem (34) σഥ
ఒ converges to the solution of the 

dynamic problem of elasticity theory for an 
incompressible medium σഥ (29) when λ → ∞, 𝜏→0, 

ℎ→0, 
ఛమ


మ ≤

ଵ

ଷ(ଷఒାଶఓ)
 and estimate is fair 

ฮ𝜎ത
ఒ − 𝜎തฮ

క
≤ 𝑂 ൬𝜆

ଵ
ଶℎ + 𝜆

ଵ
ଶ𝜏ଶ + 𝜆ିଵ൰ (39) 

Proof. 
By the triangle inequality 

ฮ𝜎ത
ఒ − 𝜎തฮ

క
≤ ฮ𝜎ത

ఒ − 𝜎തฮ
క

+ ฮ𝜎ത
ఒ − 𝜎തฮ

క
 (40) 

As σഥ
ఒ − σഥఒ = yത ,  then for the first syllable of 

the right part (40), the score (38) is valid. Let us 
denote 

𝜔ഥ = σഥఒ − σഥ 
Then 

ฮ𝜔ഥାଵฮ
ఏ

≤ ฮ𝜔ഥାଵฮ


+ ‖𝜔ഥ௧
ାଵ‖ఛమோ  (41) 

We have 

ฮ𝜔ഥାଵฮ
ఏ

= ට∑ ฮ𝐿𝜔ഥାଵฮ
ଶଷ

ୀଵ =𝑂(𝜆ିଵ + ℎ) 

Further  

ฮ𝜔ഥାଵฮ
ఛమோ

ଶ
=

1

𝑀
ฮ𝜔,௧

ାଵฮ
ଶ

ଷ

ୀଵ

+ 

+
1

(3𝜆 + 2𝜇)
{ฮ𝜔,௧

ାଵฮ
ଶ

ଷ

ୀଵ

+ 

+
ఒ

ଶఓ
∑ ฮ𝜔,௧

ାଵ − 𝜔,௧
ାଵฮ

ଶଷ
,ୀଵ }, as 

 

ฮ𝜔,௧
ାଵฮ

ଶ
= ฮ2𝜇𝜀,௧

ାଵฮ
ଶ

=  𝑂(𝜆ିଶ + ℎ)  

ฮ𝜔,௧
ାଵ − 𝜔,௧

ାଵฮ
ଶ
=ฮ2𝜇(𝜀,௧

ାଵ −

𝜀,௧
ାଵฮ

ଶ
=𝑂(𝜆ିଶ + ℎ) 

 

‖𝜔ഥ௧
ାଵ‖ଶ

ఛమோ
=𝑂(𝜆ିଶ + ℎ

ଶ),  

for (41) we will have 
ฮσഥఒ − σഥฮ

ఏ
=  𝑂(𝜆ିଵ + ℎ) 

Continuing (40), using (35) and the last estimate, 
we will get (41). Let us note that due to condition 
(35), the estimate (38) can be written as 

ฮσഥ
ఒ − σഥఒ ฮ

క
=  𝑂 ൬𝜆

ଵ
ଶℎ + 𝜆ିଵ൰ (42) 

The construction of the estimate (42) shows that 
at a fixed λ, with respect to refinement of the grid 
step ℎ , starting from a certain one, it cannot be 
expected increases in accuracy. 

A similar situation occurs if you increase λ for a 
fixed ℎ. It would appear reasonable to require that 

the terms of the evaluation (42) have the same 
order. Then, assuming that ℎ=𝑂൫𝜆ିଷ/ଶ൯, the rate of 
convergence of the solution of the difference 
scheme (34) to the solution of the dynamic problem 
of elasticity theory for an incompressible medium 
(29) can be expressed in terms of  

𝜆: ฮσഥ
ఒ − σഥฮ

క
=  𝑂 ቀ

ଵ

ఒ
ቁ if we take 𝜆 =  𝑂 ቆℎ



ି
మ

యቇ, 

the estimate takes the next view 

ฮ𝜎ത
ఒ − 𝜎തฮ

క
=  𝑂 ቆℎ



ଶ
ଷቇ, (43) 

By changing the method of approximation of 
volume forces vector𝑓i̅n scheme (34) so that 

(𝑓
∗ )௫ + ൫𝑓

∗ ൯
௫

=
𝜕𝑓୧

𝜕𝑥

+
𝜕𝑓

𝜕𝑥

+ 𝑂(ℎ
ଶ) 

Then the difference scheme will have the 
order 𝑂(𝜏ଶ + ℎ

ଶ). Therefore, the rate of 
convergence of its solutions to the solution of the 
problem of elasticity theory for an incompressible 
material is expressed by the estimate  

ฮσഥ
ఒ − σഥฮ

క
=  𝑂 ቆℎ



ర

యቇ. 

 
3. CONCLUSIONS 

 
In general, for approximation of the problem 

(32), a difference scheme can be constructed with 

the approximation order 𝑂൫𝜏∝ + ℎ
ఉ

൯, where the 
parameters τ and ℎ are subordinated to the 
condition 𝜏ఊభ ≤ 𝑐ℎ

ఊభ , then from (40) follows 
 

ฮσഥ
ఒ − σഥฮ

క
≤ ฮσഥ

ఒ − σഥఒ ฮ
క

+ ฮσഥఒ − σഥฮ
క

= 

=  𝑂 ቂ൫𝜏∝ + ℎ
ఉ

൯ ∙ 𝜆
భ

మ + 𝜆ିଵቃ= 

= 𝑂 ൭ቆℎ


∝ംమ
ംభ + ℎ

ఉ
ቇ ∙ 𝜆

భ

మ + 𝜆ିଵ൱,  

if now it has completed 

𝛽 ≤
∝ఊమ

ఊభ
, by taking 𝜆 = 𝑂 ቆℎ



ି
మഁ

య ቇ, in place of 

(43) we will find 

ฮσഥ
ఒ − σഥฮ

క
= ቆℎ



మ

య
ఉ

ቇ. 

We present the results of numerical calculations. 
Numerical experiments were carried out to test the 
possibilities of practical use of the difference 
scheme (32, 33) in solving the dynamic problem of 
elasticity theory for an incompressible medium (3-
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8). The exact solution is chosen as the test  
uത = {(x − 1) sin t ; (1 − y) sin t} 

σଵଵ = 2μ(1 − xଶ − yଶ) sin t, 
σଶଶ = −2μ(1 + xଶ + yଶ) sin t, 

σଵଶ = 0 
a plane dynamic problem of elasticity theory for an 
incompressible medium 

∂ଶUi

∂tଶ
= 

∂σ୧୩

∂x୩

ଷ

୩ୀଵ

+ f୧ 

div uത = 0. 
f̅ = {(4μx + 1 − x)sin t;  (4μy + y − 1)sin t},  

u୧(x, 0) = 0, 
ப୳భ

ப୲
ቚ

୲ୀ
= x − 1, 

ப୳మ

ப୲
ቚ

୲ୀ
= 1 − y; 

In the area  D = {0 ≤ x, y ≤ 1} ×  [0 ≤ t ≤

0,5] 
As the approximate solution of the formulated 

problem was the solution of the difference scheme 
(32, 33).  

Calculations were carried out for dimensionless 
Lame coefficients,  

λത =



, μത =

ஜ


  for E=50 MPa. For μത = 0,5  

solutions of  the difference scheme were obtained at 
different values of the λത, on the grids 10× 10, 20×
20, 40× 40. The time step of the τ was chosen 
based on the stability conditions of the difference 
scheme.  The analysis of the numerical results 
shown on the tables showed the validity of the 
evaluation λത = O(hିସ/ଷ), definitely on the grid 10×

10 a with step h =0,1  value λത, according to this 
formula λത ≈ 20, and the score for smaller λത or 
larger 20 as can be seen from the table leads to an 
increase in the error rate. A similar situation occurs 
on a 20× 20 grid. 

h =0,05, the value of the  λത ≈ 50 according to the 
formula is optimal because the norm of discrepancy 
is minimal. And finally, on the 40× 40 grid, h = 
=0,025 the optimal value of the λത ≈ 150, which 
confirms the validity of the relationship between 
λത and h.  

The tables show the error W = ฮu − uฮ
,

 a 

depending on λത.  

W = ฮu − uฮ = ඩ (u୧୨
,୬ − u୧୨

୬)ଶhଶ

ିଵ

୨ୀଵ

ିଵ

୧ୀଵ

 

for a fixed time, layer i.e., n=15, n=100, n=120, 
t୬ = nτ, n- number of a certain layer  hଵ = hଶ =
h = 0,1.  

Table 1: Grid 10× 10, 𝜆௧ ≈ 20. 

ℎ N × N 𝑛 λ W 
0,1 10× 10 15 10 0, 0836 
0,1 10× 10 100 10 0, 0942 
0,1 10× 10 120 10 0, 0967 
0,1 10× 10 15 50 0, 0996 
0,1 10× 10 100 50 0, 0987 
0,1 10× 10 120 50 0, 0998 
0,1 10× 10 15 20 0, 0112 
0,1 10× 10 100 20 0, 0108 
0,1 10× 10 120 20 0, 0124 

Table 2: Grid 20× 20, 𝜆௧ ≈ 50 

ℎ N × N 𝑛 λ W 
0,05 20× 20 15 20 0, 0847 
0,05 20× 20 100 20 0, 0975 
0,05 20× 20 120 20 0, 0963 
0,05 20× 20 15 50 0, 0114 
0,05 20× 20 100 50 0, 0110 
0,05 20× 20 120 50 0, 0107 
0,05 20× 20 15 100 0, 0765 
0,05 20× 20 100 100 0, 0836 
0,05 20× 20 120 100 0, 0912 

 
Table 3: Grid 40× 40, 𝜆௧ ≈ 150. 

 

ℎ N × N 𝑛 λ W 
0,025 40× 40 15 100 0, 0938 
0,025 40× 40 100 100 0, 0879 
0,025 40× 40 120 100 0, 0798 
0,025 40× 40 15 150 0, 0142 
0,025 40× 40 100 150 0, 0132 
0,025 40× 40 120 150 0, 0127 
0,025 40× 40 15 250 0, 0786 
0,025 40× 40 100 250 0, 0862 
0,025 40× 40 120 250 0, 0987 

 
4. CONCLUSION 

 
Then, with numerical realizations, schemes are 

indicated, the order of approximation error has the 

form proposed above ฮσഥ୦
 − σഥฮ

ஞ
= ቆh

୧

మ

య
ஒ

ቇ, which 

allows calculations to be carried out with such an 
error. 
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