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ABSTRACT 

Spectral unmixing (SU) is used for the identification of the end members and fractional abundances present 

in the mixed pixels of the hyperspectral images that are rich in data. The traditional methods for spectral 

unmixing are affected with the artifacts requiring the effective method for spectral unmixing. Thus, the 

paper uses an effective framework for Spectral unmixing using the proposed Rider based Elephant Herd 

Optimization (R-EHO). The proposed Rider based Elephant Herd Optimization estimates the fractional 

abundance using the end members and proposed Rider based Elephant Herd Optimization is the integration 

of the standard Elephant Herd optimization (EHO) in the Rider Optimization algorithm (ROA). The 

proposed optimization uses the multi-objective function that is modelled using the factors, such as 

Reconstruction Error (RSE), sparsity (SPA), spatial neighbor (SNI), and spatial neighbour correlation 

(SNC), and mutual information. The analysis is progressed using the Urban and Cuprite datasets based on 

the performance metrics, Root-Mean-Square Error (RMSE), Reconstruction Error (RE) and it is proved that 

the proposed R-EHO acquired the minimal RE and minimal RMSE of 13.8576 and 0.0011, respectively. 

Keywords: Optimization, Spectral Unmixing, Hyperspectral Images, End Components, Fractional 

Abundances 

1. INTRODUCTION 

Hyperspectral imagery is attracting both in the 

civilian and military applications as the 

hyperspectral image consists of a huge amount of 

information regarding the latent components in the 

individual pixel [9]. Hyperspectral images are rich 

in the spatial information, which benefits the 

estimation of the endmember abundances and 

thereby, enabling the consistency of the obtained 

abundances [1]. Hyperspectral imagery captures 

same scene from a number of contiguous spectral 

bands, such as visible, near and shortwave infrared 

bands, which are used in a vast range of 

applications, like detection and exploration of 

minerals, terrain classification, discrimination of 

the military target, monitoring the environment, 

and counterfeiting the pharmaceutics [12]. 

Hyperspectral imaging sensors are employed to 

compute the energy corresponding to the received 

light with respect to tens and hundreds of narrow 

spectral bands in individual spatial position of the 

image [11]. Thus, the individual pixel is presented 

as a high-dimensional vector along the dimensions 

of the wavelength, termed as the spectrum 

belonging to the material present in that particular 

pixel [10]. However, the inability of the 

hyperspectral sensors with less spatial resolution, 

the pixels in the image are often mixed 

representing the homogeneous mix of distinct 

components [14] [9]. The presence of the mixed 

pixels badly affects the application of the 

hyperspectral data [15]. Thus, spectral unmixing is 

required for exploiting the detailed data regarding 

the properties of the components in the individual 

pixel of the scene [9]. 

The deep breath about the spectral unmixing 

process is a significant condition of the generalized 

inverse issue, which estimates parameters 

corresponding to an object based on the 

observation of a signal that had the interaction with 

the object prior to the arrival at the sensor [14][16]. 

Spectral unmixing is a significant technique for 

interpretation of the remotely sensed hyperspectral 

image, for decomposing the image as a set of pure 

spectral endmembers along with their abundance 

fractions with respect to the individual pixel of the 

scene [1]. Spectral unmixing estimates the 

fractional abundances corresponding to the pure 
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signatures of spectrum or end members 

corresponding to the individual mixed pixel, and 

the issue is regarding the mixing issue [1]. Sparse 

unmixing estimates few endmembers available in a 

specific spectral library, representing the individual 

mixed pixel of the hyperspectral scene [3]. For 

enhancing the outcome of unmixing, there is a 

recent evolution for exploiting the spatial 

contextual information [1]. Sparse unmixing 

smoothen the textures and preserves the sharp 

edges available while estimating the abundance [1]. 

Sparse-representation-based methods are used 

widely for remotely sensed hyperspectral unmixing 

[1] and the  algorithms used specifically depends 

on the expected mixing type that is either classified 

as linear or nonlinear model [15][21] . Nonlinear 

mixing model considers that a part of source 

radiation is exaggerated using the effects of 

multiple scattering through the usage of numerous 

endmembers in the scene prior to the collection at 

the sensor. Thus, the spectrum observed using the 

mixed pixel is obtained using the nonlinear 

function of abundance corresponding to the 

endmembers [15]. 

Linear mixture model (LMM) considers that 

mixing occurs within a measuring instrument and 

in addition takes into-account the interactions 

existing between the distinct endmembers that are 

negligible. Therefore, the observed spectrum of 

mixed pixel is uttered as a linear combination end 

member signatures that are weighted with their 

corresponding fractional abundances [15]. LMM 

resembles a precise model for characterizing a 

number of the real scenarios and it is recognized as 

the acceptable approximation of instrument 

mechanism and light scattering [15]. LMM is 

employed for HU as a result of the simplicity and 

effectiveness in numerous applications along with 

the computational tractability. Depending on 

LMM, there are many methods, like geometry and 

statistics dependent approaches [15] [17]. Methods 

based on geometry deploy the pixel observations of 

the hyperspectral data that are within the simplex 

and vertices with respect to the endmember. The 

methods include vertex component analysis [20], 

N-FINDR [18], simplex growing algorithm [23], 

minimum-volume simplex analysis [22], and so on 

[15]. Statistical approaches use the statistical 

characteristic belonging to the hyperspectral data, 

like Nonnegative Matrix Factorization (NMF) and 

Independent Component Analysis (ICA) [24] [15] 

[13]. Generally, the methods estimate the 

endmembers or determine the availability of pure 

pixels. The assumptions do not hold for most of the 

hyperspectral data and the availability of the 

mixture at various scales [15]. A simple method to 

manage the spatial and spectral features is vector 

stacking that combines variety of features as a long 

vector. However, unfortunately, stacking the 

spectral and spatial feature may generate a feature 

vector of higher dimensional [26] [27]. 

The primary intention of this research is to design 

and develop a  a novel approach for the spectral 

unmixing with the hyperspectral satellite image by 

proposing an optimization algorithm. Here, a novel 

optimization algorithm, named R-EHO, is 

developed considering various objectives. The 

proposed R-EHO is used for estimating the 

fractional abundance of every end member by 

considering a non-linear sparse unmixing model. 

The proposed R-EHO algorithm is designed by the 

integration of ROA [29] and EHO [28] by making 

use of multiple objectives to optimize the 

reconstruction, sparsity and the total variation 

regularization terms concurrently. Here, a new 

objective function is developed by considering five 

objectives, namely RSE, SPA, SNI, SNC, and 

mutual information. This objective function is 

utilized to estimate the fractional abundance of end 

member for unmixing.  

1.1 Research Objectives 

The following research objectives are formlated to 

address the hyperspectral unmixing problem. 

i. To characterize the hyperspectral images 

with the multi-objective sparse 

hyperspectral unmixing optimization 

variables. 

ii. To estimate the fractional abundances, 

extract the pure pixels and compare with 

the spectral library of the hyperspectral 

image. 

iii. To evaluate and compare the performance 

of the multi-objective sparse spectral 

unmixing techniques and identify the 

efficient spectral unmixing approach. 

1.2 Research Contribution from the Proposed 

Work 

The proposed research work of R-EHO contributes 

in various applications areas such as remote 

sensing, audio signal processing, and chemistry. 

Hyperspectral imaging (HSI) are known to have 

low spatial resolution despite their great spectral 

resolution. The low spatial resolution despite their 

great spectral resolution would made the HSI pixel 
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values to be a combination of different materials in 

the picture. Hyperspectral Unmixing may thus be 

dismissed as an inverse technique that involves 

determining the amount of pure elements 

contributing to the pixels' mixture in each pixel. 

The overall number of pure elements (also known 

as endmembers) and the number of them included 

in a single pixel are two data points that are 

difficult to get. When both the total number and 

kind of endmembers in the scene are known and 

connected with a linear mixing process assumption, 

the situation is the simplest. This linearity 

assumption, while useful in some cases, does not 

hold in most real-world scenarios. In most 

circumstances, knowledge of a material's 

endmember signature isn't exact, necessitating the 

need to account for differences across different 

representations of the same material. Last but not 

least, the presence of abnormalities and noise is a 

common problem that affects estimation accuracy. 

The aforementioned challenges were primarily 

brought to light in this work, and answers to these 

open problems were supplied by introducing an 

evolutionary multi-objective R-EHO optimization 

algorithm.  

The fractional abundance of the end members is 

determined optimally using the proposed R-EHO 

algorithm, which is the integration of EHO and 

ROA. The optimization algorithm, R-EHO exhibits 

the higher local convergence avoidance and global 

convergence when compared with the other 

optimizations and in addition, the diversity during 

search is increased. 

1.3 Objective Function 

The objective function is formulated based on the 

multi-objective constraints, such as RSE, SPA, 

SNI, and SNC along with the mutual information 

in such a way that the proposed R-EHO uses the 

objective function to estimate the end members. 

The organization of the paper is: section 1 

demonstrates the background of spectral unmixing 

and the methods existing in the literature are 

discussed in section 2 along with the challenges of 

the method. The proposed method of unmixing is 

discussed in section 3 and section 4 presents the 

results of the method. Finally, section 5 concludes 

the paper. 

2. REVIEW OF LITERATURE 

In this section, eight literature methods are 

reviewed. Shaoquan Zhang ,et al [1] developed a 

Spatial discontinuity weighted sparse unmixing 

approach for accurately preserving the boundaries 

of the image. The method lacked the ability to 

preserve the heterogeneity of abundance maps. 

Xiangming Jiang, et al [2] modelled a 

decomposition algorithm, named endmember 

selection algorithm, which minimized the residuals 

of image unmixing that achieved the higher visual 

quality. The method achieved the better unmixig 

performance even in the presence of noises and 

interferences. The drawback of the method was 

that the method failed for implementing the two-

phase multiobjective sparse unmixing (Tp-MoSU) 

in parallel way for utilizing the multiobjective 

optimization. Dan Wang, et al. [3] developed a 

method based on the sparse redundant unmixing 

algorithm that attained the higher performance in 

unmixing. The drawback of the method was that 

the method failed to regularize the total variation 

(TV) of redundant spectra. Burkni Palsson, et al. 

[4] developed a model, linear mixture that 

exhibited the higher degree of robustness to noise. 

The spectral resolution was high with minimal cost 

and it was easy for utilizing the custom objective 

function. The method failed in utilizing the 

symmetrical architecture with tied weights for 

decoder and encoder. Maoguo Gong, et al. [5] 

modelled a Multi-objective cooperative 

coevolutionary algorithm that directly optimized 

the non-convex model in generating the non-

dominated solution set with a single run. The 

failure of the method was that the method failed to 

utilize the spatial information. Yanli Sun, et al. [6] 

modelled an approach named as Class-based 

endmember extraction and sparse Unmixing 

approach that enhanced the classification 

performance of semisupervised model with higher 

accuracy. The drawback of the method was 

regarding the usage of the spatial information of 

the spectrum in addition to the abundance 

information. Rui Wang, et al. [7] used the double 

reweighted sparse unmixing and total variation 

algorithm, which enhanced the performance of 

unmixing and along with that the data sparsity of 

the fractional abundances was enhanced. The 

failure of the method was regarding the selection of 

the adaptive parameter. Rui Wang, et al. [8] used a 

Centralized collaborative sparse unmixing (CCSU) 

algorithm that reduced the estimation error, but the 

method failed to automatically update the 

regularization parameters. The multi-fidelity 

evolutionary multitasking optimization (MFEMO) 

framework [33] framework is presented to address 

the issues in endmember extraction caused by 

outliers and expensive computation. MFEMO, on 
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the other hand, incorporates unavoidable negative 

transfer across tasks during endmember extraction, 

which degrades endmember estimation accuracy]. 

An evolutionary multi-objective hyperspectral 

sparse unmixing algorithm is developed with 

endmember priori approach to deal with large-scale 

sparse unmixing difficulties (EMSU-EP). It's tough 

to control noise in large-scale sparse unmixing 

problems with this approach[34].  A 

multiobjective-based simultaneous sparse 

unmixing framework (PMoSU), which includes 

three concurrent objectives for spectral unmixing 

in high-noise environments: reconstruction error, 

sparsity error, and the pruning projection function. 

Weakly Pareto optimal solutions may emerge in 

the situation of discrete range sparse unmixing 

[35]. 

2.1 Research Challenges 

The challenges of the research are enlisted below: 

 Decomposition based end member selection 

algorithm [2] is used for solving the two-

phase multi-objective issue that required 

weights both for the encoder and decoder. It 

comprises of the unmixing residuals and 

active end members, to determine the real 

end members that are active. However, for 

experiencing the merits of multi-objective 

optimization, there is a need to implement 

the Tp-MoSU in parallelly, which is a major 

shortcoming of the method. 

 Augmented Lagrangian algorithm [12] is 

used for dealing with the low complexity 

problem in unmixing and Compressive 

Sensing (CS) method. A device captures the 

compressed hyperspectral data as like the 

single-pixel camera and decodes the 

compressed data to compute the unmixed 

abundance fractions directly for the given 

end members. The method fails in solving 

the models of non convex matrix 

factorization. 

 Vertex Component Analysis (VCA) 

algorithm [17] is used to extract the 

unsupervised end member using the 

hyperspectral data. VCA iteratively places 

the data onto a direction in such a way it is 

orthogonal to the subspace spanned by the 

end members that are determined already. 

Though the computational complexity is 

lower, there is a problem when a large data 

set is used. 

 Spatial-Spectral Pre processing (SSPP) 

methods are employed to identify the end 

member and spectral unmixing. A spatial 

homogeneity index is derived for the 

individual pixel present in the hyperspectral 

image, which is relatively insensitive to the 

noise available in the data [25]. Under the 

formulation of the current spectral and 

spatial data, there are cases that penalize the 

selection of anomalous endmembers. 

 Sparse unmixing [19] using the variable 

splitting augmented Lagrangian 

concentrates on the hyperspectral data 

analyzing without using the spatial 

information.  The shortcoming of the 

method was regarding the failure in 

establishing the fast parallel processing and 

regarding the high computational 

complexity. 

 Hyperspectral Unmixing uses Robust 

Collaborative Nonnegative Matrix 

Factorization (R-CoNMF) method [26] to 

estimate the number of endmembers, the 

mixing matrix and the corresponding 

abundances but the algorithm is not 

evaluated using real hyperspectral datasets. 

 In Multi objective optimization based sparse 

unmixing algorithm (MOSU) [32], the 

performance was found to be better in 

solving the sparse unmixing problem. The 

main drawback of the method was that the 

lack of the population-based algorithm, 

which is used to enhance the computation 

efficiency. 

 

3. PROPOSED RIDER-ELEPHANT HERD 

OPTIMIZATION ALGORITHM  

The proposed R-EHO algorithm is the integration 

of the EHO algorithm in the ROA in such a way 

that the update rule of bypass rider is modified 

using the update equation of EHO. The proposed 

R-EHO balances the merits and demerits of EHO 

and ROA and more importantly, the proposed 

algorithm renders a higher convergence rate with a 

global optimal solution and higher tendency 

towards the local optimal avoidance mechanism. 

On the other hand, the diversity of the solutions is 

assured with a better convergence rates and the 

capacity of R-EHO to deal with the multiple 

objectives is effective. 
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Basically, the standard ROA is developed based on 

the fictional computing concept, which is based on 

the imaginary thoughts and ideas unlike the other 

artificial computing algorithms and nature-inspired 

algorithms. ROA is duly based on the riding 

behaviour of the riders, such as bypass, follower, 

overtaker and attacker, and these riders possess the 

single objective of reaching the destination. Each 

of the riders takes their own way of riding to reach 

the destination and it is clear from the literature 

that ROA is the only algorithm functioning based 

on the imaginary ideas. Inspired with the 

behaviours of four groups of riders, ROA renders a 

global optimal solution. The evaluation factor is 

termed as the success rate that decides the leading 

rider based on which the other riders update their 

position in reaching the destination. The position 

update of the individual riders is based on the 

riding characteristics of the riders’ vehicle, such as 

the steering angle, gear, accelerator, and so on. The 

position of the individual rider is accelerated 

towards the leading rider and the local minimal 

avoidance is discarded using the small local 

neighbourhood and this local optimal avoidance is 

the effort of the attacker. However, the higher 

convergence rate is based on the large global 

neighbors, which is handled using the overtaker. 

Thus, initially the riders explore the surroundings 

randomly for reaching the destination. The 

overtaker determines the optimal search space 

based on the success rate and directional indicator 

and the follower employs the multi-dimensional 

space in the leading rider. On the other hand, the 

searching speed of the attacker is accelerated based 

on the multidimensional search in addition to the 

fast search. 

Similarly, EHO is inspired with the social 

behaviour of the elephants living in the clans and 

the elephants from different clans live together 

under the matriarch and the male elephants leave 

the group when they grow. EHO solves the 

optimization problem through two types of 

optimization operators, such as separating operator 

and clan updating operator. The position update of 

the elephants in the clan is based on the clan 

updating operator and the separating operator, 

enables the replacement of the worst elephant. 

Thus, the optimal convergence of EHO is better 

when compared with the other types of 

optimizations. The algorithmic steps of the 

proposed R-EHO algorithm are demonstrated 

below:  

 

3.1 Rider Initialization 

 In this first step, the total riders in the search space 

are initialized and their positions are notated as,  

     zl;Nk;+tR lk,  111                 (1) 

Where, N is the riders present in the search space 

and z refers to the total coordinates or dimension. 

 tR lk , Denotes the position of 
thk rider at time 

 and the four rider groups are: bypass, attacker, 

overtaker, and follower are denoted as, 1R , 3R , 

2R , and 4R . The riders taking part in the race 

are chosen equally from the individual rider groups 

as each group of riders hold specific riding 

specifications. The bypassing ability of the bypass 

rider, following the leader for updating the position 

of follower and attacker, and the self effort of 

attacker to reach the destination, are the overall 

characteristics of the rider groups. It is evident that 

the objectives of the individual rider groups are 

attained through varying the vehicle characteristics 

of the corresponding riders’ vehicles. The riding 

parameters of 
thk rider are: steering angle, 

coordinate angle, and position angle, which is 

notated as, 
 tS lk ,

, 
 tC lk ,

, and 
 tP lk , . 

Similarly, the gear, accelerator, and brake of 
thk

rider is represented as, kG , kA , and kB , 

respectively. The gear g
 value lies between 0 

and 4, while the values of kA , and kB  varies 

between 0 and 1. 

3.2 Evaluating the Success Rate 

The success rate decides the leading rider for 

which the success rate is maximal and the success 

rate is formulated based on the multi-objective 

function. The success rate is denoted as, SR and 

is otherwise termed as the multi-objective function. 

3.3 Position Update for the Leading Rider 

The leading rider is the one near to the destination 

and the declaration is made based on the maximal 

success rate. Until the off-time, the position of the 

rider is updated as the leading rider never is the 

same all the time.  
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3.4 Update Phase of the Rider Groups 

The riders update their position based on the 

position of the leading rider and the position is 

modelled as follows:  

3.4.1 Position of bypass rider 

The position of the bypass rider is updated based 

on the position of the leader as given as,  

           kλtR+kλtRα=+tR kg,kd,lk,  111

         
(2) 

where,  is a random number varying between 0 

and 1, d is the random number acquiring the 

values between 1 and N ,  is a random value 

between 0 and 1, and
g

takes a random value 

between 1 and N . The size of  is denoted as,

 z1 , where z specifies the dimension of the 

total coordinates. Equation (2) is modified using 

the update rule of EHO algorithm in which the 

diversity of the solutions is enhanced. The update 

equation of EHO is given as, 

��,�� �� + 1
 = ��,���
 + � × ���best − ��,���
� × � 
(3) 

  
where,  1,0 refers to the scale factor and 

 11
, tR lk indicates the updated position of 

thl

elephant in 
thk clan,  tR lk , is the previous 

position of 
thl elephant in clan k . The random 

number   varies in  1,0 . Rearranging the 

equation (3) as given as, 

      εtRβεRβ+tR=+tR lk,

best

klk,lk, 11

 
(4) 

      εRβ+εβtR=+tR best

klk,lk, 111

 
(5) 

 
 

 εβ

εRβ+tR
=tR

best

klk,

lk, 



1

11

           

(6) 

Substitute eqn. (6) in eqn.(2) as, 

 
 

 
      

















kλtR+kλ

εβ

εRβ+tR
α

=+tR

kg,

best

klk,

lk,

1
1

1

1

1

1

 

(7) 

 
 

 

 
      



















kλtR+kλ
εβ

εRβ
α

=
εβ

α+tR
+tR

kg,

best

k

lk,

lk,

1
1

1

1
1

1

1

     

(8) 
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(10) 
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εRβ
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εβ
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best

k
kg,

lk,

1
1

1

1

11

   

(11) 

Equation (11) is the modified equation of ROA, 

representing the update equation of R-EHO 

algorithm. The equation (11) reveals that the 

position of the rider is updated based on the riders’ 

position in the previous iteration, random numbers, 

and best position of the rider. 

3.4.2 Position of follower rider 

The position of the follower is modeled as, 

       tDMtS+M=+tR k

L

lL,lk,

L

lL,lk, cos14

      
(12) 

Let 
L

lLM ,  denote the position of the leader, L is 

the leading rider, 
 tS lk , refers to the steering 

angle of the 
thk rider in 

thl coordinate at time t , 

 14
, tR lk is the position of the follower, and 

 tD k specifies the distance traveled by 
thk rider 

at instant t . The distance  tD k is computed 

using the velocity and off-time in which the 

velocity of 
thk rider is calculated using the 

maximum speed, accelerator, gear, and brake with 
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respect to the vehicle of 
thk rider. The selection of 

the co-ordinate selector depends on the on-time 

probability. 

3.4.3 Position of overtaker 

 The overtaker updates the position using the 

direction indicator, coordinate selector, and success 

rate. The position of overtaker is given as, 

      L

lL,klk,lk, Mt+tR=+tR 12
         (13) 

where,  tR lk , is the position of 
thk rider in 

thl

coordinate and  tk is the direction indicator 

corresponding to 
thk rider at time t . The 

direction indicator  tk  is given as, 

 
 

1
log1

2













SR
=tk         (14) 

where, SR
 is the success rate of 

thk rider at t

and the success rate is computed using the multi-

objective function. SR is computed based on the 

equation (21). 

 

3.4.4 Position of attacker 

The position update of the attacker is similar as the 

follower and the attacker updates the position using 

the following equation as, 

       tD+MtS+M=+tR k

L

lL,lk,

L

lL,lk, cos13

      
(15) 

3.5 Re-compute the Success Rate 

The success rate of the riders is recomputed every-

time after the rider groups update their positions to 

signify that the leader is not always the same rider.  

3.6 Update the Parameters of the Rider 

Once the success rate is re-evaluated, the 

optimization parameters, like the vehicles 

parameters of the rider, gear, steering angle, 

accelerator, brake, off-time, and activity counter 

are updated.  

3.7 Termination 

The steps are repeated until the destination is met 

by any of the rider groups, marking the 

announcement of the winner. Algorithm 1 shows 

the pseudocode of the proposed R-EHO algorithm. 

Algorithm 1. R-EHO- Pseudo code 

R-EHO algorithm 

1 
Input   : Rider’s position  tR lk ,  

2 
Output : Leading rider 

L
lLM ,  

3 Start 

4 Initialization 

5 Rider population and riding parameters 

6 
Position angle 

 tP lk ,  

7 
Steering angle 

 tS lk ,    

8 
Accelerator kA  

9 
Gear kG  

10 
Coordinate angle 

 tC lk ,   

11 
Brake kB  

12 Compute the success rate 

13 
While offtt   

14 
For  Ntok 1  

 #Position update phase 

15 eqn. (11) for updating the bypass riders’ 

position 

16         Followers’ position using eqn. (12)  

17         Overtakers’ position using eqn. (13) 

18         Follow eqn. (15) for attacker position 

update  

19         Ranking  the riders with respect to the 

success rate 

20         Determine the leading rider 

21         Update the Rider parameters 

22 
       Return 

L
lLM ,  

23          1 tt  
24       End For 

25      End While 

26 Terminate 

 

4. PROPOSED SPECTRAL UNMIXING 

USING THE R-EHO ALGORITHM BASED 

ON THE MULTIPLE OBJECTIVES 

Spectral unmixing is a technique of extracting the 

valuable information from the hyperspectral image, 

which consists of the linear arrangement of the 

spectrum with the enormous proportion of the end 

members in individual pixels. In other words, the 
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scenes are captured using the spectral imaging 

technique and the captured spectra carries 

numerous signatures organized in spectra within a 

pixel. In general, any spectral unmixing technique 

involves three basic steps. In the first step, the 

estimation of the end members from the scene is 

progressed, followed with the identification of the 

spectral signatures. The third step is the 

computation of the fractional abundance from the 

individual end member belonging to the individual 

pixel. Most of the spectral unmixing methods in the 

literature follow the aforementioned steps. 

However, most of the methods suffer from the 

propagation errors, high computational cost, 

complexity issues, and poor accuracy in the first 

step of the end member estimation. Thus, there is a 

need for the effective estimation of the end 

member from the hyperspectral images for which 

the optimization is developed. The optimization 

named as, R-EHO is the integration of the EHO in 

ROA, which functions in estimating the end 

members and in computing the proportion of the 

signature. The computation of the fractional 

abundance follows the multi-objective function, 

which is designed based on the constraints, such as 

RSE, SPA, SNI, SNC, and mutual information. 

The spectral unmixing performed using the 

proposed optimization is found to be highly 

accurate and effective. Figure 1 shows the block 

diagram of the proposed method of spectral 

unmixing.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Spectral Unmixing Model Using The        R-

EHO Algorithm 

 

 

4.1 Representation of the Hyperspectral Image 

For spectral unmixing, the hyperspectral image is 

considered and the end members in the individual 

pixel of the image are performed. Let us denote the 

hyperspectral image I in the form of the matrix 

represented as, 

 

  vw

v Jh,,h=I ∈.....1   (16) 

 

From the above equation, it is well understood that 

there are v number of the spectral vectors and w
number of the spectral bands in a given input 

hyperspectral image. As per the Linear Mixture 

Model (LMM), the input image is rewritten as, 

Q+ΚY=I  such that  

0 ;
T

v

T

r =Κ 11   (17) 

The input hyperspectral image is represented in 

terms of the mixing matrix and abundance matrix 

as in equation (17). The mixing matrix is given as, 

 

   vw

rf Jy,,y,,y=Y 
∈......1   (18) 

It is understood that there are r end members and 

the
thf signature corresponding to the end member 

as, fy
. Likewise, the abundance matrix is 

represented as,   and the abundance matrix is 

organized as, 

 

  vw

vf Jx,,x,,x=Κ 
∈......1   (19) 

 

The abundance matrix represents the fraction of the 

end members and fx
represents the 

thf fraction 

corresponding to the end member such that f

takes the value between 1 and v .The estimation 

of the end members is performed using the 

component, which assures the effective 

understanding regarding the abundance of the non-

negativity constraint that is indicated as, 0 . 

Likewise, 
T
v

T
r 11  represents the sum-to-one 

constraint that is computed through the physical 

interpretation belonging to the abundance vector 

and  Tr 1...,,1,11  is the column vector that 

acquires the dimension r . The term  T

represents the transposed vector elements. At the 

same time, the LMM representation of the input 

hyperspectral image carries an additional term Q , 

which represents the noise, affecting the 
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measurement. The estimation of the end members, 

which is the first step in spectral unmixing 

determines the  r
 number of the end members 

using the abundance matrix   and mixing matrix

Y . The basic idea behind the estimation of the 

end members is that from the total of r end 

members, the algorithm determines u end 

members and these estimated end members are 

confined in three conditions. The first condition is 

assumed to be the ideal condition in which the 

available end members and the estimated end 

members are equal. In the second condition, the 

estimated end members are less than the available 

end members in the hyperspectral image, which is 

represented as, ru and this condition is referred 

as the underestimated nature of the end members 

and this condition assist the analyst for the 

effective identification of a number of the end 

members from the image. The last condition 

represents the overestimation of the end member, 

represented as, ru  , and this condition is a sort 

of critical moment similar to that of the ideal 

condition, specifying the absence of any pure pixel 

in  the captured image. This paper assumes the 

condition ru  as r is unknown in advance and 

this condition specifies the overestimated state. 

Thus, the general idea is regarding the 

overestimation that enables the easy computation 

of the end members and this is not the real case in 

the presence of the exact number of the end 

members. The end members, mixing, and 

abundance matrices r , Y , and  are estimated 

using the R-EHO algorithm based on the multi-

objective function.  

 

4.2 Design the Objective Function based on 

Multiple Constraints  

The end members and their abundance are 

estimated using the proposed R-EHO algorithm 

following the multi-objective function, which 

depends on four constraints, like RSE, SNC, SPA, 

SNI, and mutual information, respectively. The 

multi-objective function is given as in equation (5) 

for the existing spectral unmixing technique in 

[31]. 










b
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HUVVUI
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such that 1 uV   1 uWU  

(20) 

where, F and 2 is the Frobenius and 

Euclidean norms, respectively. 

  su
uppU  ,...,1 and 

vuJV  are 

the optimization variables corresponding to the 

abundance and mixing matrices, respectively. The 

modified objective function is given as,  
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  (21) 

 

The optimization, R-EHO estimates the end 

members along with their abundance using 

equation (21). The first term 
b

F
VUI 

highlights the data fidelity to enable minimal 

reconstruction errors, and the second term 

1,2
V

ensures the row sparsity for matrix V  

by fixing the complex rows to zero. The term, 

b

F
HU 

2


pulls the columns in U to reach 

the solution H , which is the solution of the 

optimization, which along with matrix V drags 

the end members to reach the extreme. The term 





u

i

aV
1

21,2  specifies the SPA indicating 

the mixed norm of matrix V . The term, 

b

F
HU 

2


 is the SNI constraint and from 

this term,  
uii qqH ,...,

1
 indicates u spectral 

vectors. 


and  are the regularization 

parameters. 1u represents the matrices with 

total dimension  vu  , where the columns 

specify the probability simplex with dimension 

 1u . 1uW is the matrix of size  uw  , 

and the size of the columns are  1u , which 

highlights the data I . The term 

   
















 
 




m
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n

j
jis

s

s

jiVUIVUI
Znm 1 1

8

,
1

,
**

1
  refers to the SNC 

parameter, which is calculated based on the 

average of the neighboring pixels. The constant, 

 is the regularization parameter, m and n

represent the rows and columns in  VUI  . 

The objective function withstands the problems 

arising due to the violation of the sum-to-one 

constraints present in real data. The fifth term is, 

  VUIMI `, , which specifies the mutual 

information and the five constraints constitute the 

multi-objective function, which should be minimal 



Journal of Theoretical and Applied Information Technology 
15th April 2022. Vol.100. No 7 

© 2022 Little Lion Scientific  

 

ISSN: 1992-8645                                  www.jatit.org                         E-ISSN: 1817-3195 

 
2151 

 

for the better solution, determined using the R-

EHO algorithm. 

 

 

5. RESULTS AND DISCUSSION 

In this section, the results of the proposed spectral 

unmixing model based on the proposed R-EHO 

algorithm is deliberated with the elaborate 

description of the comparative methods and 

detailed discussion of various existing methods.    

   5.1 Experimental Setup 

The experimentation is performed using the 

hyperspectral images and the implementation is 

done in MATLAB and the employed dataset is 

Urban and Cuprite data from [30]. The original 

image_1 is taken from urban dataset [30] and 

original image_2 is obtained from Cuprite data. 

The original image_1 possesses 307307 

pixels in  22  m2 area and the wavelength range 

of the image is 210 wavelengths between 400 nm 

and 2500 nm and holds the spectral resolution of 

10 nm. There are three ground truths for the urban 

data along with 4, 5 and 6 end members 

respectively and the end members include Asphalt, 

Roof, Grass, Tree, Metal, and Dirt. The cuprite 

data possesses 224 channels of the range between 

370 nm and 2480 nm. The region consists of 250 x 

190 pixels with a total of 14 mineral types. There 

are meagre differences in the variants of similar 

minerals, and a total of 12 end members are used 

that includes Alunite, Andradite, Pyrope, 

Buddingtonite, Kaolinite1, Dumortierite, Sphene, 

Muscovite, Kaolinite2, Nontronite, 

Montmorillonite, and Chalcedony. 

 

5.2 Experimental Analysis 

In this section, the experimental analysis of the 

methods is presented with the images taken from 

the databases, Urban and cuprite dataset. Figure 2 

depicts the original images and corresponding 

reflectances taken from the urban dataset. Figure 2 

i) shows the original image_1 and figure 2 ii) is the 

reflectance graph corresponding to the original 

image_1. Figure 2 iii) shows the original image_2 

and figure 2 iv) is the reflectance graph 

corresponding to the original image_2.   

 

i) 

 

ii) 

 
iii) 

 
iv) 

Figure 2. Original Images, I) Original Image_1, Ii) 

Reflectance Graph Of Original Image_1, Iii) Original 

Image_2, Iv) Reflectance Graph Of Original Image_2 

Figure 3 shows the end members corresponding to 

the original image_1 and the end members are 

deliberated in figure 3 i), figure 3 ii), figure 3 iii), 

figure 3 iv), figure 3 v), and figure 3 vi), 

respectively. 
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i) 

 

ii) 

 
iii) 

 
iv) 

 
v) 

 
vi) 

Figure 3. Original End Members Of Original Image_1, 

I) End Member_1, Ii) End Member_2, Iii) End 

Member_3, Iv) End Member_4, V) End Member_5, Vi) 

End Member_6 

Figure 4 shows the estimated end members from 

the original image_1 using the proposed R-EHO 

algorithm. The estimated end members from the 

original image_1 is depicted in figure 4 i), figure 4 

ii), figure 4 iii), figure 4 iv), figure 4 v), and figure 

4 vi), respectively. 

 

i) 

 

ii) 

 
iii) 
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iv) 

v) 

vi) 
Figure 4. Estimated End Members Of Original Image_1 

Using R-EHO-Based Spectral Unmixing, I) Estimated 

End Member_1, Ii) Estimated End Member_2, Iii) 

Estimated End Member_3, Iv) Estimated End Member_4, 

V) Estimated End Member_5, Vi) Estimated End 

Member_6 

Figure 5 shows the original end members 

corresponding to the original image_2 and the end 

members are deliberated in figure 5 i), figure 5 ii), 

figure 5 iii), figure 5 iv), figure 5 v), figure 5 vi), 

figure 5 vii), figure 5 viii), figure 5 ix), figure 5 x), 

figure 5 xi),  and figure 5 xii), respectively. 

 

i) 

 
ii) 

 
iii) 

 

iv) 

 
v) 
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vi) 

 

vii) 

 
viii) 

 
ix) 

 

x) 

 
xi) 

 
xii) 

 

Figure 5. Original End Members Of Original Image_2, 

I) End Member_1, Ii) End Member_2, Iii) End 

Member_3, Iv) End Member_4, V) End Member_5, Vi) 

End Member_6, Vii) End Member_7, Viii) End 

Member_8, Ix) End Member_9, X) End Member_10, Xi) 

End Member_11, Xii) End Member_12 

Figure 6 shows the estimated end members 

corresponding to the original image_2 and the end 

members are deliberated in figure 6 i), figure 6 ii), 

figure 6 iii), figure 6 iv), figure 6 v), figure 6 vi), 

figure 6 vii), figure 6 viii), figure 6 ix), figure 6 x), 

figure 6 xi),  and figure 6 xii), respectively. 
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i) 

 

 
ii) 

 
iii) 

 

iv) 

 
v) 

 
vi) 

 

vii) 

 
viii) 
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ix) 

 

x) 

 
xi) 

 
xii) 

Figure 6. Estimated End Members Of Original Image_2, 

I) Estimated End Member_1, Ii) Estimated End 

Member_2, Iii) Estimated End Member_3, Iv) Estimated 

End Member_4, V) Estimated End Member_5, Vi) 

Estimated End Member_6, Vii) Estimated End 

Member_7, Viii) Estimated End Member_8, Ix) 

Estimated End Member_9, X) Estimated End 

Member_10, Xi) Estimated End Member_11, Xii) 

Estimated End Member_12 
 

5.3 Performance Metrics 

The performance evaluation of the proposed SU is 

done based on two metrics, such as RMSE and RE 

that enable the effective comparison of the 

proposed method with the existing method. The 

metrics are formulated as follows: 

 

5.3.1 RMSE 

 The RMSE of the methods is given as, 

 
2

1

1
 

v

j=

fjx
jff x

v
=RMSE                 (22) 

where, v is the total pixel, jfx
refers to the real 

abundance fraction for 
thf end member in 

thj

pixel, and fjx


refers to the estimated end 

members. Thus, 


r

=f

fRMSE=RMSE
1

  (23) 

where, r symbolizes the extracted end members 

and fRMSE
corresponds to the RMSE of the 

individual pixels. Any effective method reports 

with the minimal value of RMSE to symbolize the 

effective performance.  

 

5.3.2 RE 

The RE of the methods is computed as, 
2

ffxx=RE     (24) 

where, x refers to the true abundance matrix and 

x indicates the estimated abundance matrix. The 

accurate estimation is indicated by the smaller 

value of RE.  

 

 

 

5.3.4 Reflectance of the end member 

The reflectance of a pixel is computed as per the 

equation (17), which is calculated using the 

reflectance of individual end member in a band, 

fractional abundance, and errors in the band.  

 

5.4 Performance Analysis 

The performance analysis of the methods is 

deliberated in this section and the analysis is 
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performed using two original images. Figure 7 

shows the performance analysis using the original 

image_1. Figure 7 i) shows the analysis based on 

RE of the methods. The RE of the R-EHO method 

based on the population size 5, 10, 15, 20, and 25 is 

61.2490, 51.4851, 42.7426, 34.7466, 17.1446, and 

10.4680, respectively. Figure 7 ii) shows the 

analysis based on RMSE of the methods. The 

RMSE of the R-EHO method based on the 

population size 5, 10, 15, 20, and 25 is 0.0814, 

 0.0617 , 0.0462, 0.0412, 0.0139, and 

0.0011, respectively. 

 

i) 

 
ii) 

 

Figure 7. Performance Analysis Using Original 

Image_1, I) Performance Analysis Based On RE, Ii) 

Performance Analysis Based On RMSE  

Figure 8 shows the analysis using the end members 

through analyzing the reflectance with respect to 

the band. Figure 8 i) shows the analysis using 

estimated end member_1 of original image_1. The 

reflectance of end member_1 at band 50 is 0.1098 

%, -0.5706 %, -0.0287 %, -0.0454 %, -0.1493 %, 

and 0.1473 %, respectively. Figure 8 ii) shows the 

analysis using estimated end member_2 of original 

image_1. The reflectance of end member_2 at band 

50 is 0.1555 %, 0.0458 %, -0.2503 %, -0.0004 %, -

0.0288 %, and 0.0441 %, respectively. Figure 8 iii) 

shows the analysis using estimated end member_3 

of original image_1. The reflectance of end 

member_3 at band 50 is 0.0479 %, 0.4535 %, -

0.0757 %, -0.0216 %, -0.0165 %, and 0.0639 %, 

respectively. 

 
i) 

 
ii) 

 
iii) 

 

Figure 8. Performance Analysis Using The Estimated 

End Members Of Original Image_1, I) Performance 

Analysis Using End Member_1, Ii) Performance 

Analysis Using End Member_2, Iii) Performance 

Analysis Using End Member_3 

Figure 9 shows the analysis using the end members 

through analyzing the reflectance with respect to 

the band. Figure 9 i) show the analysis using 

estimated end member_4 of original image_1. The 

reflectance of end member_4 at band 50 is 0.0538 

%, 0.2803 %, -0.3188 %, 0.0548 %, 0.0291 %, and 

0.2325 %, respectively. Figure 9 ii) shows the 

analysis using estimated end member_5 of original 

image_1. The reflectance of end member_5 at band 

50 is 0.5264 %, -0.0045 %, -0.2466 %, -0.0983 %, 

0.0670 %, and -0.0149 %, respectively. Figure 9 

iii) shows the analysis using estimated end 

member_6 of original image_1. The reflectance of 

end member_6 at band 50 is 0.0233 %, 0.0342 %, -
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0.2950 %, -0.0006 %, -0.4060 %, and 0.0550 %, 

respectively. 

 
i) 

 
ii) 

 
iii) 

Figure 9. Performance Analysis Using The Estimated 

End Members Of Original Image_1, I) Performance 

Analysis Using End Member_4, Ii) Performance 

Analysis Using End Member_5, Iii) Performance 

Analysis Using End Member_6 

Figure 10 shows the performance analysis using 

the original image_2. Figure 10 i) shows the 

analysis based on RE of the methods. The RE of 

the R-EHO method based on the population size 5, 

10, 15, 20, and 25 is 12.8489, 15.9104, 12.9897, 

12.4654, and 15.9371, respectively. Figure 10 ii) 

shows the analysis based on RMSE of the methods. 

The RMSE of the R-EHO method based on the 

population size 5, 10, 15, 20, and 25 is 0.0170, 

0.0211, 0.0172, 0.0165, and 0.0211, respectively. 

 

i) 

 

ii) 
Figure 10. Performance Analysis Using Original 

Image_2, I) Performance Analysis Based On RE, Ii) 

Performance Analysis Based On RMSE  

Figure 11 shows the analysis using the end 

members through analyzing the reflectance with 

respect to the band. Figure 11 i) show the analysis 

using estimated end member_1 of original 

image_2. The reflectance of end member_1 at band 

50 is -0.2004 %, 0.3867 %, -0.4072 %, 0.0932 %, -

0.2075 %, and 0.0166 %, respectively. Figure 11 ii) 

shows the analysis using estimated end member_2 

of original image_2. The reflectance of end 

member_2 at band 50 is 0.2835 %, -0.0335 %, -

0.1558 %, 0.0519 %, 0.2777 %, and 0.0448 %, 

respectively. Figure 11 iii) shows the analysis 

using estimated end member_3 of original 

image_2. The reflectance of end member_3 at band 

50 is -0.5053 %, -0.4861 %, 0.1484 %, -0.3545 %, 

-0.1460 %, and 0.1294 %, respectively. Figure 11 

iv) shows the analysis using estimated end 

member_4 of original image_2. The reflectance of 

end member_4 at band 50 is -0.0079 %, 0.5408 %, 

0.3933 %, 0.1099 %, 0.4387 %, and -0.1235 %, 

respectively. 
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i) 

 
ii) 

 

iii) 

 
iv) 

Figure 11. Performance Analysis Using The Estimated 

End Members Of Original Image_2, I) Performance 

Analysis Using End Member_1, Ii) Performance 

Analysis Using End Member_2, Iii) Performance 

Analysis Using End Member_3, Iv) Performance 

Analysis Using End Member_4 

Figure 12 shows the analysis using the end 

members through analyzing the reflectance with 

respect to the band. Figure 12 i) show the analysis 

using estimated end member_5 of original 

image_2. The reflectance of end member_5 at band 

50 is 0.2027 %, 0.0927 %,-0.3791 %, -0.1766 %, 

0.0598 %, and 0.2915 %, respectively. Figure 12 ii) 

shows the analysis using estimated end member_6 

of original image_2. The reflectance of end 

member_6 at band 50 is 0.2854 %, 0.3095 %, -

0.0471 %, -0.0092%, -0.3053 %, and -0.1690 %, 

respectively. Figure 12 iii) shows the analysis 

using estimated end member_7 of original 

image_2. The reflectance of end member_7 at band 

50 is 0.3251 %, -0.0524 %, -0.1347 %, 0.0293 %, 

0.0101 %, and 0.1789 %, respectively. Figure 12 

iv) shows the analysis using estimated end 

member_8 of original image_2. The reflectance of 

end member_8 at band 50 is 0.4431 %, -0.0881 %, 

0.4866 %, 0.0063 %, -0.7057 %, and -0.0076 %, 

respectively. 

 

i) 

 
ii) 

 

iii) 
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iv) 

 

Figure 12. Performance Analysis Using The Estimated 

End Members Of Original Image_2, I) Performance 

Analysis Using End Member_5, Ii) Performance 

Analysis Using End Member_6, Iii) Performance 

Analysis Using End Member_7, Iv) Performance 

Analysis Using End Member_8 

Figure 13 shows the analysis using the end 

members through analyzing the reflectance with 

respect to the band. Figure 13 i) show the analysis 

using estimated end member_9 of original 

image_2. The reflectance of end member_9 at band 

50 is 0.4327 %, -0.0805 %, 0.1255 %, -0.0070 %, 

0.6747 %, and -0.0417 %, respectively. Figure 13 

ii) shows the analysis using estimated end 

member_10 of original image_2. The reflectance of 

end member_10 at band 50 is 0.1037 %, 0.0559 %, 

0.0371 %, 0.0480 %, -0.5489 %, and 0.2083 %, 

respectively. Figure 13 iii) shows the analysis 

using estimated end member_11 of original 

image_2. The reflectance of end member_11 at 

band 50 is -0.0735 %, -0.2017 %, 0.1427 %, -

0.3773 %, 0.5749 %, and -0.0133 %, respectively. 

Figure 13 iv) shows the analysis using estimated 

end member_12 of original image_2. The 

reflectance of end member_12 at band 50 is -

0.0532 %, 0.4638 %,-0.2102 %, 0.4089 %, 0.4360 

%, and 0.0696 %, respectively. 

 

i) 

 
iii) 

 

iii) 

 
iv) 

 

Figure 13. Performance Analysis Using The Estimated 

End Members Of Original Image_2, I) Performance 

Analysis Using End Member_9, Ii) Performance 

Analysis Using End Member_10, Iii) Performance 

Analysis Using End Member_11, Iv) Performance 

Analysis Using End Member_12 

5.5 Competing Methods 

The methods employed for comparing the 

proposed spectral unmixing includes: bi-objective 

optimization model (Bi-MOSU) and tri-objective 

optimization model (Tri-MOSU) [2], Pareto multi-

objective based sparse unmixing (Pareto- MOSU) 

[32], Robust collaborative Non-negative matrix 

Factorization (R-CoNMF) [26], and Rider 

Optimization Algorithm (ROA) [11]. Additionally, 

Lion Rider Optimization (LRO) is employed as the 

comparative method for the spectral unmixing and 

LRO is the integration of the Lion Optimization 

(LOA) in Rider Optimization algorithm (ROA).  
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5.6 Comparative Analysis 

This section presents the comparative analysis of 

the methods based on the end members estimated 

and based on the performance metrics. The 

analysis is performed using two images, original 

image_1 and original image_2. 

5.6.1 Comparative analysis based on the original 

image_1 depending on the performance metrics 

The comparison of the methods based on the 

performance metrics, RE and RMSE are performed 

in this section using the original image_1. Figure 

14 shows the comparative analysis based on RE 

and RMSE and figure 14 i) shows the comparative 

analysis based on RE. The RE of the methods, Bi-

MOSU + Tri-MOSU, R-CoNMF, Pareto-MOSU, 

ROA, LRO, and proposed R-EHO is 61.2490, 

51.4851, 42.7426, 34.7466, 17.1446, and 10.4680, 

when the SND is 25dB. Figure 14 ii) shows the 

comparative analysis based on RMSE. The RMSE 

of the methods, Bi-MOSU + Tri-MOSU, R-

CoNMF, Pareto-MOSU, ROA, LRO, and proposed 

R-EHO is 0.0814, 0.0617, 0.0462, 0.0412, 0.0139, 

and 0.0011, when the SND is 25dB. It is clear that 

the proposed R-EHO method acquires the minimal 

RMSE and minimal RE when compared with the 

existing methods. 

 

i) 

 

 

ii) 

 
Figure 14. Comparative Analysis Using Original 

Image_1, I) Performance Analysis Based On RE, Ii) 

Performance Analysis Based On RMSE 

5.6.2 Comparative analysis using the end 

members of original image_1 

Figure 15 shows the comparative analysis using the 

end members of the original image_1. Figure 15 i) 

show the comparative analysis using the end 

member_1. The reflectance of the methods, Bi-

MOSU + Tri-MOSU, R-CoNMF, Pareto-MOSU, 

ROA, LRO, and proposed R-EHO is 0.2388 %, -

0.3399 %, 0.1744 %, 0.4246 %, and -0.2585 %, 

respectively for band 50. Figure 15 ii) show the 

comparative analysis using the end member_2. The 

reflectance of the methods, Bi-MOSU + Tri-

MOSU, R-CoNMF, Pareto-MOSU, ROA, LRO, 

and proposed R-EHO is 0.5260 %, 0.0664 %, 

0.1850 %, 0.2539 %, and -0.2303 %, respectively 

for band 50. Figure 15 iii) show the comparative 

analysis using the end member_3. The reflectance 

of the methods, Bi-MOSU + Tri-MOSU, R-

CoNMF, Pareto-MOSU, ROA, LRO, and proposed 

R-EHO is -0.1373 %, 0.0759 %, -0.0591 %, 0.1672 

%, and -0.0857 %, respectively for band 50. 

 
i) 
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ii) 

 
iii) 

Figure 15. Comparative Analysis Using The End 

Members Of Image_1, I) End Member_1, Ii) End 

Member_2, Iii) End Member_3 

Figure 16 shows the comparative analysis using the 

end members of the original image_1. Figure 16 i) 

show the comparative analysis using the end 

member_4. The reflectance of the methods, Bi-

MOSU + Tri-MOSU, R-CoNMF, Pareto-MOSU, 

ROA, LRO, and proposed R-EHO is 0.0942%, -

0.2619 %, 0.0626 %, 0.1741 %, and -0.0768 %, 

respectively for band 50. Figure 16 ii) show the 

comparative analysis using the end member_5. The 

reflectance of the methods, Bi-MOSU + Tri-

MOSU, R-CoNMF, Pareto-MOSU, ROA, LRO, 

and proposed R-EHO is 0.1924 %, 0.4386 %, 

0.062 %, -0.01 %, and -0.4193 %, respectively for 

band 50. Figure 16 iii) show the comparative 

analysis using the end member_6. The reflectance 

of the methods, Bi-MOSU + Tri-MOSU, R-

CoNMF, Pareto-MOSU, ROA, LRO, and proposed 

R-EHO is 0.2819%, 0.0886 %, 0.1131 %, - 0.4480 

%, and 0.0962 %, respectively for band 50. 

 
i) 

 
ii) 

 
iii) 

Figure 16. Comparative Analysis Using The End 

Members Of Image_1, I) End Member_4, Ii) End 

Member_5, Iii) End Member_6 

5.6.2 Comparative analysis based on the original 

image_2 depending on the performance metrics 

The comparison of the methods based on the 

performance metrics, RE and RMSE are performed 

in this section using the original image_2. Figure 

17 shows the comparative analysis based on RE 

and RMSE and figure 17 i) shows the comparative 

analysis based on RE. The RE of the methods, Bi-

MOSU + Tri-MOSU, R-CoNMF, Pareto-MOSU, 

ROA, LRO, and proposed R-EHO is 94.7656, 

82.5873, 60.9128, 43.4902, 19.2401, and 13.8576, 

when the SNR is 25dB. Figure 17 ii) shows the 

comparative analysis based on RMSE. The RMSE 

of the methods, Bi-MOSU + Tri-MOSU, R-

CoNMF, Pareto-MOSU, ROA, LRO, and proposed 

R-EHO is 0.1255, 0.0807, 0.0576, 0.0533, 0.0184, 

and 0.0048, when the SND is 25dB. It is clear that 

the proposed R-EHO method acquires the minimal 

RMSE and minimal RE when compared with the 

existing methods. 

 



Journal of Theoretical and Applied Information Technology 
15th April 2022. Vol.100. No 7 

© 2022 Little Lion Scientific  

 

ISSN: 1992-8645                                  www.jatit.org                         E-ISSN: 1817-3195 

 
2163 

 

 

i) 

 

6  

ii) 
Figure 17. Comparative Analysis Using Original 

Image_2, I) Performance Analysis Based On RE, Ii) 

Performance Analysis Based On RMSE 

Figure 18 shows the comparative analysis using the 

end members of the original image_2. Figure 18 i) 

show the comparative analysis using the end 

member_1. The reflectance of the methods using 

end member_1, Bi-MOSU + Tri-MOSU, R-

CoNMF, Pareto-MOSU, ROA, LRO, and proposed 

R-EHO is 0.4360 %, 0.4616 %, 0.037 %, -0.0789 

%, and 0.3112 %, respectively for band 50. Figure 

18 ii) show the comparative analysis using the end 

member_2. The reflectance of the methods using 

end member_2, Bi-MOSU + Tri-MOSU, R-

CoNMF, Pareto-MOSU, ROA, LRO, and proposed 

R-EHO is 0.1911 %, 0.6977 %, 0.7234 %, -0.0631 

%, and 0.2376 %, respectively for band 50. Figure 

18 iii) show the comparative analysis using the end 

member_3. The reflectance using end member_3 of 

the methods, Bi-MOSU + Tri-MOSU, R-CoNMF, 

Pareto-MOSU, ROA, LRO, and proposed R-EHO 

is 0.3199%, -0.2201 %, -0.6707 %, 0.5184 %, and -

0.2885 %, respectively for band 50. Figure 18 iv) 

show the comparative analysis using the end 

member_4. The reflectance using end member_4 of 

the methods, Bi-MOSU + Tri-MOSU, R-CoNMF, 

Pareto-MOSU, ROA, LRO, and proposed R-EHO 

is -0.1573%, 0.4602 %, 0.0451 %, - 0.0704 %, and 

0.2605 %, respectively for band 50. 

 

i) 

 
ii) 

 

 

iii) 

 

 
iv) 

Figure 18. Comparative Analysis Using The End 

Members Of Image_2, I) End Member_1, Ii) End 

Member_2, Iii) End Member_3, Iv) End Member_4 

Figure 19 shows the comparative analysis using the 

end members of the original image_2. Figure 19 i) 

show the comparative analysis using the end 

member_5. The reflectance of the methods using 

end member_5, Bi-MOSU + Tri-MOSU, R-

CoNMF, Pareto-MOSU, ROA, LRO, and proposed 

R-EHO is 0.3450 %, -0.2604 %, 0.3724 %, -0.8402 

%, and -0.5649 %, respectively for band 50. Figure 
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19 ii) show the comparative analysis using the end 

member_6. The reflectance of the methods using 

end member_6, Bi-MOSU + Tri-MOSU, R-

CoNMF, Pareto-MOSU, ROA, LRO, and proposed 

R-EHO is -0.1267 %, -0.1198 %, 0.1413 %, 0.6138 

%, and -0.3907 %, respectively for band 50. Figure 

19 iii) show the comparative analysis using the end 

member_7. The reflectance using end member_7 of 

the methods, Bi-MOSU + Tri-MOSU, R-CoNMF, 

Pareto-MOSU, ROA, LRO, and proposed R-EHO 

is 0.4503 %, -0.3869 %, 0.3632 %, 0.3083 %, and -

0.3617 %, respectively for band 50. Figure 19 iv) 

show the comparative analysis using the end 

member_8. The reflectance using end member_8 of 

the methods, Bi-MOSU + Tri-MOSU, R-CoNMF, 

Pareto-MOSU, ROA, LRO, and proposed R-EHO 

is 0.2213 %, -0.1797 %, -0.2257 %, 0.2171 %, and 

0.2218 %, respectively for band 50. 

 

i) 

 
ii) 

 

iii) 

 
iv) 

Figure 19. Comparative Analysis Using The End 

Members Of Image_2, I) End Member_5, Ii) End 

Member_6, Iii) End Member_7, Iv) End Member_8 

Figure 20 shows the comparative analysis using the 

end members of the original image_2. Figure 20 i) 

show the comparative analysis using the end 

member_9. The reflectance of the methods using 

end member_9, Bi-MOSU + Tri-MOSU, R-

CoNMF, Pareto-MOSU, ROA, LRO, and proposed 

R-EHO is -0.5441 %, -0.0731 %, 0.1184 %, -

0.5136 %, and 0.5269 %, respectively for band 50. 

Figure 20 ii) show the comparative analysis using 

the end member_10. The reflectance of the 

methods using end member_10, Bi-MOSU + Tri-

MOSU, R-CoNMF, Pareto-MOSU, ROA, LRO, 

and proposed R-EHO is -0.6823%, 0.1039 %, 

0.5173 %, 0.3126 %, and -0.3622 %, respectively 

for band 50. Figure 20 iii) show the comparative 

analysis using the end member_11. The reflectance 

using end member_11 of the methods, Bi-MOSU + 

Tri-MOSU, R-CoNMF, Pareto-MOSU, ROA, 

LRO, and proposed R-EHO is 0.0089 %, -0.1676 

%, -0.0004 %, -0.4341 %, and 0.0213 %, 

respectively for band 50. Figure 20 iv) show the 

comparative analysis using the end member_12. 

The reflectance using end member_12 of the 

methods, Bi-MOSU + Tri-MOSU, R-CoNMF, 

Pareto-MOSU, ROA, LRO, and proposed R-EHO 

is 0.0958 %, -0.3257 %, 0.4400 %, -0.0034 %, and 

0.3088 %, respectively for band 50. 

 

i) 
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ii) 

iii) 

 
iv) 

 

Figure 20. Comparative Analysis Using The End 

Members Of Image_2, I) End Member_9, Ii) End 

Member_10, Iii) End Member_11, Iv) End Member_12 

5.9 Comparative Discussion 

The research contribution of R-EHO is determined 

by the estimation of endmembers from each mixed 

pixel. The sparse based spectral unmixing approach 

using R-EHO multi-objective optimization 

technique achieves the global convergence by 

simultaneously optimizing the objective functions 

terms namely sparsity, spatial neighbour, spatial 

neighbour correlation, mutual information and 

reconstruction error.  

 

The comparative discussion shows the 

effectiveness of the proposed R-EHO algorithm in 

spectral unmixing and table 1 shows the numerical 

justification of the methods. It is clear from the 

table 1 that the proposed R-EHO spectral unmixing 

outperformed the existing methods with a minimal 

RMSE and minimal RE of 0.0011 and 13.8576, 

respectively. 

 
Table 1. Comparative Discussion 

 

 

 

5.10 Difference from the prior research 

 

The R-EHO is the hybrid computational approach 

of incorporating the Rider Optimization Algorithm 

(ROA) in the Elephant Herd Optimization method. 

The ROA method is developed on a fictious 

computer paradigm, not like other artificial 

computing algorithms and nature inspired 

algorithms that are based on real world data. 

 

6. CONCLUSION 

The paper demonstrates the spectral unmixing 

model based on a hybrid optimization, Rider-

Elephant Herd Optimization (R-EHO) algorithm. 

The fractional abundances in the end members are 

estimated using the proposed optimization 

algorithm through the application of the multi-

objective function, which is designed using the 

RSE, SPA, SNI, SNC, and mutual information. 

The R-EHO algorithm is the integration of the 

standard EHO in the existing ROA in such a way 

that the characteristics of the standard ROA is 

enhanced with the characteristics of EHO so that 

the convergence speed and the global optimal 

convergence is enhanced. The analysis of the 

methods is performed using the Cuprite and Urban 

dataset, which possesses 6 and 12 end members, 

respectively. The analysis is progressed using the 

end members and the comparative discussion is 

done with respect to the performance metrics, 

RMSE and RE. The proposed R-EHO algorithm 

for spectral unmixing reported with the minimal 

RMSE and minimal RE of 0.0011 and 13.8576, 

respectively. In the future, this research work 

would extend the research opportunities in 

evolutionary computing to incorporate multiple 

objectives pertaining to the bio-inspired or nature 

inspired computing so that the optimum solutions 

could be attained for the computationally complex 

problems which high dimensional data sources. 

The proposed R-EHO would be compatible with 

linear spectral unmixing paradigm which would 

compromise in extreme high dimensional dataset 
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manipulations and could be controlled by 

enhancing the algorithm as a non-linear computing 

model for enhanced versions of endmemers 

estimations. The R-EHO spectral unmixing 

algorithm will be improved by looking into 

possible nature-inspired computational models for 

long-term fractional abundance estimation and end 

member quantification in deep CNN architecture. 
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