
 Journal of Theoretical and Applied Information Technology

30th April 2022. Vol.100. No 8
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2596

IMPLEMENTING DECISION TREES THROUGH
AUGMENTING TREE DATA STRUCTURE FOR

CLASSIFICATION PURPOSES

MAJED ABUSAFIYA1

1Associate Professor, Al-Ahliyya Amman University, Department of Software Engineering, Jordan

E-mail: 1majedabusafiya@gmail.com

ABSTRACT

The main goal of this paper is to define a data structure to implement decision trees for classification
purposes. A classification problem is defined by a set of items with defined attributes and a set of
classifiers, its output is a set of classes of items. The method we followed in this paper is the known
problem solving technique called augmenting data structures. The basic tree data structure is chosen. The
required information to augment is defined. Also the basic operations to build, update and query this data
structure are defined as algorithms. One important issue that was considered in defining this data structure
is deal with ill-formed classification. Ill-formed classification may result in having an item ending in zero,
one or more final classification classes. One main advantage of this data structure is that it can be used as
base for software tools that facilitate the automated and interactive design, update and querying of decision
trees for classification purposes.

Keywords: Algorithms, Decision trees; Augmenting data structures; Classification; Ill-formedness

1. INTRODUCTION

A decision tree is a tool that is used to break

down a complex decision-making process to a
collection of simpler decisions. One main
application of the decision tree is classification:
given a set of items with attributes and a set of
classification rules, these items are grouped into a
set of classes. Decision trees have been extensively
used in literature. A lot of work was directed
towards algorithms to learn the decision tree from
input data: IDE3[1], C4.5[3], Sprint[2] and others
[4]. A hardware implementation for decision tree
was proposed in [4]. In [5] a data mining tool was
used to implement decision tree. In [6], a decision
tree was constructed by providing a visual
interactive interface that helps the user to build the
tree. In [7], an implementation of the ID3 decision
tree algorithm using Java applets is presented.

To contrast our work from related work, we
point to the following: (1) t`he work in this paper is
not related to machine learning nor data mining
where the decision tree is automatically generated
from a given data set. We assume that the
classification rules are given as input. This paper is

directed towards the algorithmic construction of the
decision tree in the data structure level, (2) our
work views a decision tree as a dynamic data
structure, so we present algorithms for building and
modifying the tree for insertions, deletions and
updates, (3) our work can be viewed as a basis to
develop software tools to design decision trees for
classification. The defined operations eases the
adjustment of the tree to correctly define the
classification problem, (4) the proposed data
structure tolerates ill-formed classification. An ill-
formed classification is the classification that is not
well-formed. A classification is described to be
well-formed if every input item ends in one and
only one final class.

A data structure models an abstract object that
organizes data into well-defined composition and
allows operations for creation, modification, and
querying [8]. Many problems can be efficiently
solved by defining a suitable data structure (e.g.
binary search trees, queues and stacks). In this
paper, a similar approach will be taken where we
wish to implement decision tree to solve
classification problem using a data structure. We
will implement the decision tree by using a known

 Journal of Theoretical and Applied Information Technology

30th April 2022. Vol.100. No 8
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2597

algorithmic problem solving technique that is called
augmenting data structures [9]. In this paper, we
will augment the basic tree data structure to
implement the decision tree for classification
purposes. The process of augmenting a data
structure to solve a given problem is defined by the
following steps: (1) choosing an underlying data
structure, (2) determining the additional
information to augment, (3) verifying that this
additional information is correctly maintained for
the basic modifying operations and (3) finally
define useful operations for querying data in this
data structure. We will follow this process to define
the desired decision tree.

This paper is organized as follows: Section 2
presents the information to be augmented into the
basic tree data structure to implement decision
trees. In Section 3, the operations of the new data
structure are presented. In section 4, an example
application for the proposed data structure is
presented. The paper ends up with a discussion and
a set of references.

2. AUGMENTING THE TREE DATA

STRUCTURE

To ease the presentation of the proposed
data structure, an example will first be given. Let
items= {i1,i2,i3,i4,i5,i6,,i7,i8} be the items to classify
with the attributes {f1,f2,f3}, all with type integer for
simplicity. Table 1 shows the values of the
attributes for these items.

Table 1: Items with attributes example

Item f

1
 f

2
 f

3

i1 3 2 1
i2 4 2 6
i3 2 4 7
i4 7 3 2
i5 2 6 3
i6 5 3 3
i7 6 3 6
i8 3 2 4

The conditions upon which the classification is
done are defined by classifiers. For our example,
the classifiers are shown in Table 2. In this
example, we assumed a classifier for each attribute
for simplification. However, a classification
conditions of a classifier may consider multiple
attributes. There is no relation between the number
of the classifiers and the number of attributes. For

generality, we will assume that a classifier's
conditions may overlap. This means that
classification is not necessarily disjoint. See for
example the second and third classification
conditions for classifier2.

Table 2: Items with attributes example

Classifier conditions i1 i2 i3 i4 i5 i6 i7 i8
classifier1 f1 is odd T F F T F T F T

f1 is even F T T F T F T F
classifier2 f2 =2 T T F F F F F T

3f2 4 F F T T F T T F
f2³4 F F T F T T F F

classifier3 f3 is prime T F T T T T F F
f3 is not prime F T F F F F T T

The information to be augmented in the
tree data structure to implement the desired
decision tree is shown in Table 3.
The tree in Figure 1 will be used to better illustrate
the proposed data structure. A tree T is composed of
number of tree nodes with a T.root is the root tree
node. The classifiers define the classification
conditions and will be explained shortly. Items are
the set of items to be classified. The final classes of
the classification problem will be the items sets
within the tree nodes blocks in the last level. The
last level tree nodes set are referred to as
lastLevelTreeNodes.

A TreeNode is composed of at least one tree
node block. A tree node with no tree node blocks is
eliminated. Every tree node block has exactly one
child tree node (except those that exist in leaf tree
nodes). Every tree node has a parent tree node
block except the root. Every tree node has a
classifier. Tree nodes of the same level share the
same classifier. The items of a tree node are the
items of its parent tree node block. The items of the
T.root is the input items of the classification
problem.

A tree node block has an id field. This id field
is useful in identifying and locating a tree node
block in the tree. An id is a string of numeric fields
that are separated by dots. These numeric fields
correspond to defined ranks. For example, in Figure
1, the tree node block whose id is (2.1.2) exists in
the third level and the rank of its classification
condition is 2. It is the child of tree node block
(2.1). The tree node block (2.1) has the rank of its
classification condition to be 1, which – in turn -
exists as a child of tree node block (2) in the first
level. The tree node block (2) has the rank of its

 Journal of Theoretical and Applied Information Technology

30th April 2022. Vol.100. No 8
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2598

classification condition to be 2. We will use a
slightly different notation to refer to a tree node.
For example, we refer to the tree node that contains
the tree node block (2.2.1 and 2.2.2) as (2.2.*).

Every tree node block has a set of items. The
items of a tree node block are those items - of the
containing tree node - that satisfy its classification
condition. All tree node blocks must have non-
empty items field. As will be shown latter, any tree
node block that has an empty items field is
eliminated from its tree node. A tree node block
knows its containing tree node through treeNode
field. A tree node block has a childTreeNode field.
Each tree node block will correspond to one of the
classes that are defined by the classifier of the level
that contains this tree node block. The number of
tree node blocks of a tree node equals to the
number of the classification conditions of its
classifier. However, If none of the items of a tree
node satisfy the classification condition of a given
tree node block, then this tree node block is
dropped from its tree node. So, tree nodes at the
same level may have a varying number of tree node
blocks. Every item belonging to the items set of a
tree node is supposed to join the items set of one of
its tree node blocks. However, and for generality
and flexibility, an item may join the items of
multiple tree node block of the same tree node, if it
satisfies the classification conditions of multiple
tree node blocks. So an item of a tree node may end
up in zero, one or more tree node blocks. If an item
- that is a member of a the items of some tree node -
does not satisfy any of the classification conditions
of the corresponding classifier, then this item will
not join any of the tree node blocks of this tree
node. We say that this item is blocked at this tree
node.

Classifiers is a set of classifiers. The
classifiers map items of a tree node to the items of
the contained tree node blocks. A classifier is
defined as a set of classification conditions (Table
4). A classificationCondition has a rank within its
classifier. This rank identifies the rank of a
corresponding tree node block in a tree node. It is
composed of a condition and a corresponding
className (it is a label that identifies a class). As
will be shown latter, a classificationCondition is
applied on the items of the containing tree node and
returns the set of items that satisfy its condition. An

item that satisfies a classifictionCondition will join
the items of the corresponding tree node block. We
mean by corresponding tree node block, is the tree
node block whose classification condition is
classificationClassification. That is, a classification
condition is associated with a tree node block in the
sense that it identifies its items and both have the
same rank. For example, in Figure 1, the
classification condition with rank 2 of the second
classier, classified the item i4 into tree node block
with rank 2 (with id 1.2) in tree node (1.*). The
treeNodes field of a classifier is the set of the tree
nodes where the classifier is applied. They compose
the tree nodes of one level within the tree. The rank
field of a classifier specifies the level in the tree
where it is applied. No specific ordering for
applying the classifiers should be followed.
However, we will assume the classifiers in
classifiers are ordered and they are ranked in that
order. For example, the third level classifier in
Figure 1 has the rank value 3, its classification
conditions are “f3 is prime” and “f3 is not prime”
and its treeNodes={1.1.*, 1.2.*, 2.1.*, 2.2.*, 2.3.*}.

3. THE AUGMENTED DATA STRUCTURE

OPERATIONS
In this section, the algorithms of the basic

operations of the augmented data structure are
presented. These operations include building,
modifying and querying the tree. These operations
mainly get or set the information fields of the
objects that compose the tree. These algorithms are
presented in high-level flowcharts. To save space
and to simplify presentation, we will focus on the
main steps of the algorithm. Some of the steps will
be abstracted and only the most significant fields
are updated. Some of the detailed steps and updates
on less significant information fields are dropped
since they can easily be inferred from the given
presented algorithm. For example, a change of a
childTreeNode field of a tree node block implies an
update on parentTreeNodeBlock of the
corresponding tree node.

3.1 BUILD-TREE operation

Building the tree is the main operation of

the proposed data structure since the desired
classification is a side product of building the tree.

 Journal of Theoretical and Applied Information Technology

30th April 2022. Vol.100. No 8
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2599

The desired classification is found in the tree node
blocks in the last level of the tree. The algorithm
BUILD-TREE is shown Figure 2. It has two inputs:
items and classifiers.

The tree T is built a level by level: one
level for each classifier. First, the T.root tree node is
created and root.items is initialized with items.
T.classifiers is set to the input classifiers. The
currentLevelTreeNodes refers to the set of tree
nodes of the current level of the tree. The tree nodes
of the next level of the tree are created as children
of the tree node blocks of tree nodes in
currentLevelTreeNodes. Initially, currentLevel-
TreeNodes contains the root tree node only. The
first classifier from classifiers is chosen to classify
the items in root. In a loop, the classification
conditions of the first classifier are applied one
after another against the the items of the root to find
classifiedItems. The classifiedItems is the subset of
items that satisfy the current
classificationCondition. If classifiedItems is not
empty, a newTreeNodeBlock is created, its items
field is set to be classifiedItems, its treeNode and
classification conditions are set, and then is inserted
into the root tree Node. If classifiedItems set is
empty, no tree block will be created for this
classificationCondition. The construction of the
root tree node is complete once all the classification
conditions of the first classifier are processed. The
next levels of the tree are built by calling BUILD-
TREE-LEVEL algorithm once for each classifier.
Every call of the BUILD-TREE-LEVEL algorithm
will update currentLevelTreeNodes to be the set of
the created tree nodes of the new level. The
algorithm for BUILD-TREE-LEVEL is shown in
Figure 3.

BUILD-TREE-LEVEL algorithm builds a

new level in the tree by taking as input a classifier
and the currentLevelTreeNodes - which contains the
tree nodes that were created in the previous level.
There are three nested loops in the algorithm. The
first - outer - loop takes the next treeNode from the
currentLevelTreeNodes. In the second loop, the tree
node blocks of treeNode are taken one by one. A
newTreeNode will be created for every
treeNodeBlock in treeNode. The newTreeNode will
be added to the newLevelTreeNodes. This is needed
so that the newly created tree nodes will be

available for the next call for the algorithm. In the
third inner loop, the classification conditions of
classifier are applied - one by one - against the
items of the current treeNodeBlock. ClassifiedItems
is the set of items of the current treeNodeBlock that
satisfy the current classificationCondition. In case
the classifiedItems is not empty, a
newTreeNodeBlock is created with items field is set
to be classifiedItems, its fields are set, and is then
added to the newTreeNode. If classifiedItems is
empty, no further action is needed and the
algorithm proceeds to process the next
classification condition. The inner-most loop
terminates when all the classification conditions of
classifier are applied to the items of the
treeNodeBlock being processed. The second loop
terminates when all the treeNodeBlocks of treeNode
are processed. The outer-most loop terminates when
all the tree nodes in currentLevelTreeNodes are
processed. Finally, new tree nodes that are empty
(i.e. with zero tree node blocks) are eliminated from
newLevelTreeNodes and is then assigned to the
currentLevelTreeNodes so that it will be available
as input for the next call of BUILD-TREE-LEVEL.

To show how BUILD-TREE algorithm
works, we will apply it on the classification
example given in Figure 1. Initially, the root tree
node is created. The items of the root will be the
items of the classification problem {i1, i2, i3, i4, i5, i6,
i7, i8}. The first classifier has two classification
conditions (Table 2). Applying the first
classification condition will result in classifiedItems
= {i1, i4, i6, i8}. A new tree node block will be
created, its items field is set to be classifiedItems
and is then added to root. The same process is
repeated for the next classificationCondition. The
algorithm proceeds to process other classifiers by
calling BUILD-TREE-LEVEL for the tree nodes in
currentLevelTreeNode. In this case it contains only
the root tree node. For the second classifier, the tree
nodes in currentLevelTreeNodes will be taken one
by one. In this case, there is only one tree node
which is root. The tree node blocks within root will
be taken one by one. A new tree node will be
created as a child for every tree node block in root.
The classification conditions of the second
classifier are applied on the items of the tree node
blocks of root. This call of BUILD-TREE-LEVEL
ends when the second level of the tree is built and

 Journal of Theoretical and Applied Information Technology

30th April 2022. Vol.100. No 8
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2600

currentLevelTreeNode is updated to contain the tree
nodes of the second level of the tree (i.e. 1.* and
2.*). The third level of the tree is built by a call for
BUILD-TREE-LEVEL for the third classifier and
the tree nodes of the second level.

3.2 Update operations
3.2.1 Adding new Items
ADD-ITEMS algorithm (Figure 4) adds new items
without the need to rebuild the decision tree
allowing incremental growth. Its input is the
newItems to add. It runs a level by level where in
every level of the tree, the newItems will be added
into one or more tree node block(s) at one or more
tree node(s) in the current level. A new item may be
added to multiple tree node blocks in the same tree
node and may exist in multiple tree nodes. This
may require a creation of a new tree node block if a
corresponding tree node block does not exist.
Adding new items may require adding new child
tree nodes if a tree node block is created. A new
item may be blocked at - one or more - tree nodes
at some level if it did not satisfy any of the
classification conditions of that level. To avoid
considering all the tree nodes in the current level,
only the tree nodes to which an item in newItems
may exist are maintained in the set
newItemsTreeNodes. Initially, newItemsTreeNodes
set contains the root tree node only. The newItems
should be added to the items of the root. In every
iteration of the loop-(a) of the algorithm, the
newItemsTreeNodes is updated to be the
nextLevelTreeNodes. The nextLevelTreeNodes will
be calculated to be the tree nodes of the next level
that will have the newly added items. The
classification conditions of the current level
classifier will be applied one after another on the
newItems set (loop-(b)). All classification
conditions of the classifier need to be checked
because an item may exist in multiple tree node
blocks. The classifiedItems are the items from
newItems that satisfy the current classification
condition of the classifier of the current level. If
classifiedItems set is empty, nothing is done and the
next classification condition is considered.
Otherwise, the tree nodes of newItemsTreeNodes
are taken one by one (loop (c)). The
intersectionItems of classifiedItems and items of the
current treeNode are calculated. If the

intersectionItems set is empty, then no new items
should be inserted in the current treeNode. So, the
next classification condition should be considered.
However, treeNode is checked if empty (i.e.
contains no tree node blocks). If so, this treeNode
need to be eliminated. This is needed for tree nodes
that were created as a child tree node (i.e. with no
tree node blocks) while processing the previous
level and no tree node blocks were added to it. This
means that it continues to have no tree node blocks
and need to be eliminated. In case intersectionItems
set is not empty, then these items need to be added
to the corresponding tree node block within current
treeNode. How to add intersectionItems to treeNode
depends on whether if treeNode contains a
treeNodeBlock for the current
classificationCondition. If exists, the
intersectionItems should be added to the items of
this treeNodeBlock. The treeNodeBlock is checked
if it has a child. If it has a child tree node, then the
treeNodeBlock.childTreeNode.items is updated by
adding intersectionItems. Also
treeNodeBlock.childTreeNode is added to
nextLevelTreeNodes. In case, treeNodeBlock does
not have a child tree node, and the current classifier
is not the last level classifier, a newTreeNode is
created as a child for treeNodeBlock and its items
field is set to be the items of treeNodeBlock. This
newTreeNode is then added to the
nextLevelTreeNodes. This in case a treeNodeBlock
for the current classification condition exists in the
current treeNode. However, if such tree node block
does not exist, then a new treeNodeBlock need to be
created, setting its items to the intersectionItems
and adding it to treeNode. If the currentLevel is not
the last level, a newTreeNode need to be created as
a child for this new treeNodeBlock. The items of
this newTreeNode is set to be the items of newly
created treeNodeBlock. This new child tree node
should be added to the nextLevelTreeNodes. No
need to create such a child tree node if the current
level is the last level. Once all tree nodes of
newItemsTreeNodes are processed (loop-(c)), then
the next classification condition should be
processed. Once all the classification conditions of
the current level classifier are processed, the
algorithm proceeds to the next level classifier. This
requires updating the newItemsTreeNodes to be
nextLevelTreeNodes. This process needs to be

 Journal of Theoretical and Applied Information Technology

30th April 2022. Vol.100. No 8
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2601

repeated until either all classifiers are processed or
newItemsTreeNodes becomes empty. The
newItemsTreeNode may become empty if no tree
nodes where added to nextLevelTreeNodes at the
end of loop-(b). This may happen before processing
the last classifier.

Assume that ADD-ITEMS algorithm is
called for newItems = {i9, i10} whose attributes are
f1=7 , f2=4, f3=3 and f1=8 , f2=3, f3=4 respectively
into the tree in Figure 1. Both items i9 and i10 will
be added to the root.items and the classification
conditions of the root's classifier are applied. The
classifiedItems for the first classification condition
will be i9. The root – which is the only tree node in
newItemsTreeNodes - will be processed. The
intersectionItems of classifiedItems and root.items
will be {i9}. IntersectionItems {i9} will be added to
the items of the corresponding tree node block (1).
Also the intersectionItems will be added to the
items of the child tree node (1.*). The second
classification condition is processed next and
classifiedItems will be i10. The intersectionItems of
classifiedItems and root.items will be {i10}.
IntersectionItems {i10} will be added to the items of
the corresponding tree node block (2). Also the
intersectionItems will be added to the items of the
child tree node (2.*). The newItemsTreeNodes will
be be updated to be tree nodes (1.* and 2.*). In the
second iteration of outmost loop, the classification
conditions of the second classifiers are applied on
the items of the tree nodes of in
newItemsTreeNodes. The first classification
condition is not satisfied by i9 nor by i10 (i.e
classifiedItems is empty). The second classification
condition is satisfied by both i9 and i10 (i.e
classifiedItems is {i9

, i10}). The tree nodes of

newItemsTreeNodes (1.* and 2.*) are taken one by
one. The intersection between the newItems and
items of tree node (1.*) will be i9. So, i9 will be
added to the items of the corresponding tree node
block (1.2). Also the intersection between newItems
and items of tree node (2.*) will be i10. So, i10 will
be added to the items of the corresponding tree
node block (2.2). The intersection items are also
added to the items of child tree nodes (1.2.* and
2.2.*). The child tree nodes (1.2.* and 2.2.*) will be
added to the nextLevelTreeNodes. The third
classification condition will be applied on the
newItems. Only tree node i9 will satisfy this
condition (i.e classifiedItems is i9). The
intersectionItems of classifiedItems and items of
newItemsTreeNodes (i.e. 1.* and 2.*) will be
calculated. For tree node (1.*), intersectionItems
will be i9. However, there is no corresponding tree
node block for this classification condition in tree

node (1.*). So tree node block (1.3) will be created
and added. The items field of the new tree node
block (1.3) is set to be intersectionItems (i9). This
requires the creation of new tree node (1.3.*) as a
child of this new tree node block (1.3). Its items is
set to be items of the new tree node block (i9). This
child tree node (1.3.*) will be added to
nextLevelTreeNodes. Once all the classification
conditions of the second level are processed,
newItemsTreeNodes will be updated to be
nextLevelTreeNodes. In the third iteration of the
outmost loop, newItemsTreeNodes will include
only the tree nodes (1.2.*), (1.3.*) and (2.2.*). The
first classification condition of the last level will be
applied on the newItems. The classifiedItems will
be i9. The tree nodes of newItemsTreeNodes will be
taken one by one. For tree node (1.2.*),
intersectionItems will be i9. So, i9 will be added to
the items of tree node block (1.2.1). Next, the tree
node (1.3.*) will be considered. IntersectionItems
of classifiedItems (i9) and the items of tree node
(1.3.*) will be i9. So, a new tree node block (1.3.1)
will be created, its items will be intersectionItems
(i.e. i9). No child tree node need to be created
because the current classifier is the last classifier.
The last tree node will be considered next (2.2.*).
IntersectionItems of classifiedItems (i9) and the
items of tree node (2.2.*) will be empty. The
second classification condition of the last level will
be processed next on the tree nodes of
newItemsTreeNode. ClassifiedItems will be (i10).
IntersectionItems will be empty for tree nodes
(1.2.*) and (1.3.*). For tree node (2.2.*),
intersectionItems will be i10, and will be added to
the items of the corresponding tree node block
(2.2.2). Since all classifiers are processed, the
algorithm terminates. The tree will be as shown in
Figure 5.

3.2.2 Deleting Items

DELETE-ITEMS algorithm (Figure 6)

deletes items from every containing tree node. An
item may exist in many tree nodes in the same
level. Tree nodes of the same level that contain
itemsToDelete will be referred to as
itemToDeleteTreeNodes set. For every level, this
variable is updated. The algorithm starts with
itemsToDeleteTreeNodes containing the root. The
classification conditions of the current level
classifier are applied on itemsToDelete set
generating classifiedItems set. This is required to
identify the tree nodes blocks where the
itemsToDelete exist in the current level. If
classifiedItems is empty, we know of that none of

 Journal of Theoretical and Applied Information Technology

30th April 2022. Vol.100. No 8
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2602

the itemsToDelete exist in any of the tree node
blocks of itemToDeleteTreeNodes that correspond
to the current classificationCondition. In this case,
nothing need to be done more for the current
classifictionCondition and the next classification
condition is checked next. However, if
classifiedItems is not empty, two steps need to be
done for every treeNode in itemToDeleteTreeNodes:
(1) every item in itemsToDelete must be deleted
from treeNodeBlock of the corresponding
classificationCondition, (2) the child tree node of
treeNodeBlock – if any - should be added to the
nextLevelTreeNodes. To achieve this, the tree nodes
of itemsToDeleteTreeNodes are taken one by one.
The intersectionItems of classifiedItems and the
items of the current treeNode is calculated. If
intersectionItems is empty, then the next treeNode
of itemsToDeleteTreeNodes should be considered.
However, if not empty, intersectionItems should be
deleted from the items of the treeNodeBlock –
within treeNode - that corresponds to the current
classificationCondition. Also, the child tree node of
treeNodeBlock – if any - should be added to
nextLevelTreeNodes. If due to this deletion, the
items of treeNodeBlock becomes empty, then
treeNodeBlock should be removed from treeNode.
Once all the tree nodes of itemsToDeleteTreeNodes
where processed for the current
classificationCondition, the algorithm should
proceed to process the next classification condition.
Once, all the classification conditions of the current
classifier are processed, the algorithm proceeds to
the next classifier. Before that, the items fields of
itemsToDeleteTreeNodes should be updated by
deleting itemsToDelete and
itemsToDeleteTreeNodes is updated to be
nextLevelTreeNodes. If nextLevelTreeNodes was
empty, then no more processing is needed and the
algorithm should terminate.

To show how DELETE-ITEMS works, it
will be called for the items that were added in the
previous example {i9, i10} (Figure 5). Initially,
itemsToDeleteTreeNodes is set to be the root. The
classification conditions of the root's classifier are
applied one after another. The first classification
condition is satisfied by i9, so i9 should be deleted
from the items field of tree node block (1) and its
child tree node (i.e tree node 1.*) is added to
nextLevelTreeNodes. The second classification
condition is satisfied by i10, so i10 should be deleted
from the items of the tree node block (2) and its
child tree node (i.e. tree node 2.*) is added to
nextLevelTreeNodes. Both items, i9 and i10, are
deleted from the root.items and
itemsToDeleteTreeNodes is updated to be

nextLevelTreeNodes. When the second level is
processed, itemsToDeleteTreeNodes contains tree
nodes (1.* and 2.*). The classification conditions
are applied on itemsToDelete. None of the
itemsToDelete satisfy the first condition so we
proceed to the next classification condition. The
second classification condition is satisfied by the
both items in itemsToDelete where classifiedItems
will be {i9, i10}. This means that the tree node
blocks of the second classification condition of the
second level may contain one or more of the
itemsToDelete. The tree nodes of
itemsToDeleteTreeNodes are taken one by one.
First, tree node (1.*) is taken, the intersectionItems
between classifiedItems and the items of tree node
(1.*) will be i9. So, i9 will be deleted from the
corresponding tree node block (i.e 1.2) and its child
tree node (1.2.*) will be added to the
nextLevelTreeNodes. Second, tree node (2.*) is
taken next, the intersectionItems between
classifiedItems and the items of tree node (2.*) is
i10. So, i10 will be deleted from the corresponding
tree node block (i.e. 2.2) and its child tree node
(2.2.*) will be added to the nextLevelTreeNodes.
All tree nodes in itemsToDeleteTreeNodes were
processed for the second classification condition.
So, the third classification condition is taken.
ClassifiedItems will be i9. The tree nodes in
itemsToDeleteTreeNode are taken one by one. For
the first tree node (1.*), the intersectionItems
between classifiedItems and the items of tree node
(1.*) will be i9. So, i9 will be deleted from the
corresponding tree node block (i.e. 1.3). The tree
node block (1.3) becomes empty, so it will be
dropped from tree node (1.*). Its child tree node
will be lost as well. For the next tree node (2.*),
intersectionItems of classifiedItems and the items of
tree node (2.*) will be empty, so we proceed to the
next classification condition. After processing all
classification conditions for the current level,
itemsToDelete are deleted from the tree nodes in
the itemsToDeleteTreeNodes. The last step to be
done for the second level is to update
itemsToDeleteTreeNodes to be the
nexLevelTreeNodes which includes the tree nodes
(1.2.*) and (2.2.*). When processing the third level,
the first classification condition will be applied on
the itemsToDelete and classifiedItems will include
i9 only. We then take the tree nodes in
itemsToDeleteTreeNodes one by one. We take first
tree node (1.2.*). The intersectionItems of
classifiedItems and the items of tree node (1.2.*)
will be i9. So i9 is deleted from the corresponding
tree node block (1.2.1). We then take the next tree
node in itemsToDeleteTreeNodes which is (2.2.*).

 Journal of Theoretical and Applied Information Technology

30th April 2022. Vol.100. No 8
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2603

IntersectionItems is empty, so nothing is done.
Since all tree nodes of itemsToDeleteTreeNodes are
processed, the next classification condition should
be considered. The classifiedItems for the second
classification condition will be i10. The tree nodes
of itemsToDeleteTreeNodes are taken one by one.
Starting with tree node (1.2.*), the
intersectionItems of classifiedItems and items of
tree node (1.2.*) will be empty so the next node in
itemsToDeleteTreeNodes is processed (i.e. 2.2.*).
The intersectionSet will be i10. So, i10 will be
deleted from the corresponding tree node block
(2.2.2). Since all classification conditions are
processed for the current level, the items fields for
the itemsTreeNodeBlocks are updated by deleting
the itemsToDelete. Since nextTreeNodeBlock is
empty, so will be itemsToDeleteTreeNodes and the
algorithm terminates. The tree returns back as it
was before adding i9 and i10 (Figure 1).

3.2.3 Adding/deleting classifiers

Adding a new classifier does no more than

adding a new level to the tree. This can be done by
calling BUILD-TREE-LEVEL algorithm and
passing the new classifier and T.lastLevelTreeNodes
as input. It will not affect the upper levels of the
tree. On the other hand, deleting a classifier
requires the deletion of the corresponding level and
updating the lower levels of the tree. One approach
to delete a classifier is to delete its level and then
rebuilding the lower levels through calling BUILD-
TREE-LEVEL algorithm. This requires the re-
evaluation of the classification conditions. Even if
the evaluation of the classification conditions may
be computationally simple, it will cost a lot of time
if the number of items is large. We will present
another approach to delete a classifier without the
need to call BUILD-TREE-LEVEL algorithm. The
proposed classifier deletion algorithm is shown in
Figure 7. The classifier to delete will be referred to
as classifierToDelete. Deleting classiferToDelete is
done by raising and reconstruction of levels lower
than classifierToDelete level without the re-
evaluation of the classification conditions. The
level being processed will be referred to as
currentLevel. The algorithm processes the levels of
the tree starting from the last level up to the level
just below classifierToDelete's level. Initially,
currentLevel is set to be the tree nodes of the the
last level. If the classifierToDelete's level is the last
level, the algorithm will delete the tree nodes in the
last level and terminates. No further processing is
needed since no distortion occurred on the tree.
However, if classifierToDelete level is not the last

level of the tree, a fixing of the tree is required
starting from the last level up to classifierToDelete's
level. The main idea of fixing the tree is merging
tree node blocks in currentLevel into new tree node
blocks. This merging relies on the id field for the
tree node blocks. Before merging, the id fields need
to be fixed. This fixing is done by dropping the
numeric field of the id that corresponds to the
classifierToDelete Level. This dropping results is
raising the currenLevel one level above without
copying into an upper level. In general, the id field
of a tree node block takes the form x1.x2....xn-1.xn
where n is the rank of the level where the tree node
block exists. The id field will be fixed by dropping
the numeric field xi where i is the rank of the
classifierToDelete. After fixing their ids, these tree
node blocks need to be merged. Tree node blocks
that are mergable are those tree node blocks with
identical id numeric fields – after fixing. Merging a
set of a mergable tree node blocks will result in a
new tree node block whose items field will be the
union of the items of the merged tree node blocks.
It is possible that a tree node block may not have
any other tree node block to merge with. In this
case, it is merged by staying as is with no change.
After merging tree node blocks of the currentLevel,
these merged tree node blocks should be
encapsulated into tree nodes. The merged tree node
blocks whose id's numeric fields are identical
except for the last numeric field should be
encapsulated into the same tree node. If a merged
tree node block had no matching tree node blocks,
it will be encapsulated by itself in a separate tree
node. The last step of the loop requires fixing child-
parent links between the merged tree node blocks in
currentLevel and tree nodes in the next level. The
child of a tree node can easily be inferred from its
id. In general, the child tree node of a tree node
block with id x1.x2....xn-1.xn will be the tree node
x1.x2....xn-1.xn.* ('*' is a wild-card meaning any
value). To decide whether if a new iteration is
needed, the currentLevel is checked if it is in the
level that exists just next to classifierToDelete level.
If so, no more iterations are needed. In this case, the
algorithm replaces the tree nodes of the
classifierToDelete level with the tree nodes of
currentLevel. Child-parent links between the
previous level and currentLevel need to be fixed. If
no previous level exists (i.e. classifierToDelete is
the root's), this fix is not needed.

To show how the DELETE-CLASSIFER
algorithm works, we will apply it on the first level
classier in Figure 1. Initially, currentLevel will be
the tree nodes of the last level (i.e 1.1.*, 1.2.*,
2.1.*, 2.2.* and 2.3.*). The id fields of the tree node

 Journal of Theoretical and Applied Information Technology

30th April 2022. Vol.100. No 8
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2604

blocks are fixed by dropping the first numeric field.
The first numeric field is dropped because the
classifierToDelete level is the first level. After
fixing, the id fields for tree node blocks of
currentLevel tree nodes will be from left to right –
refer to Figure 1- as follows: (1.1), (1.2), (2.1),
(1.2), (2.1), (2.2) and (3.1). Next, tree node blocks
with identical ids will be merged. Merging will give
five tree node blocks. Tree node block (whose id is
1.1.2 before fixing and 1.2 after fixing) and the
fourth tree node block (whose id 2.1.2 before fixing
and 1.2 after fixing) are merged into tree node
block (1.2) in Figure 8. Also, tree node block
(whose id is 1.2.1 before fixing and 2.1 after fixing)
and the tree node block (whose id 2.2.1 before
fixing and 2.1 after fixing) are merged into tree
node block (2.1) in Figure 8. The other tree node
blocks are not mergable. Next, merged tree node
blocks need to be encapsulated into new tree nodes.
The merged tree node blocks with identical new id's
numeric fields except for the last field will go to the
same tree node. So, the merged tree node blocks
(1.1) and (1.2) will end in new tree node (1.*), tree
node blocks (2.1) and (2.2) will end in a new tree
node (2.*), and (3.1) will be in a separate tree node
alone. No fixing with lower tree node blocks is
needed now because currentLevel is the last level.
Since the currentLevel is not the level next to the
classifierToDelete level, another iteration is
required. The currentLevel become tree nodes of
the next upper level (i.e. the second level in Figure
1). It includes the tree nodes (1.*) and (2.*). The
id's of tree node blocks are fixed by dropping the
first numeric field from the id. The first field is
dropped because the classifier to delete is the first
level classifier. So, the id's of tree node blocks, of
the second level, from left to right will be: (1), (2),
(1), (2) and (3). The first and the third tree node
blocks will be merged into one tree node block, the
second and fourth tree node blocks will be merged
into one tree node block and the last tree node
block will stay alone without merging (Figure-8).
Next, these new tree node blocks are encapsulated
into new tree node. This is because their id are
composed of one field only. The child-parent links
between the currentLevel and the level (that was
constructed in the last iteration) are fixed. This
fixing is guided by the new ids. No more iterations
are needed since the currentLevel is the level next
to classifierToDelete level. So, the tree nodes of the
classifierToDelete level are replaced with the new
tree nodes of currentLevel tree nodes. The final tree
looks as shown in Figure 8.

3.2.3 Updating classifiers

Updating a classifier means updating its

classification conditions. One way to update a
classifier is through a couple of operations: deleting
the classifier-to-update and then adding the updated
classifier. This operation is expensive since it
requires appending a new level to the tree. Instead,
we will define a number of operations to update a
classifier without deleting then adding classifiers.
These operations include: adding, deleting and
updating a classification condition for a given input
classifier.

ADD-CLASSIFICATION-CONDITION
operation is shown in Figure 9. The classifier to
update is referred to as classiferToUpdate and the
classification condition to add as
classificationConditionToAdd. The
classifierToUpdate and the
classificationConditionToAdd are passed as inputs.
Adding classificationConditionToAdd to
classifierToUpdate may require adding a
corresponding tree node block in every tree node in
the level of the classifierToUpdate. This also may
result in the creation of a new subtrees descending
from these new tree node blocks. The tree nodes of
the level of the classifierToUpdate are taken one by
one. The current tree node is referred to as
treeNode. ClassificationConditionsToAdd is
applied on the items of the current treeNode to
generate classifiedItems. If empty, nothing need to
be done and the algorithm proceeds to process the
next treeNode. However, if not empty, a new tree
node block should be created and added to
treeNode. This is done through creating a new tree
node block, setting its items field to be the
classifedItems, adding it to the current treeNode, a
child tree node is created, its items is set to be the
classifierItems, and is added to the
nextLevelTreeNodes. Once all the tree nodes in the
classifierToUpdate level are processed, the subtrees
that descend from these new tree node blocks
should be created. This is done through calling
BUILD-TREE-LEVEL algorithm. This requires
assigning a value to the global variable
currentLevelTreeNodes that will be set initially to
the nextLevelTreeNodes. The algorithm will be
called once for every lower level until the subtrees
are completely built.

To show how this algorithm works, a new
classification condition "f3 is divisible-by-3" is to be
added to the classifier of the second level in Figure
1. Remember that a classification condition may
involve any attributes of the items. Initially,
currentLevelTreeNodes will be the tree nodes of the

 Journal of Theoretical and Applied Information Technology

30th April 2022. Vol.100. No 8
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2605

second classifier: (1.*) and (2.*). The algorithm
applies the new classification condition on the items
of tree node (1.*). Note that the classification
condition to add will only be used in the
classifierToUpdate level. Only i6 satisfies this
classification condition, so the new tree node block
(1.4) will be created and added to tree node (1.*).
Also a new child tree node (1.4.1) will be created
and then added to the nextLevelTreeNodes. The
next tree node (2.*) is then processed where the
classification condition to add will be applied on its
items. The items i2, i5 and i7 satisfy this condition.
So new tree node block (2.4) will be created and
added to the tree node (2.*). Also a new tree node
(i.e. 2.4.*) will be created as a child of the new tree
node block (i.e 2.4) and added to
nextLevelTreeNodes. At this point, the tree nodes of
the second level are all processed. Now the subtrees
that descend from tree node blocks (1.4) and (2.4)
need to build by calling BUILD-TREE-LEVEL
algorithm. The final tree is shown as Figure 10.

The DELETE-CLASSIFICATION-

CONDITION operation takes as input
classifierToUpdate,
classificationConditionToDelete (Figure 11). It
requires eliminating the corresponding tree node
block – if exists - from every tree node in the
classificationConditionToDelete level. This will
result in the elimination of all tree nodes that
descend from the deleted tree node blocks.

To show how DELETE-
CLASSIFICATION-CONDITION algorithm
works, we will apply it on the tree in Figure 1.
Assume we wish to delete the first classification
condition of the second classifier. The algorithm
starts with the tree node (1.*). It will delete the tree
node block (1.1). This result in deleting the
descending subtree from tree node block (1.1). The
same process is applied on the tree node (2.*). The
tree becomes as shown in Figure 12. Note that the
tree nodes and tree node blocks that were deleted
are kept for illustration but they actually does not
exist.

The UPDATE-CLASSIFICATION-
CONDITION algorithm is shown in Figure 13. The
classification condition to update is viewed as an
object whose condition field is changed. We will
refer to the updated classification condition – after
update - as updatedClassificationCondition.
Updating a classification condition means changing
the items fields of its tree node blocks. This
requires rebuilding the subtrees that descend from
these tree node blocks. The tree nodes are updated
level by level. Initially, currentLevelTreeNodes is

set to be the tree nodes of the level of the classifier
to update. Tree nodes in currentLevelTreeNodes are
processed one by one. The
updatedClassificationCondition is applied on the
items of the current treeNode to find
classifiedItems. If classifiedItems is not empty, the
algorithm checks whether if a corresponding tree
node block already exists for this classification
condition before update. If it does not exist, a new
tree node block needs to be created and added to the
current tree node. The fields of the corresponding
tree node, whether created or already existed, need
to be updated. Its items field is updated to be the
classifedItems set, a new child tree node is created
with its items is set to be the classifiedItems and is
added to the nextLevelTreeNodes. By this step, the
old tree nodes -if any – descending from treeNode
are eliminated. If classifiedItems was empty, the
corresponding tree node block – if exists - has to be
deleted. Once all tree nodes in
currentLevelTreeNodes are processed, the subtrees
that are rooted at these updated tree node blocks
need to be rebuilt. This is done by calling BUILD-
TREE-LEVEL operation. This requires setting the
currentLevelTreeNodes global variable to be the
tree nodes in nextLevelTreeNodes. The BUILD-
TREE-LEVEL will be called for lower level
classifiers until the subtrees for the tree node blocks
of the updated classification condition are rebuilt.

To show how this algorithm works, the

first classification condition of the second level
classifier (Figure-1) will be updated to be “f2 is less
than or equal to 3”. The algorithm will start by
updating the tree nodes in the second level. First,
the updated classification condition is applied on
the items of tree node (1.*), classifiedItems
becomes {i1, i4, i6, i8}. So the items of tree node
block (1.1) will be {i1, i4, i6, i8} and a new empty
child tree node (1.1.*) will be added to
nextLevelTreeNodes. Next, tree node (2.*) is
processed, the updated classification condition is
applied on its items and classifiedItems will be {i2,
i7}. The items of tree node block (2.1) will be set to
be {i2, i7} and a new empty child tree node is added
to nextLevelTreeNodes. Next, the subtrees rooted at
tree node blocks (1.1) and (2.1) are rebuilt by
calling BUILD-TREE-LEVEL and the tree will
look as shown in Figure 14.

3.3 Complexity Analysis

The factors that determine the space and

time complexity of the operations of this data
structure are: (a) the number of the classifiers, since

 Journal of Theoretical and Applied Information Technology

30th April 2022. Vol.100. No 8
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2606

the number of the levels of the tree equals to the
number of classifiers, (b) the number of
classification conditions per classifier and (c) the
number of items to classify k. Most of the space and
time go towards creating the tree node blocks.
Because of that, and to simplify the analysis, the
complexity analysis of the operations will be based
on the maximum number of tree node blocks that
are processed. For space complexity, upper bounds
are based on the the number of tree node blocks
that will be created by the operation. For run time
complexity, upper bounds are based on the number
of the tree node blocks that will be created/accessed
and the time that is needed to create/access these
tree node blocks.

The following metrics will be used in the analysis:

|C| is the number of the classifiers and |Ci| is the
number of the classification conditions of the i-th
classifier. NCondtions(Cv) is the total number of the
classification conditions for all classifiers starting
from level v down to the last level. For example, in
Figure 1, NCondtions(C1)=|C1|+|C2|+|C3|=2+3+2=7 and
NCondtions(C2)=|C2|+|C3|= 5. NBlocks(Cv) is the
maximum number of tree node blocks for a sub-tree
whose root is a tree node at level v. For v=1,
NBlocks(Cv)=NBlocks(C1) is an upper bound on the
number of tree node blocks that may be created for
the whole tree. This number is an upper bound and
is not an exact number. This is because tree node
blocks with no items will be deleted with all tree
node blocks that descend from them. For example
in Figure 1, the maximum number of tree node
blocks NBlocks(C1) is |C1|+|C1||C2|+|C1||C2||C3|
where|C1|=2,|C2|=3 and |C3|=2. It equals to

2+6+12= 20. NBlocks(C2) for Figure-1 is
|C2|+|C2||C3|=3+3*2=9. NNodes(Cv) is an upper
bound on the number of the tree nodes for a subtree
rooted at tree node in level v. For example, for
Figure 1, NNodes(C1) will be 1+2+23=9.
NNodes(C2)=1+3=4. NlastLevel(C) is the maximum
number of tree node blocks in the last level for a set
C. For example, in Figure 1, NlastLevel(C)=
|C1||C2||C3|=12. NNodes(C,v) is the maximum
number of tree nodes in level v. For v=1,
NNodes(C,v) equals to 1. In Figure 1,
Nnodes(C,2)=|C1|=2 and Nnodes(C,3) = |C1| |C2|
= 23= 6.

We need to explore the time that is needed to
construct a single tree node block. The steps for
building a single tree node block take constant time
except for computing the items field. Computing
the items field requires applying the classification
condition – of the tree node block - on the items of
the containing tree node. The time that is needed to
compute items field is the sum of the times that are
needed to apply this classification condition on
every single item in the items of the containing tree
node. The time that is needed to compute the items
field for a given tree node block b can be
formalized as:

Where t(b.c,itemi) is the time that is needed to
evaluate the classification condition of the tree node
block b (i.e b.c) on item itemi, where items are the
items of the tree node that contains b. Note that the
attribute values of the item may affect the time
needed to evaluate the classification conditions.
Consider for example, determining whether an
integer attribute is prime. For example, the time
that is needed to determine whether an integer
attribute value is a prime number depends on the
value of this attribute. The other factor that affects
this sum, is the size of the items set of the
containing tree node. To simplify our analysis, we
will assume that the time that is needed to apply
any classification condition on any item is less than
a fixed value tmax. Based on this assumption, the
time that is needed to compute the items field of
any tree node block will depend on the number of
the items of the containing tree node. The number

 Journal of Theoretical and Applied Information Technology

30th April 2022. Vol.100. No 8
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2607

of items of any tree node is bounded by the number
of the input items k. So, an upper bound on the time
that is needed to find the items field of a tree node
block will be k tmax

which is O(k). Since other
steps in constructing the tree node block take
constant time, we can say that the complexity of
constructing a tree node block as whole is O(k).

We will study the complexity of the
operations of this data structure based on the above
definitions and assumptions. Our approach in the
analysis can be summarized as follows: (a) it is
worst-case analysis, (b) it considers space and run
time complexities, (c) space complexity will be
measured in terms of the number of tree node
blocks to be created, (d) run time complexity will
be measured based on the number of tree node
blocks that are accessed by the operation and the
time needed to construct/change them, (e) it will
consider both cases: ill-formed and well-formed
classification.

Starting with BUILD-TREE, the space
complexity will be O(NBlocks(C1)) for both ill-
formed and well-formed complexities. For time
complexity, applying the classification condition is
required for every to-be-created tree node block on
every item in the containing tree node. We assumed
that the time to create a tree node block will be
O(k). In well-formed classification an item may
exist only in one tree node in any level. So, the
number of classification conditions that will be
applied on any item will be NConditions(C1). The run
time to construct a tree for well-formed
classification will be bound by O(Nconditions(C1).k).
However, for ill-formed classification, the same
item may have the same classification condition
applied multiple times because it may exist in
multiple tree nodes in the same level, so the run
time will be O(NBlocks(C1).k).

For ADD-ITEMS, in terms of space
complexity, in extreme cases for ill-formed
classification, an NBlocks(C1) tree node blocks may
need to be created. This is because, in extreme
worst case, added items to an empty tree may
satisfy all the classification conditions. In well-
formed classification, in worst case, |C| tree node
blocks may need to be created for one item, one
tree node block in each level of the tree. For a set of
items to add, in worst case NBlocks(C1) tree node
blocks may need to be created. In best cases, no

tree node blocks need to be created where the items
to add will join an already existing tree node
blocks. For time complexity, in case of ill-formed
classification, some of the items to add will be
inserted in every tree node block. So, the time is
bounded by NBlocks(C1). The same applies for the
well-formed classification

For DELETE-ITEMS, in terms of space
complexity, no new tree node blocks need to be
created. It may even result in deleting existing tree
node blocks, along with all its descending tree
nodes. This may happen if its items field becomes
empty due to items deletion. This applies for ill-
formed and well-formed classification. For run
time, in case of ill-formed classification, all
classification conditions need to be evaluated once
to know the rank(s) of the tree node block where
the deleted item may exist in the current level.
Knowing the rank(s) of the tree node block(s) that
contain(s) the items to delete requires evaluating
NConditions(C1) classification conditions for the items
to delete. Once the tree node block rank(s) in the
current level where items to delete may exist is
found, in worst case, all the tree nodes in the
current level need to be updated. This means that
we need to update O(NNodes(C1)) tree node blocks.
So the time will be O(Nconditions(C1))+O(NNodes(C1))
to evaluate classification conditions and to update
tree node blocks. The same analysis applies for
well-formed classification.

For ADD-CLASSIFIER operation, in terms of
space complexity, it may result in the creation of a
number of tree node blocks that is equal to the
number of the tree node blocks in the last level,
multiplied by the number of the classification
conditions of the newly added classifier
(CnewClassifier). In the worst case, the maximum
number of tree node blocks that will be created will
be O(NlastLevel(C)|CnewClassifier|). This is for both: ill-
formed and well-formed classification. For run
time, in worst case and for both ill-formed and
well-formed classification, every classification
condition of the new classifier need to be applied
on every item in the tree node blocks of the last
level. For ill-formed classification, in extreme
worst case, all the items will exist in every tree
node block of the last level. The classification
condition evaluation will be repeated for all the
items for every tree node block. So, the time to

 Journal of Theoretical and Applied Information Technology

30th April 2022. Vol.100. No 8
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2608

apply the classification conditions will be
O(NlastLevel(C1)|CnewClassifier|k). Time is also
needed to construct the new tree node blocks. The
number of tree node blocks to be created will be
O(NlastLevel(C)|CnewClassifier|). So the total time will
be O(NlastLevel (C) |CnewClassifier|k)
+O(NlastLevel(C) |CnewClassifier|) which will be
O(NlastLevel(C) |CnewClassifier|k). For well-formed
classification, all items should be tested against the
new classification conditions. However, an item
appears only once in the last level. So applying
classification conditions will cost
O(|CnewClassifier|k). Also, time is needed to build
new tree node blocks which will be
O(NlastLevel(C)|CnewClassifier|). So the total time will
be O(|CnewClassifier|k) + O(NlastLevel(C1)
|CnewClassifier|)

DELETE-CLASSIFIER requires replacing the
tree node blocks, in the levels lower than the level
of the classifier to delete, with new tree node blocks
that are built by merging. So, no significant space
overhead is required. For time complexity, the
newly created tree nodes do not require re-applying
of the classification conditions. However, there is a
computational overhead that is required to merge
and encapsulate the tree node blocks. A smart
implementation will significantly reduce the cost of
merging tree nodes to be less than the time needed
to evaluate classification conditions, especially for
large k. The number of tree node blocks that will be
accessed and updated will be bounded by the
number of tree node blocks that exist in lower
levels of the classifier to delete. So, the time will be
bounded by O(NBlocks(Ci+1)) where i is the level of
the classifier to delete. This applies for ill-formed
and well-formed classification.

In worst case, ADD-CLASSIFICATION-
CONDITION will create a new tree node block in
every tree node in the level to update. Each new
tree node block may result in the creation of a
whole new subtree in the lower levels of the tree.
The maximum number of the tree node blocks to be
created for every new subtree will be O(NBlocks(Ci))
where i is the level of the classifier to update. The
number of subtrees that will be added will be equal
to the number of tree nodes in the level of the
classifier to update NNodes(C,i). So the number of
tree nodes to be created is bounded by
O(NNodes(C,i)NBlocks(Ci)) where i is the level of

the classifier to update. For run time, the newly
added classification condition needs to be evaluated
for the items of every tree node in the level of the
classifier to update. It also requires applying the
classification conditions for the lower level
classifiers for the newly created tree nodes due to
the new classification condition addition. In the
worst case, for ill-formed classification, the new
classification condition need to be evaluated for the
items of all tree nodes of the level of the classifier
to update. This will require O(NNodes(C,i)k) time.
It will also require creation of NNodes(C,i) tree node
blocks in the level i. So the total time to update
level i will cost O(NNodes(C,i)k) + O(NNodes(C,i)) =
O(NNodes(C,i)k). Also a whole subtree should be
created as a child of each new tree node block that
was added in level i. Every subtree will need
evaluation of all the classification conditions of
lower levels and creation for new tree node blocks.
This will cost O(NBlocks(Ci+1)k) for one subtree. We
have a maximum NNodes(C,i) subtrees. So time will
be O(NNodes(C,i)NBlocks(Ci+1)k). The total time to
fix the level i and to build the lower subtrees will
be: O(NNodes(C,i)k) + O(NNodes(C,i)
NBlocks(Ci+1)k) = O(NNodes(C,i)
NBlocks(Ci+1)k). This is for ill-formed. We will
not consider well-formed classification here
because it does not apply here according to our
well-formed classification definition. That is, all the
items are already mapped to the existing tree node
blocks and no items will map to the new tree node
blocks.

DELETE-CLASSIFICATION-CONDITION
will result in deletion of all the tree node blocks of
the classification condition to delete. This will also
result in the deletion of all tree nodes descend from
the deleted tree node blocks. So, there is no space
complexity overhead. For run time, no time is
needed to apply classification conditions. However,
the algorithm needs to locate tree node blocks to be
deleted that spread over many tree nodes in the
same level. In the worst case, the number of tree
nodes to be deleted NNodes(C,i) where i is the level
of the classifier to update.

For space complexity, UPDATE-
CLASSIFICATION-CONDITION, it may
create/reconstruct up to O(NNodes(C,i)) subtrees
where i is the level of the classifier to update. These
subtrees are rooted at the corresponding tree node
blocks of the classification condition to update in

 Journal of Theoretical and Applied Information Technology

30th April 2022. Vol.100. No 8
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2609

the level i. Every subtree may contain up to
NBlocks(Ci+1) tree node blocks. So the maximum
number of tree node blocks to be created is
bounded by O(NNodes(C,i) NBlocks(Ci+1)) tree node
blocks. For run time complexity, the updated
classification condition should be applied on the
items of all the tree nodes of the level of the
classifier to update. For ill-formed classification, it
costs O(NNodes(C,i)k). A reconstruction of all
descending lower tree node blocks is required. The
number of these tree node blocks O(NNodes(C,i)
NBlocks(Ci+1)). A tree node block construction
requires O(k) time to evaluate the classification
conditions of the lower level classifiers. So the time
to evaluate the classification conditions will be
O(NNodes(C,i) NBlocks(Ci+1)k). Time to reconstruct
the tree node blocks will be O(NNodes(C,i)
NBlocks(Ci)), so the total time to create/reconstruct
tree node blocks will be O(NNodes(C,i)
NBlocks(Ci+1)k)+O(NNodes(C,i) NBlocks(Ci+1)k)
which will be O(NNodes(C,i) NBlocks(Ci+1)k). For
well-formed classification, an item exists in one
tree node block in each level. The classification
conditions are applied only once on every item. So,
the time to evaluate classification conditions will be
O(NConditions(Ci+1).k). The time needed to build tree
nodes is O(NNodes(C,i) NBlocks(Ci+1)). So, the total
time will be O(NConditions(Ci+1).k) + O(NNodes(C,i)
NBlocks(Ci+1)).

4. APPLICATION

To implement this data structure, we will give
one application where this data structure could be
useful. Given a text message M=<w1 w2

…

wn>

that is composed of n words. Given a number of
narrators N= {n1,n2,..nk} that narrated the same
message M. Some of the words of M are narrated
differently by different narrators. For example, the
word wi may have been narrated by n1, n2 as wi

(1)
and by n1, n3 as wi

(2). The same narrator may have
multiple narrations for the same word. The question
is: Can we classify the narrators according to the
different ways the message M can be read – as a
whole - according to their narrations?

In this application, the number of classifiers
will be the number of words with multiple
narrations. One classification condition of a word
classifier is defined for every narration for that
word. For example, given that the word wi was
narrated in three different ways wi

(1), wi
(2), wi

(3) ,
then this word classifier can be defined by three
conditions. One of the three classification

conditions of this classifier is: did narrator x narrate
wi as wi

(1)?
As an example, let M=<w1 w2 w3 w4 w5 w6 w7

> be a message that is narrated by the narrators N =
{n1, n2, n3, n4, n5}. Table 5 shows the different
narrations for each word of M. The first column
shows the words of the message. The second
column, shows the different narrations for the
corresponding word. Some of the words are
narrated exactly the same for all narrators (w1 for
example). The third column shows the narrators for
every narration. The fourth column shows the
classification conditions.

This problem can be solved by building the
decision tree through calling BUILD-TREE. The
set of narrators will be passed as items. The
classifiers are composed of a classifier for every
word with multiple narrations and a classification
condition for every narration for that word. The tree
for this example is shown in Figure 16. Note that
the tree is composed of three levels because we
have three classifiers: for the words w3, w5 and w7.
The narrators are classified into six classes. The
classification results are shown in Table 6.

5. DISCUSSION

In this paper, a data structure level
implementation of decision tree for classification
purposes – is proposed. We used the known
problem solving technique that is called data
structure augmentation. One contribution of this
research is that it presented a new augmented data
structure that can be used to do classification. To
the best of our knowledge, we could not find a
work that explicitly define such data structure. A lot
of work exists in literature where a decision tree is
used to do classification through machine learning
algorithms; where the classes are implicitly learned
from the input data. Although our work required the
user to explicitly define the classification
conditions, it has the advantage of being generic in
that it can work on any data set given the items with
well-defined attributes and a set of classifiers that
are based on these attributes.

Considering ill-formed classification was an
essential requirement when designing this data
structure. It may seem unrealistic, too-loose, or
even useless, to have a classified item ending in
zero or in multiple final classes. However, we
found that this requirement deserved the effort for

 Journal of Theoretical and Applied Information Technology

30th April 2022. Vol.100. No 8
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2610

many reasons: (1) it is the more generic case.
Allowing ill-formed classification implicitly
included well-formed classifications, (2) some
classification problems are ill-formed in nature. The
application given in this paper is one example, (3)
starting with a rough ill-formed classification
problem could be iteratively tuned towards a
desired well-formed classification using the
proposed update operations, (4) choosing to allow
ill-formed classification complicated the update
operations of the proposed data structure. These
operations would have been much simpler and
straightforward if a well-formed classification is
assumed.

One advantage of our work is that it bridged a
large gap towards the implementation of decision
tree for classification. The defined augmented data
and operations makes translating this data structure
towards a running program straightforward for
programmers. Moreover, this data structure can be
the basis for an interactive GUI software tool that
gives the user the flexibility to design the tree for a
specific classification problem that is not yet
completely defined. It allows interactive
incremental definition, tuning and validation of the
tree until it is completely built.

The operations that were presented in this
paper are the basic operations. However, there are
many more useful operations that may be defined
for this data structure to allow wider and more
precise manipulation of the decision tree. Examples
of such update operations include re-ordering of
classifiers, re-ordering of classification conditions
and updating the attribute values of the items. More
querying operations may be defined like generating
detailed statistics regarding the blocked items,
overlapping classes and about the final
classification.

REFERENCES

[1] Quinlan, J. Simplifying decision trees.

International Journal of Man-Machine Studies,

vol.27, no.3, pp.221-234, 1987.

[2] Agrawal, R.; Mehta, M.; Shaafer, J. SPRINT: A

scalable Parallel Classifier for Data mining,

Proc. of 22nd Int Conference on Very Large

Datasets, Bombay, India, pp. 544-555, 1996.

[3] Su, J., Zhang, H. A fast decision tree learning

algorithm, Proceedings of AAAI conference on

Artificial Intelligence, Boston, Massachusetts,

pp. 500-505, 2006.

[4] Stuharik, J., Implementing Decision Trees in

Hardware, Proceedings of IEEE 9th

International Symposium on Intelligent

Systems and Informatics, pp. 41-46., Subotica,

Siberia, 2011.

[5] Chauhan, H., Chauhan, A. Implementation of

Decision Tree Algorithm c4.5, International

Journal of Scientific and Research

Publications, vol.3, no.10, 2013.

[6] Ankerst, M.; Elsen, C.; Ester M.; Kriegel, H.

Visual Classification: An interactive Approach

to Decision Tree Construction, Proceedings of

International conference on knowledge

discovery and data mining, San Diego,

California, 1999.

[7] W. Peng, W.; Chen J.; Zhou, M. An

Implementation of ID3 Decision Tree Learning

Algorithm. From

rhuang.cis.k.hosei.ac.jp/Miccl/AI-2/L10-

src/DecisionTree2.pdf (accessed on

16/10/2019).

[8] Brass, P. Advanced Data Structures, Cambridge

University Press, New York, 2008.

[9] Cormen, T.; Leisorson, C.; Rivest R.; Stein, C.

Introduction to Algorithms, 3rd Edition, MIT

Press, 2009.

 Journal of Theoretical and Applied Information Technology

30th April 2022. Vol.100. No 8
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2611

Figure 1: Decision Tree Example

Table 3: The data structure basic types.

Structure fields type description

Tree

root TreeNode The root of the decision tree
classifiers list of classifiers The classification rules

items Items The items to classify
lastLevelTreeNodes set of TreeNodes tree nodes of the last level

TreeNode

treeNodeBlocks list of TreeNodeBlocks Tree node blocks of the tree node
parentTreeNodeBlock TreeNodeBlock The parent tree node block

classifier Classifier The classifier of treeNode's level
 items Items The items of the tree node

TreeNodeBlock

id String Identification string

items Items

The items - of the containing tree node

- that satisfy this tree node block's

classification condition

treeNode TreeNode The containing tree node

childTreeNode TreeNode The child tree node

classificationCondition
Classification-

Condition

The classification condition of this tree

node block

Table 4: Classifier basic types

Structure field type description

classifier

classificationConditions
list of classification-

Conditions

The classification conditions of the

classifier

treeNodes set of TreeNodes
The tree nodes of the level where the

classifier is applied

 rank integer
the level of the tree where the

classifier is applied

ClassificationCondition

rank integer Rank within classifier

condition Condition
A boolean condition that is applied on

the attributes of the items

className String
A label that identifies the class defined

by condition

 Journal of Theoretical and Applied Information Technology

30th April 2022. Vol.100. No 8
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2612

Figure 2: BUILD-TREE Operation

 Journal of Theoretical and Applied Information Technology

30th April 2022. Vol.100. No 8
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2613

Figure 3: BUILD-TREE-LEVEL operation

 Journal of Theoretical and Applied Information Technology

30th April 2022. Vol.100. No 8
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2614

Figure 4: ADD-ITEMS operation

 Journal of Theoretical and Applied Information Technology

30th April 2022. Vol.100. No 8
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2615

Figure 5: Decision tree after calling ADD-ITEM(i9)

 Journal of Theoretical and Applied Information Technology

30th April 2022. Vol.100. No 8
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2616

 Figure 6: DELETE-ITEMS operation

 Journal of Theoretical and Applied Information Technology

30th April 2022. Vol.100. No 8
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2617

Figure 7: DELETE-CLASSIFIER operation

Figure 8: DELETE-CLASSIFIER example

 Journal of Theoretical and Applied Information Technology

30th April 2022. Vol.100. No 8
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2618

Figure 9: ADD-CLSSIFICATION-CONDITION example

Figure 10: Figure 1 after adding "f3 is divisible by 3" condition to the second level classifier

 Journal of Theoretical and Applied Information Technology

30th April 2022. Vol.100. No 8
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2619

Figure 11: DELETE-CLASSIFICATION-CONDITION operation

Figure 12: Figure 1 after deleting the first classification condition of the second classifier.

 Journal of Theoretical and Applied Information Technology

30th April 2022. Vol.100. No 8
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2620

Figure 13: UPDATE-CLASSIFICATION-CONDITION operation

Figure 14: Figure 1 after updating the first classification condition of the second classifier.

 Journal of Theoretical and Applied Information Technology

30th April 2022. Vol.100. No 8
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2621

Table 5: The different narrations for the message M.

Words Narrations Narrators Condition

w1 w1 All narrators -
w2 w2 All narrators -

w3
w3

(1) All narrators w3=w3
(1)

w3
(2) n1 w3=w3

(2)
w4 w4 All narrators -
w5 w5

(1) n2 w5=w5
(1)

 w5
(2) n3,n4 w5=w5

(2)
 w5

(3) n1,n3,n4,n5 w5=w5
(3)

w6 w6 All narrators -

w7
w7

(1) n1,n2,n3,n5 w7=w7
(1)

w7
(2) n4 w7=w7

(2)

Figure 15: Decision Tree for narrators and narrations classification

Table 6: Classification results

Classes Narration
{n2} <w1 w2 w3

(1) w4 w5
(1) w6 w7

(1) >

{n3} <w1 w2 w3
(1) w4 w5

(2) w6 w7
(1) >

{n4} <w1 w2 w3
(1) w4 w5

(2) w6 w7
(2) >

{n1, n3, n5} <w1 w2 w3
(1) w4 w5

(3) w6 w7
(1) >

{n4} <w1 w2 w3
(1) w4 w5

(3) w6 w7
(2) >

{n1} <w1 w2 w3
(2) w4 w5

(3) w6 w7
(1) >

