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ABSTRACT 

 

Spectral unmixing is an important phase in interpreting hyperspectral images to estimate the endmembers  

and their corresponding fractional abundances from the mixed pixels. Sparse unmixing approach is one 

among the promising spectral unmixing methods; however, noises impair hyperspectral images, indicating 

that the sparse unmixing model's performance getting degraded. This study uses a multi-objective lion 

optimization technique for spectral unmixing from hyperspectral satellite images to extract fractional 

abundances of valid endmembers from mixed pixels.  To estimate the fractional abundances of each 

endmember, the proposed approach defines a multi-objective function which includes Euclidean and 

Frobenius norms and optimization variables that are associated with the abundance  and mixing matrices. 

Based on the lion’s social behaviors, the optimization function uses   pride generation  for finding solutions, 

mating for generating new solutions, territorial takeover and territorial defense to identify and remove 

worse solution by introducing a new optimum solution. The major objectives used in the objective 

functions are  Spatial Neighbor, Sparsity, and Reconstruction Error. The proposed technique's performance 

is evaluated using Urban and Cuprite datasets with 06 and 12 endmembers respectively. In the 

investigations, the proposed methodology outperformed the Bilinear and Trilinear Multi-Objective Spectral 

Unmixing, Robust Collaborative Nonnegative Matrix Factorization, Pareto-Multi-Objective Spectral 

Unmixing, and Rider Optimization methods in estimating the enhanced endmembers and their 

corresponding fractional abundances with lower reconstruction error and root mean square error values of 

119.11 and 0.0904, respectively. 

Keywords: Spectral Unmixing, Hyperspectral Images, Multi-Objective Optimization, Endmembers 

 

1. INTRODUCTION  

 

Hyperspectral imaging [1] is a remote sensing 

technique that collects multi-dimensional data cubes 

made up of two-dimensional spatial images 

acquired in many contiguous spectral bands. 

Agricultural monitoring, terrain classification, 

military surveillance, and environmental monitoring 

are just a few of the applications for hyperspectral 

imaging. Imaging spectroscopy is another name for 

hyperspectral imaging. It generates images by 

combining numerous narrow-band spectral bands 

with a few nanometer resolution. The spectral band 

uses visible and near-infrared wavelengths up to 2.5 

micro meters. Because hyperspectral sensors can 

distinguish visually similar surface resources, each 

substance has its own reflectance spectrum [2]. 

Hyperspectral imaging is a type of imaging that 

analyses and collects data from the electromagnetic 

spectrum. Hyperspectral photos contain high-

resolution spectral information for earth observation 

and geoinformation science. Furthermore, mixed 

pixels arise in hyperspectral data due to lower 

spatial resolution, microscopic particles, and 

different scattering [3]. Because the sensor utilised 

has a lower spatial resolution, each pixel of the 

recorded spectra contains more than one spectral 

signature when the hyperspectral picture lies over 

solid surfaces [4]. Spectral Unmixing (SU) have 

received a lot of attention in the signal processing 

and imaging literature during the last few decades 

[5].  The technique of Spectral Unmixing (SU) is 

used to solve common hyperspectral imaging 
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problems. Among the challenges are material 

quantification, sub-pixel detection, and pixel 

categorization. SU entails dissecting a pixel 

spectrum into material spectra, known as 

endmembers, and determining the abundances or 

fractions of the endmembers [6]. SU comprises 

macroscopic materials in a picture, which are 

quantified in image pixels. The sum of component 

spectra is used by the majority of SU approaches to 

calculate pixel reflectance [7,8]. In SU, the pixel 

spectrum is blended with pure component spectra, 

and a percentage is utilised to represent the 

proportion of each endmember in a pixel. 

Depending on the hyperspectral image, the spectral 

unmixing picture is related to a nonlinear or linear 

mixture model [9].  In spectral unmixing research, 

the Linear Mixture Model (LMM) has been widely 

used [10,11]. Many typical algorithms for finding 

endmember signatures for spectral unmixing 

purposes have been created using this concept, 

including the N-finder algorithm [11,12], iterative 

error analysis, Vertex Component Analysis (VCA) 

[11,13], and pixel purity index [11,14]. Canonical 

Correlation Analysis is used in [15,16] to emphasise 

the multiple-change information utilising an 

unsupervised Multivariate Alteration Detection 

(MAD) approach (CCA). 

The major goal of this study is to design and 

build a method for using hyperspectral satellite 

images in the SU. To determine fractional 

abundance of each endmember, LA is used in 

conjunction with a linear sparse unmixing model. 

To maximise the reconstruction term in the 

objective function, LA uses numerous objectives, 

including the sparsity term and the total variation 

regularisation term. The paper's main contribution is 

the use of LA for optimal end-member estimation. 

The fractional abundance of the endmember is 

optimally determined using the LA to increase 

global convergence and ensure local optimal 

avoidance, consequently improving the multi-

objective functions of the proposed technique, such 

as SNI, SPA, and RE. This research paper is 

organised as follows: Section 1 contains an 

overview of the paper. The literature study is 

presented in part 2, and the approach for spectral 

unmixing utilising the LA is presented in section 3. 

The proposed method's findings and comments are 

depicted in Section 4, and the conclusion is 

presented in Section 5. 

2. REVIEW OF LITERATURE 

For handling sparse unmixing challenges, 

Xia Xu and Zhenwei Shi [17] created the Multi-

objective Optimization based Sparse Unmixing 

(MOSU) algorithm. Sparse unmixing is transformed 

into a bi-objective issue via MOSU. The 

endmember sparsity and reconstruction error are the 

goals. Sparse unmixing is handled straight here, 

with no relaxing. For resolving subset selection 

difficulties, the devised unmixing strategy is aided 

by Pareto optimization (POSS). Then, in order to 

improve computing efficiency, POSS is extended to 

a population-based technique. More strategies for 

solving the sparse unmixing problem were not 

included in the method. For nonlinear spectral 

unmixing, Wenfei Luo et al. [11] devised bilinear 

spectral unmixing based on Particle Swarm 

Optimization (PSO) of hyperspectral pictures. For 

resolving challenges in the minimization technique 

for SU, a multi-objective optimization approach is 

presented; hence, constraints owing to penalty 

factors are eliminated. A number of complicated 

non-linear models and estimating parameters were 

required for the procedure. For the limiting 

complexity of linear SU approaches, Simon Henrot 

et al. [18] devised LMM using multi-temporal 

hyperspectral pictures. An efficient SU technique 

for reconstructing abundance maps and source 

spectra is devised using this model. On genuine 

multi-temporal hyperspectral images, the approach's 

performance is proved. The Multitemporal Spectral 

Unmixing (MSU) technique was presented by 

Sicong Liu et al. [16] to evaluate various change 

detection concerns in bit temporal HS pictures. The 

Change Detection (CD) problem is investigated in 

the multi temporal domain, using a bit temporal 

model to assess the spectral composition of a pixel. 

The automatic and unsupervised approach is used to 

extract Multi-temporal Endmembers (MT-EMs). 

The change analysis technique is then modelled in 

order to distinguish between change and no-change 

MT-EMs. Finally, the change detection problem is 

answered by looking at the different classes and 

how they contribute to each pixel.  The major 

challenges are emphasized and listed below. 

2.1 Challenges 

Biswarm Particle Swarm Optimization 

(BiPSO) [11] is a technique for reducing the 

number of particles in a swarm. For nonlinear 
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spectral unmixing, bilinear unmixing is used. This 

method can simply be transformed into a global 

search algorithm using Multistart and Random PSO. 

In actual applications, however, the process of 

converting to a global optimization technique is 

time-consuming. There's also a need to think about 

global search strategies and mathematical 

verification. Because of the poor spatial resolution 

of the mixes and sensors obtained at different 

scales, the multi-objective cooperative 

convolutionary approach [19] confronts a 

substantial issue in recognising the endmember 

signatures. The present sparse unmixing has the 

disadvantage that the current spectral signature in 

the scene must be the same as its corresponding 

sample in the spectral library, which is an 

unrealistic assumption in the real world, resulting in 

detrimental effects [6]. Iterative Reweighted 

Multivariate Alteration Detection (IR-MAD) was 

introduced in [20], and it necessitates a strong 

involvement with the end users to pick the most 

informative components that represent the precise 

alterations of interest, which is always time 

demanding. As a result, using it to detect all 

possible change classes is difficult, especially when 

the overall number of changes is large. To handle 

sparse unmixing problems, the Multi-objective 

Optimization based Sparse Unmixing method 

(MOSU) was introduced in [17]. The sparse 

unmixing task is difficult because it is transformed 

into an NP-hard norm based on an optimization 

problem. To identify the original norm, the method 

commonly employs a relaxation. As a result, more 

computation error and sensitive weighted 

parameters may result from the relaxation.  

The multi-fidelity evolutionary 

multitasking optimization (MFEMO) framework is 

proposed to resolve the challenges in endmember 

extraction from the influence of outliers and 

expensive computation respectively. However, 

MFEMO includes inevitable negative transfer 

between tasks during endmember extraction which 

deteriorate the accuracy of endmember estimation 

[26]. To solve large-scale sparse unmixing 

challenges, an evolutionary multi-objective 

hyperspectral sparse unmixing algorithm with 

endmember priori method (EMSU-EP) is deviced. 

However this method has challenges in controlling 

the noise in the large scale sparse unmixing 

problems [27]. A  multiobjective-based 

simultaneous sparse unmixing framework (PMoSU) 

where reconstruction error, sparsity error, and the 

pruning projection function are considered as three 

parallel objectives for spectral unmixing,  which 

works under high-noise conditions. In the context of 

discrete range of sparse unmixing may lead to 

weakly Pareto optimal solutions [28]. 

3. PROPOSED METHODOLOGY 

The spectra of a mixed pixel is measured 

using SU, which is divided into several constituent 

spectra and a set of corresponding abundances or 

fractions to show the proportion of each endmember 

in the pixel. In spectral unmixing, there are three 

major steps. The endmembers are initially 

computed from a image. Following that, the spectral 

signatures are recognised, and the fractional 

abundance of each endmember connected to a 

single pixel is computed. Although all prior works 

followed these processes, there are inaccuracies and 

propagation problems in the current works when 

computing the endmember. The endmember and the 

fraction of the signature are initially approximated 

using LA [21]. The computation of fractional 

abundance is constrained using a multi-objective 

function based on RSE, SPA, and SNI to increase 

estimation accuracy. Figure 1 shows a schematic 

illustration of the suggested spectral unmixing 

model.  

In matrix form, the hyperspectral image is 

represented as,  

 

� = ��1,...,mj� ∈ 	
×�M = �m�,..., m�� ∈ Q�×�    (1) 

where�denotes the total spectra vectors, and � 

denotes the spectral bands in the hyperspectral 

image. The input image is expressed using the 

Linear Mixture Model (LMM) as, 

 � = Yk + �such that� ≥ 01��� = 1��         (2) 

 

where, the mixing matrix is denoted as, � = ���,..., � ,..., ��! ∈ 	
×�with rr endmembers, � indicates the #thlthsignature of the endmember and 

the noise that affects the measuring process is JJ. 
The abundance matrix is represented as�k, which in 

matrix form is expressed as,  

   � = ()�,..., ) ,..., )�* ∈ 	�×�       (3)  

 

The abundance matrix contains fractions of the 

endmembers and  x,x, be the  lthlthfraction of 

endmember in such a way that the pixel ll varies 

between 1 and jj. The endmembers component-wise 

enables the best understanding of the abundance 

non-negativity constraint, which is represented as k ≥ 0k ≥ 0. On the other hand, 1/0k = 1�01/1k = 1�1 

implies the sum-to-one constraint of the abundance 

vector for physical interpretation, and 1� = 1/ =
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�1,1,..., 1!0specifies column vector of dimension rr. 

The transpose of the vector elements is denoted as � !2. Assume that out of the rr endmembers, ss 

endmembers are calculated using total endmembers 

and estimated endmembers. When rr and 4 are 

similar, ideal situation arise, while 4 < 6s < r 

shows the underestimated state of the endmembers. 

The second condition identifies more number of 

endmembers. The computation of rr, YY, and kk is 

performed using optimization algorithm based on 

multi-objective function. 

 

Figure 1. Conceptual flow diagram of Multi-

Objective Sparse Unmixing using Lion Optimization 

3.1 Generation of  Multi-Objective Function 

The objective function estimates the 

endmembers and their abundance factor using SNI, 

SPA and RSE respectively. The following formula 

is used to model the objective function, 

min8,9 :�
; ‖� − UV‖>?+∈ ‖@‖;,� + A

; ‖B −
C‖>?D minE,F :�

; ‖M-UV‖HI + ε‖V‖;,� + L
; ‖U-K‖HI D 

such  that V ∈ Ω1-�U ∈ F1-�@ ∈ Q�R�B ∈S�R� 

(4) 

 

where, ‖ ‖;‖ ‖;and ‖ ‖H‖ ‖Hsignifies the 

Euclidean and Frobenius norms, respectively. U ≡�h�,..., h1! ∈ Q�×1U ≡ �h�,..., h1! ∈ Q�×1  and           @ ∈ 	�×�V ∈ Q1×�indicates the optimization 

variables that are connected with the abundance 

matrix and mixing matrix. Data fidelity ‖M-UV‖HI‖M-UV‖HIthat promote solution with low 

reconstruction errors and 
A
; ‖B −

C‖>? L
; ‖U-K‖HIdrags the column in Btowards the 

solutionKK, that along with the matrix VVpulls the 

endmembers to the extreme that, is described by 

dataMM.‖V‖;,�‖V‖;,� enables the row sparsity for 

the matrix VV through setting the complex rows at 

zero. The SPA is given as,  

 ‖V‖;,� = ∑ ‖a‖;1WX� ‖V‖;,� = ∑ ‖α‖;1WX�      (5) 

 

Equation (5) specifies the mixed norm belongs to 

matrix VV. The SNI is formulated as  

 

SNI = A
; ‖B − �‖>?SNI = L

; ‖U-K‖HI              (6) 

 

where, K = (mWZ ,..., mW[*K = ⌊mWZ ,..., mW[⌋ indicates 

the set of ssspectral vectors. The constants, ηη and εεare the regularization parameters. Ω1-�Ω1-� be the 

total dimension matrix of _s × j`_s × j`, and the 

columns are of size _s-1`_s-1`. Similarly, F1-�F_1-�`are the matrix collections with size _u × s`_u × s`. The objective function solves the 

issues associated with the violation of the sum-to-

one constraints that is generally available in real 

data.  

3.2 Estimation of Fractional Abundances for 

Each Endmember 

 The Lion Optimization Algorithm [21] is 

discussed in this section for calculating the 

fractional abundance of the endmember. The LA 

looks for the best solution based on lion behaviour 

like territorial takeover and territorial defence. The 

territorial defence is carried out by nomadic and 

resident males, whereas the territorial conquest is 

carried out by new and old territorial males. Pride 

formation, mating, territorial defence, and territorial 

takeover are all processes in the Lion Optimization 

Algorithm. Pride generation is used to find 

solutions, while mating is used to find new ones, 

and territorial takeover is used to find and replace 

the worst solution with a better one. The phases of 

the Lion Optimization Algorithm are depicted in the 

diagram below. 

3.2.1 Pride generation  

 First, Pride generation is defined as 

�maleYmale, YfemaleYfemale, YnomadYnomad of which, 

�maleYmaleand�femaleYfemalecreate pride. The vector 

elements of �maleYmale, �femaleYfemale and 

Ynomad�nomad  i.e, �maley male_t`, �femaley female_t`, 

and �nomady nomad  are arbitrary integers in the 

maximum and  minimum limits, where d =
1,2,..., ft = 1,2,..., T. Here, findicates the total 

number of fractional abundance of endmembers to 

be optimized. 

 

3.2.2 Evaluation of objective function  

Male, female, and nomad lions' fitness is 

determined using equation (4) and they are 

represented as Sh�maleiFhYmalei, 

Sh�femaleiFhY femelei, and Sh�nomadiFhYnomadi.  

For the following steps, consider  Sref =
Sh�maleiFref = FhY maleiand Rk = 0, where 
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RkR�indicates the generation counter that is utilized 

for testing the termination condition. 

 

3.2.3 Evaluation of fertility 

The productiveness of the territorial 

lioness and lion is determined by this mechanism. 

In addition, the fertility evaluation method is used 

to create an updated female lion, termed 

as   �femalelYfemalel.  

�femalelX:mnfemaleo;ifpqrYfemalel:stfemaleo;iftqu
            (7)            

where, vdenotes the random integer. 

�wfemalelyxfemaleland �yfemalelyzfemalel are the qthqth, 

and |thelements ofYfemalelYfemalel. 

�yfemalel=min}�ymax,maxh�ymin, ~yi� 
yz

femalelmin⌊stmax,maxhstmin ,∇ti⌋
 

(8) 

~| = ��yfemale + _0.16; − �.�5`
h�ymale − 61�yfemalei � 

 ∇z= ⌊yzfemale +
_0.1r;-0.05`hyzmale-r�yzfemalei 

(9) 

where, the female update is represented as∇~ , and 

the random integers are denoted as r�6�r;and 6;. 

 

3.2.4 Mating 

In this procedure, the new best solution is 

derived from the old solutions. There are two main 

steps in this phase: mutation and crossover. Four 

cubs, �cubsare produced from the crossover phase, 

and each cub is generated using a uniformly 

distributed random crossover probability �� . 

        �cubs_|` = �y∘ �male + �y∘�female        

        Ycubs_p` = Dz°Ymale + Dz°Yfemale       (10)                                         

where, DDdenotes the crossover mask, and DDbe 

the one's complement of�. YcubsYcubsare given to 

the mutation in an uniform manner with the 

probability rate ��. From the mutation phase, new 

cubs are generated. The next step is gender 

clustering, where the male cub  �mcubYmcub and 

female cub �fcubYfcub are extracted from the cub 

pool using primary and secondary best fitness. Once 

the male cub and female cub are chosen, their ages, 

denoted as�cub,Bcub are fixed to zero. 

 

3.2.5 Cub growth  function 

In Cub Growth phase, �mcubYmcuband 

�fcubYfcubare fed to uniform mutation with the rate 

ofU/U/. At every update, if the mutated cub is better 

than the old cub, and the ages of �cubBcub of new 

cubs are increased by one, when the mutated cub 

replaces the old cub.  

 

3.2.6 Territorial defense 

 One of the first lion operators is territorial 

defence, which is used to analyse the search space 

in a broader sense. The territorial defence is divided 

into three sections: pride, survival, and Nomad 

coalition updates. It is performed using subsequent 

�nomad. The winning nomad is selected based on the 

below equation,  

S_��nomad` < Sh�malei                  (11) 

S_��nomad` < S_��cub`                  (12) 

S_��nomad` < S_��cub`                  (13)  

When �male is defeated in the territorial defense, 

pride is updated by replacing �maleYmale by ��nomad 

conquer the nomad coalition, it is updated by 

selecting only one �nomadYnomad. This procedure 

selects ��nomadY�nomad, if ��nomad ≥ �E�nomad ≥ e is 

fulfilled, or else select �;nomadY;nomadand �represents 

the exponential of unity. ��nomadE�nomadis computed 

using the below equation, 

��nomad = exp � ��
max_��,�;`� max

��hmZnomadi,�hm�nomadi�
�hmZnomadi     

                                                                         (14)    

where, the Euclidean distance is represented as ��b� 

between the pair h��nomad, �maleihY�nomad, Ymalei and 

b;b�signifies the Euclidean distance between the 

pair h�;nomad, �maleihY;nomad, Ymalei, respectively. If 

the defense output is zero, �maleYmale, and  

Sh�maleiFhYmaleiare saved, and from fertility 

evaluation, the process is repeated. 

 

3.2.7 Territorial takeover  

It takes place while the circumstance 

�cub ≥ �maxBcub ≥ Bmaxis satisfied or else it will 

repeat the process from cub growth function. This 

process gives territory to �mcuband �fcubYfcubonce 

they grown and develops into stronger than  

�maleYmale
, and �femaleYfemale. 

 

3.2.8 Termination criteria 

The above steps are repeated until it fulfills 

�� > ��maxNk > Nkmax where, the total number of 

function evaluations is denoted as ��Nk, and 

��maxNkmaxdenotes the maximum number of function 

evaluations.  
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4. RESULTS AND DISCUSSION  

This section dealt with the results and 

explanation of the suggested spectral unmixing 

method for computing the fractional abundance of 

endmembers. The proposed method's performance 

is compared to that of earlier efforts using metrics. 

4.1. Experimental Arrangement 

The proposed technique is implemented in 

MATLAB and runs on a computer with 4GB of 

RAM, Windows OS, and an Intel Core i3 processor.  

 

4.2. Dataset Description 

Urban and Cuprite data from [22] were 

used for the spectral unmixing. The urban data 

consists of approximately 307 x 307 pixels in a 

[2x2] metre square area, with 210 wavelengths 

ranging from 2500 nm to 400 nm with a spectral 

resolution of 10 nm. There are about three variants 

of ground truth for this urban data, 4, 5, and 6 

endmembers, which are introduced in the ground 

truth. The ground truth of Urban dataset is opted 

with  a six-end-members version. The six 

endmembers are Asphalt, Metal, Roof, Grass, Dirt, 

and Tree. Cuprite data is divided into 224 channels 

with wavelengths ranging from 370 to 2480 nm. 

The region under consideration is 250 × 190 pixels 

and contains 14 mineral types.    There are small 

differences between the variants of similar minerals, 

and hence, there are 12 endmembers, such as 

Alunite, Buddingtonite, Andradite, Kaolinite1, 

Sphene, Dumortierite, Muscovite, Nontronite, 

Kaolinite2, Montmorillonite, Pyrope, and 

Chalcedony are the identified ground truth data of 

Cuprite dataset. 

 

4.3. Experimental Setup 

 

The results of the experiment are shown in 

this part, which includes the original Urban and 

Cuprite images, as well as their original 

endmembers and predicted endmembers based on 

LA-based spectral unmixing. Figure 2 displays the 

Urban and Cuprite Hyspectral Image Cubes. 

 

 
 

Figure 3 depicts the original endmembers 

that match to Urban hyperspectral image, and there 

are six endmembers version is used from (22). 

Figure 3a, Figure 3b, Figure 3c, Figure 3d, Figure 

3e, and Figure 3f show the six original endmembers 

of Urban Image.The six estimated endmembers of 

the Urban are depicted in Figure 4. Figure 4a, figure 

4b, Figure 4c, Figure 4d, Figure 4e, and Figure 4f.  

 

 

3a. Asphalt 

 

 

 

 
3b. Grass 

 

 
3c. Tree 

 
3d. Roof 
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3e. Metal 

 
               3f. Dirt 

 

Figure 3. Original endmembers corresponding to  

Urban Hyperspectral Image,  

3a. Asphalt, 3b. Metal 3c. Roof   3d. Grass 3e. Dirt 

3f. Tree 

 

 
4a. Asphalt 

 
4b. Metal 

 
4c. Roof 

 

 
4d. Grass 

 

 
 

4e. Dirt 
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4f. Tree 

Figure 4 Estimated endmembers corresponding to  

Urban Hyperspectral Image, 4a. Asphalt, 4b. Metal 

4c. Roof   4d. Grass 4e. Dirt 4f. Tree 

 

 
 

5a. Alunite 

 

 

5b. Andradite 

 

5c. Buddingtonite 

 

 
5d. Dumortierite. 

 

 
5e. Kaolinite1 
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5f. Kaolinite2 

 

 
5g. Muscovite. 

 

5h. Montmorillonite 

 

 
5i. Nontronite 

 
 

 

5j. Pyrope 
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                      5k. Sphene 

 

 
                  5l. Chalcedony 

Figure 5. Original endmembers corresponding to 

Cuprite Hyperspectral Image, 5a. Alunite, 

5b.Andradite, 5c.Buddingtonite, 5d. Dumortierite, 

5e.Kaolinite1,  5f. Kaolinite2, 5g. Muscovite, 

5h.Montmorillonite, 5i.Nontronite, 5j.Pyrope, 

5k.Sphene, 5l.Chalcedony 

 
6a. Alunite 

 
6b. Andradite 

 

 

 
6c. Buddingtonite 

 
6d. Dumortierite 

 
6e. Kaolinite1 
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6f. Kaolinite2 

 
6g. Muscovite 

 

 
6h. Montmorillonite 

 
6i. Nontronite 

 
6j. Pyrope 

 
6k. Sphene 

 
6l. Chalcedony 

 

Figure 6Estimated endmembers corresponding to 

Cuprite Hyperspectral, 6b.Andradite, 

6c.Buddingtonite, 6d. Dumortierite, 6e.Kaolinite1, 

6f. Kaolinite2, 6g. Muscovite, 6h.Montmorillonite, 

6i.Nontronite, 6j.Pyrope, 6k.Sphene, 6l.Chalcedony  

4.4. Evaluation Metrics 

The recommended technique's 

performance is measured using two metrics: RMSE 

and RE. The RMSE of the methods is calculated as 

follows, 

RMSE� = ��

 ∑                                             (15) 

where, � refers to the total pixel,  �ijyijyijsignifies 

the real abundance fraction for  thendmember in jthjthpixel, and �iĵrefers to the corresponding 

estimated value. Thus, 

RMSE = √                                                    (16) 

where, qq symbolizes the extracted endmembers 

and RMSE�RMSE�RMSE�corresponds to the 

RMSE of the individual pixels. The reconstruction 

error is computed as, 
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RE = £¤ − ¤̂£;
                                               (17) 

where, ¤refers to the true abundance matrix and ¥̂ 

indicates the estimated abundance matrix. 

 The following table explains the 

performance analysis of the proposed algorithm to 

calculate the fractional abundances using the 

endmembers with respect to the bands selected. 

Table 1 shows that the percentage of the original 

fractional abundances (in y axis) of endmembers (in 

x axis) #1 through #6 (of Asphalt, Metal, Roof, 

Grass, Dirt and Tree) of Urban image for the 

varying population size 5 to 25 in spectral band 50.  

 

Table 1. Performance analysis of LOA in 

calculating the original fractional abundances 

using Urban Image at band size 50 

 
 

 

 
Figure 7 Performance analysis offractional 

abundances of endmembers (#1 Asphalt, #2  Metal, 

#3 Roof, #4 Grass, #5 Dirt and #6 Tree ) 

corresponding to  Urban Image 

Table 2 shows that the performance 

analysis of endmembers #1 through #12 (of Alunite, 

Andradite, Buddingtonite, Dumortierite, Kaolinite1, 

Kaolinite2, Muscovite, Montmorillonite, 

Nontronite, Pyrope, Sphene and Chalcedony) of 

Cuprite image for the varying population size 5 to 

25 in spectral band 50. 

 

Table 2. Performance analysis of LOA in 

calculating the original fractional abundances 

using Cuprite Image at band size 50 

 

 
 

 
Fgure 8 Performance analysis offractional 

abundances of endmembers  #1 Alunite, #2 

Andradite, #3 Buddingtonite, #4 Dumortierite, #5 

Kaolinite1, #6 Kaolinite2, #7 Muscovite, #8 

Montmorillonite, #9 Nontronite, #10 Pyrope, #11 

Sphene and #12 Chalcedony  corresponding to  

Cuprite Image 

 

4.5. Competing methods 

  Methods such as bi-objective optimization 

model (Bi-MOSU) and tri-objective optimization 

model (Tri-MOSU) [11], R-CoNMF [23], Pareto 

multi-objective based sparse unmixing (Pareto- 

MOSU) [17], and Rider Optimization Algorithm 

(ROA) [24] are utilised to compare with the 

proposed method for the analysis. 

 

4.6. Comparative analysis using the endmembers 

of images 

The comparison of endmembers #1 

through #6 of Urban Image is discussed here. 

Figure 9a, figure 9b, figure 9c, figure 9d, figure 9e 

and figure 9f, denotes the endmembers of Asphalt, 

Metal, Roof, Grass, Dirt and Tree endmembers 

respectively. In figure 9a, the reflectance of the 

methods Bi-MOSU + Tri-MOSU, R-CoNMF, 

Pareto-MOSU, ROA, and LA at the band of 48 is -

0.0893, -0.0956, -0.5452, -0.4522, and -0.7222, 
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respectively. It is obvious from the given data that 

the proposed method has better reflectance when 

compared to the previous methods. Similarly, when 

compared to competing approaches, the suggested 

method outperformed the others for endmembers 2, 

3, 4, 5 and 6 respectively. It is obvious that the 

proposed method outperformed previous research.  

 
9a. Comparative analysis using Urban endmember 

#1 (Asphalt) 

 
9b. Comparative analysis using Urban endmember 

#2 (Metal) 

 
9c. Comparative analysis using Urban endmember 

#3 (Roof ) 

 
9d. Comparative analysis using Urban endmember 

#4 (Grass) 

 
9e. Comparative analysis using Urban endmember 

#5 (Dirt) 

 
9f. Comparative analysis using Urban  

endmember #6 (Tree) 

 

The figures 10a through 10l depicts the 

comparative analysis performed using the 

endmembers from Cuprite image. The comparative 

analysis based on the endmembers are depicted in 

figures 10a, 10b, 10c, 10d, 10e, 10f, 10g, 10h, 10i, 

10j, 10k, and 10l respectively. The reflectance of 

the proposed method, LRO is -0.0417%, 0.0300%, 

0.0092%, 0.0453%, -0.0071%, -0.0295%, 0.0211%, 

0.0013%, 0.1185%, 0.1427%, -0.0225%, and -

0.067%, for the endmembers of original Cuprite 

image when the band is 224 as per the graphs in 

figure 10a, figure 10b, figure 10c, figure 10d, figure 
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10e, figure 10f, figure 10g, figure 10h, figure 10i, 

figure 10j, figure 10k ,and figure 10l, respectively.  

 
10a. Comparative analysis using Cuprite 

endmember #1 (Alunite) 

 
10b. Comparative analysis using Cuprite 

endmember #2 (Andradite) 

 
 

10c. Comparative analysis using Cuprite 

endmember #3 (Buddingtonite) 

 
10d. Comparative analysis using Cuprite 

endmember #4 (Dumortierite) 

 
10e. Comparative analysis using Cuprite 

endmember #5 (Kaolinite1) 

 
 

10f. Comparative analysis using Cuprite 

endmember #6 (Kaolinite2) 
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10g. Comparative analysis using Cuprite 

endmember #7 (Muscovite) 

 
10h. Comparative analysis using Cuprite 

endmember #8 (Montmorillonite) 

 
10i. Comparative analysis using Cuprite 

endmember #9 (Nontronite) 

 
 

10j. Comparative analysis using Cuprite 

endmember #10 (Pyrope) 

 
10k. Comparative analysis using Cuprite 

endmember #11 (Sphene) 

 
 

10l. Comparative analysis using Cuprite 

endmember #12 (Chalcedony) 

 

Figure 10. Comparative analysis of endmembers #1 

through #12 of Cuprite image 

 

The comparative analysis based on the 

performance metrics are demonstrated in this 

section. Figure 11a through 11d shows the 

comparative analysis of Urban and Cuprite images 

based on the performance metrics. Figure 7a shows 

the comparative analysis using Urban image based 

on RE. The RE of the methods, Bi-MOSU + Tri-

MOSU, R-CoNMF, Pareto-MOSU, ROA, and 

proposed LRO is 61.2490, 51.4851, 42.7426, 

34.7466, and 17.1446 when the SNR is 25dB. 

Figure 7b shows the comparative analysis using 

Urban image based on RMSE. The RMSE of the 

methods, Bi-MOSU + Tri-MOSU, R-CoNMF, 

Pareto-MOSU, ROA, and proposed LRO is 0.0814, 

0.0617, 0.0462, 0.0412, and 0.014 when the SNR is 

25dB. Figure 7c shows the comparative analysis 

using Cuprite based on RE. The RE of the methods, 

Bi-MOSU + Tri-MOSU, R-CoNMF, Pareto-MOSU, 

ROA, and proposed LRO is 94.7656, 82.5873, 
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60.9128, 43.4902, and 19.2401when the SNR is 

25dB. Figure 7d shows the comparative analysis 

using Cuprite based on RMSE. The RMSE of the 

methods, Bi-MOSU + Tri-MOSU, R-CoNMF, 

Pareto-MOSU, ROA, and proposed LRO is 0.1255, 

0.0807, 0.0576, 0.0533, and 0.0184 when the SNR 

is 25dB.  

 

 
11a. Performance analysis based on Urban SRE 

 

 
 

11b. Performance analysis based on Urban RMSE 

 
 

11c. Performance analysis based on Cuprite SRE 

 
11d. Performance analysis based on Cuprite RMSE 

 

Figure 11. Performance analysis based on SRE and 

RMSE of both Urban and Cuprite Images 

 

4.7 Analysis using Performance Metrics 

Figure 11 illustrates the comparative 

analysis based on performance metrics in this area. 

Figure 6 a) shows a comparative analysis based on 

SRE. When the SNR is 25 dB, the SRE of the 

methods Bi-MOSU + Tri-MOSU, R-CoNMF, 

Pareto-MOSU, ROA, and LA is 162.6231, 181.24, 

100.12, 103.37, 119.11. Figure 6 b) shows the 

results of a comparison analysis based on RMSE. 

When the SNR is 25dB, the RMSE of the methods 

Bi-MOSU + Tri-MOSU, R-CoNMF, Pareto-MOSU, 

ROA, and LA is 0.0281, 0.064, 0.0475, 0.0632, and 

0.0551. The developed method clearly 

outperformed the current methods. 

 

4.8. Comparative discussion 

Table 3 summarises the debate over the 

best performance achieved by existing approaches, 

as measured by SRE and RMSE, respectively. The 

RE and RMSE metric values for Bi-MOSU + Tri- 

MOSU are 162.62 and 0.0989, respectively, 

whereas the RE and RMSE metric values for R- 

CoNMF are 181.24 and 0.0922. Pareto-RE MOSU's 

and RMSE values are 100.12 and 0.1429, 

respectively. Similarly, ROA's RE and RMSE 

values are 103.37 and 0.0923, respectively. The LA 

spectral unmixing outperforms the current 

approaches with a minimum RE and RMSE of 

119.11 and 0.0904, respectively, as shown in table 

3. 
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Table 3: Comparative discussion 

 
 

 

5. CONCLUSION 

In order to extract endmembers and fractional 

abundances from hyperspectral data, this paper 

provides a Multi-Objective Spectral Unmixing 

approach for dealing with sparse unmixing. The 

Multiobjective Lion Optimization approach is used 

to solve this model. To gain further insight into the 

sparse unmixing problem, the proposed method 

optimises the Spatial Neighbor term, Sparsity term, 

and Reconstruction Error term all at the same time. 

The multi-objective spectral unmixing technique, 

which is based on lion social behaviour, aims to 

attain high accuracy while speeding up 

convergence. Experimental findings on an urban 

hyperspectral dataset have demonstrated the 

technique's utility. In the investigations, the 

proposed methodology outperformed Bilinear and 

Trilinear Multi-Objective Spectral Unmixing, 

Robust Collaborative Nonnegative Matrix 

Factoriztion, Pareto-Muti-Objective Spectral 

Unmixing, and Rider Optimization in estimating 

enhanced endmembers estimation and fractional 

abundances, with lower Reconstruction Error and 

Root Mean Square Error values of 119.11 and 

0.0904, respectively. Machine learning-based high-

performance computing will be investigated in the 

future for real-time spectral picture interpretation 

applications, along with the fusion of new nature-

inspired computing models, to speed the 

recommended approach. 
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