
 Journal of Theoretical and Applied Information Technology

30th April 2022. Vol.100. No 8
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2668

IMPROVEMENT OF PARALLEL AVERAGE PARTITIONING
AND SORTING ALGORITHM WITH DECREASING SINGLE

POINT OF FAILURE AND BOTTLENECK

Ahmed Hammad Helal1, Masoud E Shaheen2
1 Computer Science department, Faculty of computer science and information system, Fayoum University,

Egypt.

 2 Computer Science department, Faculty of computer science and information system, Fayoum University,

Egypt.

E-mail: 1ah1348@fayoum.edu.eg

ABSTRACT

Sorting algorithms are algorithms which put elements of a list in a certain order. The first sorting algorithms
were sequential and there are many contributions to make these algorithms parallel, these contributions
have been attracted many researchers may be due to the complexity of solving it efficiently. Parallel
sorting algorithms have conquered many problems like decreasing processing time and resource utilization.
This paper presents some enhancements on a parallel partitioning and sorting algorithm to overcome single
point of failure and bottleneck problems.

Keywords: Bottleneck, Single Point of Failure, Resource Utilization, Distributed Shared Memory System,
Many to Many Communication.

1. INTRODUCTION

Parallel algorithms have many advantages such
as overcoming the long time which consumed using
sequential algorithms like quick sort, merge sort,
and bubble sort [1], to achieve resource utilization.

Whereas sorting plays a vital role between
computer operations and facilitates some other
computer operations like searching and reading or
writing from particular position [2-3]. So many
attempts have been done to turn the sequential
sorting algorithms to parallel algorithms to achieve
the advantages of parallel algorithms like
Performing operations efficiently in a short time,
but the parallel algorithms face many obstacles and
challenges like resource utilization, bottleneck, fault
tolerance and single point of failure.

Some of these attempts which tried to perform
quicksort algorithm in parallel are:

- "Hyper Quicksort algorithm".

 Hyper quicksort is a parallel algorithm which
implements quicksort algorithm on a hypercube [4].

 - "Fast Parallel Sorting Algorithm Using Subsets
and Quick Sort (FPSAUSQS)".

 The main idea of " FPSAUSQS" is division of
large set of variables to subsets and sort parallelly
every subset [5-6].

 - "Hams Algorithm"

 Hams algorithm is a parallel partitioning and
sorting algorithm aims to divide data equally [7].

The difference between these algorithms was in
partitioning, it's known that the best number which
can be used in partitioning is the median [8], but the
main obstacle is that the median can't be known
unless the numbers are sorted, however these
algorithms found alternative methods which can be
used in partitioning, for example "Hyper Quicksort"
uses the median of a sorted sub list of numbers,
"FPSAUSQS" uses the maximum number in the list
of numbers and "Hams algorithm" uses the using
arithmetic mean of the list of numbers.

2. RELATED WORK

2.1 Parallel Sorting of Arrays with OpenMP
and the Quick-Sort Algorithm

In this algorithm the pivot element is
chosen randomly from the unsorted array and
broadcasted to all working processors. The next
step is dividing each array into two subarrays less
and greater than the pivot element. the following

 Journal of Theoretical and Applied Information Technology

30th April 2022. Vol.100. No 8
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2669

steps are exchanging then sorting these subarrays
recursively so that every processor has a sorted
subarray greater than its pervious processor and less
than next one [9].
2.2 Dual Parallel Partition Sorting Algorithm

Dual Parallel Partition Sorting Algorithm
uses two given indices the first one for left partition
and the second one for right partition and has a
given pivot element the values in the left and right
are compared with the pivot element and swapped
until the right values be less than the pivot and the
left values be great than the pivot. Then (STLSort
or qsort) function is used to sort the values in
parallel [10].

2.3 Hams, Parallel Average Partitioning and

Sorting Algorithm
" Hams, parallel average partitioning and

sorting algorithm" is an effective algorithm used in
division a given list of values in parallel into almost
equal partitions using the arithmetic mean of this
list, then it uses a quick sort algorithm to sort
partitioned sub lists in parallel. As shown in figure
1 the algorithm uses message passing interface to
communicate between processes and uses master
/slave architecture, so they perform single read and
single write [7]. In this algorithm there is a
bottleneck in reading the data from input file using
the master process only and this also would lead to
single point of failure if the master process was
down for any reason and the same problem is found
in calculating the arithmetic mean of related
processes [11].

3. RESEARCH METHOD

In this paper an enhanced algorithm of
Hams algorithm called iHams will be presented,
some modifications are implemented to enhance the
performance of Hams algorithm.

Start(slave)Start (master)

Read data

Divide to parts

Send part Receive part

Calculate sum Calculate sum

Receive sum Send sum

Calculate
average

Send average Receive average

Divide depend on
average

Divide depend on
average

Exchange parts Exchange parts

sort sort

end end

(6)

(7)

(8)

(9)

(10)

(5)

(4)

(3)

(2)

(1)

Figure 1: Hams Algorithm Steps

3.1 The Proposed Algorithm

The proposed algorithm iHams aims to
conquer some problems like single point of failure
and bottleneck and achieve resource utilization and
load balance that will may be led to reduce the
execution time and fault tolerance [12-13]. As
shown in figure 2 many to many communication

 Journal of Theoretical and Applied Information Technology

30th April 2022. Vol.100. No 8
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2670

and distributed shared memory (DSM) mechanism
is used in this algorithm, all process will
communicate between each other and data source
[14-15].

First modification is to replace single
reading of the input data file using master process
by parallel reading using all available processes by
partitioning the data into chunks and read it using
index, data reading index is calculated depending
on the following equation.

 I = ((CD / CP) * N) - (CD / CP) (1)

where I is the data reading index, CD
count of upcoming data, CP count of working
processes, and N is process index.

Second modification is to replace
calculating the arithmetic mean in one process by
calculating it in all related processes by broadcast
the sums of chunks in all related processes.

Figure 2: Communication Between Processes

3.2 Algorithm Steps
As shown in figure 3 the algorithm steps are as

following:
1. Setting number to every process.
2. Calculating data reading index (I) depending on
its number using equation (1).
3. Every process reads its data chunk
4. Every process calculates a sum of its data chunk
5. Every process broadcasts the sum of its data
chunk
6. Every process calculates the arithmetic mean
7. Every process divides its chunk into two
partitions, one of them is less or equal to the

arithmetic mean and the second is greater than the
arithmetic mean.
8. Swapping the partitions between each two-
coupled processes.
9. Repeating the steps from 5 to 8 for lower half
and upper half process log CP times
where CP is count of working processes.
10. Finally, every process sorts its data chunk using
quick sort.

3.2 Case Study

As shown in figure 4, suppose there are four
processes which can work in parallel together and
an input data file that has twenty numbers.

1. Every process reads the data in an array and
calculates the index of its data chunk.
2. Every process calculates a sum of its chunk.
3. Every process sends and receives the sum.
4. Every calculates the general arithmetic mean
locally.
5. Every process splits its data lower and greater
than the arithmetic mean.
6. Every process swaps splitted parts.
7. Every process calculates the sum of its chunk.
8. Every process sends and receives the sum.
9. Every calculates the secondary arithmetic mean
locally.
10. Every process splits its data lower and greater
than the arithmetic mean.
11. Every process swaps splitted parts.
12. Finally, every process sorts its chunk using
quick sort algorithm.

 Journal of Theoretical and Applied Information Technology

30th April 2022. Vol.100. No 8
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2671

Start(slave)Start (maste)

Read data

Calculate sum Calculate sum

Broadcast sum Broadcast sum

Calculate
average

Divide depend on
average

Divide depend on
average

Exchange parts Exchange parts

sort sort

end end

Read data

Calculate average

(1)

(2)

(3)

(4)

(5)

(6)

(7)

Figure 3: iHams Algorithm Steps

 Journal of Theoretical and Applied Information Technology

30th April 2022. Vol.100. No 8
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2672

74 56 63 32 42 81 93 5 22 12 98 34 19 24 0 88 52 17 56 79

1 2
P1 74 56 63 32 42
P2 81 93 5 22 12
P3 98 34 19 24 0
P4 88 52 17 56 79

P1 74 56 63 32 42

P2 81 93 5 22 12

P3 98 34 19 24 0

P4 88 52 17 56 79

3 4

P1 74 56 63 32 42

P2 81 93 5 22 12

P3 98 34 19 24 0

P4 88 52 17 56 79

 P1 74 56 63 32 42

P2 81 93 5 22 12

P3 98 34 19 24 0

P4 88 52 17 56 79

5 6
P1 32 42 74 56 63

P2 5 22 12 81 93

P3 34 19 24 0 98

P4 17 88 52 56 79

P1 32 42 34 19 24 0

P2 5 22 12 17

P3 98 74 56 63

P4 88 52 56 79 81 93

7 8

P1 32 42 34 19 24 0

P2 5 22 12 17

P3 98 74 56 63

P4 88 52 56 79 81 93

P1 32 42 34 19 24 0

P2 5 22 12 17

P3 98 74 56 63

P4 88 52 56 79 81 93

9 10

P1 32 42 34 19 24 0

P2 5 22 12 17

P3 98 74 56 63

P4 88 52 56 79 81 93

P1 19 0 32 42 34 24

P2 5 12 17 22

P3 74 56 63 98

P4 52 56 88 79 81 93

11 12

P1 19 0 5 12 17

P2 22 32 42 34 24

P3 74 56 63 52 56

P4 98 88 79 81 93

P1 0 5 12 17 19

P2 22 24 32 34 42

P3 52 56 56 63 74

P4 79 81 88 93 98

Figure 4: Case Study of the Proposed Algorithm

151
56

291

449

(151,6

(56,4)

(291,4

267
213

(449,6)

175

292

(276,5

(213,5

(175,5
)

(292,5

20

47

47

47

20

47

47

47

47

47

74

74

20
20

74

74

 Journal of Theoretical and Applied Information Technology

30th April 2022. Vol.100. No 8
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2673

4. RESULTS AND DISCUSSION

IHams and Hams algorithms are made by C++
programming language with MPI [16], this
experiment has been done on a virtual machine
with a four cores processor with 2.1 GHz and five-
gigabyte RAM.

The experiment was made using random
numbers generated by the uniform_int_distribution
class. The range of generated numbers from 0 to
100000 and the counts of numbers are 1000,10000
and 100000.

Moreover, the experiment was applied to sort
Total Compensation column of a real data of the
benefits and salary paid to The San Francisco
employees with the file version uploaded on 09
May 2019, which has 831308 rows [17].

The experiment was made using 4 processes,
table 1 and figure 4 show the affected processes in
every step if process number one (P1) is down. It is
noticed that affected processes decrease in iHams
algorithm than Hams algorithm and this leads to
decrease the dependency on master process and
increasing the dependency on other working
processes in iHams algorithm than Hams algorithm,
so this will lead by its role to overcome resource
utilization, bottleneck, single point of failure and
fault tolerance issues.
 The execution time of the four experiments in
microsecond unit is as shown in table 2 and figure
4. It is noticed that the execution time of iHams
algorithm decreases compared with the execution
time of Hams algorithm, The difference between
them becomes clear whenever the data set becomes
larger.

Table 1: Count of Affected Processes

Step ID Step Normal
affected

Hams iHams

1 read data 1 4 1
2 divide the data 1 4 0
3 send the data 1 4 0
4 calculate sum 1 1 1
5 send sum 1 0 1
6 receive sum 1 4 1
7 calculate average 1 4 1
8 send average 1 4 0
9 partitioning the data 1 1 1

10 exchange partitions 1 2 2
11 calculate sum 1 1 1
12 send sum 1 0 1
13 receive sum 1 2 1
14 calculate average 1 2 1
15 send the average 1 2 1
16 partitioning the data 1 1 1
17 exchange partitions 1 2 2
18 sorting 1 1 1

 Journal of Theoretical and Applied Information Technology

30th April 2022. Vol.100. No 8
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2674

Table 2: Execution Time in Microseconds

Count of
numbers Hams iHams

1000 6990 5460
10000 62403 48609

100000 577210 449062
831308 4041399 3140158

Figure 5: Count of affected processes

Figure 6: Execution Time in microseconds

 Journal of Theoretical and Applied Information Technology

30th April 2022. Vol.100. No 8
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2675

5. CONCLUSION AND FUTURE WORK

Resource utilization, bottleneck, single point of
failure and fault tolerance are obstacles in
implementation the parallel algorithms which uses
master and slaves' approach. iHmas is the enhanced
algorithm of Hams algorithm, the two algorithms
were implemented and compared. The experiment
proved that iHams decreases the dependency on

 master process and increases the dependency
on other working processes, which leads to
overcome resource utilization, bottleneck, single
point of failure and fault tolerance issues, and this
also leads to less execution time than Hams
algorithm.

In the future work, we will apply iHams
algorithm on a larger data set and increase the count
of working processes with improving the
communication between processes and
performance of the algorithm.

REFERENCES:

[1] Gary Pollice, Stanley Selkow, George T.

Heineman, "Algorithms in a Nutshell",
O'Reilly Media, Inc,2008.

[2] Knuth D., The art of computer programming,
V3. "Sorting and Searching, Addison Wesley
Publishing Company", 1973.

[3] R. Kaushal, Why Sorting is So Important in
Data Structures, International Journal for
Scientific Research & Development| Vol. 5,
Issue 07, 2017.

[4] M. J. Quinn, Parallel Programming in C with
MPI andOpenMP, Tata McGraw Hill
Publications, 2003, p. 338.

[5] Bosakova-Ardenska A., Vasilev N.,
Kostadinova-Georgieva L., Fast Parallel
Sorting Algorithm using Subsets and Quick
sort, Balkan Journal of Electrical & Computer
Engineering, 2015, Vol.3, No.1, ISSN: 2147-
284X, pp.27-29 .

[6] A. Bosakova-Ardenska , A.Miroslav,
IMPLEMENTATION OF FAST PARALLEL
SORTING ALGORITHM WITH C AND
MPI, INTERNATIONAL SCIENTIFIC
CONFERENCE 18 – 19 November 2016,
GABROVO.

[7] A.Hammad , M.E-Shaheen HAMS,
PARALLEL AVERAGE PARTITIONING
AND SORTING ALGORITHM ,
INTERNATIONAL JOURNAL OF
SCIENTIFIC & TECHNOLOGY
RESEARCH VOLUME 9, ISSUE 03,
MARCH 2020.

[8] J.Medhi , Statistical Methods: An Introductory
Text , New Age International. pp. 53–69,1992.

[9] G.Petkovski, D.Tosev, Parallel Sorting of
Arrays with OpenMP and the Quick-Sort
Algorithm , • Conference: The 12th
International Conference for Informatics and
Information Technology,2015

[10] A.Rattanatranurak, Dual Parallel Partition
Sorting Algorithm, Conference: Proceedings
of 2018 International Conference on
Information Technology and Science,2019.

[11] M.Zheludkov, S.Bhuiyan ,"The Apache Ignite
Book" - Page 101,2019.

[12] Designing Large-scale LANs – Page 31, K.
Dooley, O'Reilly, 2002 .

[13] https:/
/www.investopedia.com/terms/b/bottleneck.as
p By ADAM BARONE Updated May 8,
2019.

[14] H.Geng , N.Jamali , Supporting Many-to-
Many Communication , Conference:
AGERE!,2013.

[15] L. Czaja , Introduction to Distributed
Computer Systems , 2018 , p. 187 - 126.

[16] M.snir,s.olto,S.Huss-lederman,D.Walker and
J.Dongarra ,MPI the complete reference ,MIT
press ,Cambridge ,MA,USA,1996.

[17] data.gov, ―Employee Compensationۅ,
Available at:
https://catalog.data.gov/dataset/employee-
compensation53987?fbclid=IwAR3wabi2vXa
mKLc7BHjFyz5Afw39yHp3
4fqe67BWHmEwiVTt6-xkhSynvrc,2019 .

