
Journal of Theoretical and Applied Information Technology
15th April 2022. Vol.100. No 7

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2127

IMPLEMENTATION OF INTEGRATION SYSTEM BASED ON

MICROSERVICES USING DOMAIN-DRIVEN DESIGN

METHODOLOGY

1MUHAMAD FADHLY, 2AHMAD NURUL FAJAR

1Information Systems Management Department, Binus Graduate Program – Master of Information Systems

Management, Bina Nusantara University, Jakarta, Indonesia 11480

2Information Systems Management Department, Binus Graduate Program – Master of Information Systems

Management, Bina Nusantara University, Jakarta, Indonesia 11480

E-mail: 1muhamad.fadhly@binus.ac.id, 2 afajar@binus.edu

ABSTRACT

The Tangerang Government's development planning process is currently running well, however, it is still

constrained by the length of time it takes to input basic data and poor data accuracy by manually inputting

data. The applications involved in providing basic data are still fragmented. So the data is not yet

integrated, starting from planning, budgeting, accounting, monitoring and reporting.

This study proposes a system integration that is in accordance with the needs of the work plan reporting

process in the monitoring and evaluation system. With this service based enterprise architecture, an

integrated monitoring and evaluation system will be built. As a result, an architectural enterprise based on

Microservices will be built that can perform data integration lightly and quickly using the Domain-Driven

Design method approach which is considered suitable and appropriate for designing architecture in the

performance monitoring and evaluation system of Tangerang City.

Keywords : Enterprise Architecture, Integration System, Microservices, Domain-Driven Design,

Tangerang City

1. INTRODUCTION

In accordance with the mandate of the Minister

of Home Affairs Regulation No. 86 of 2017, the

Regional Planning and Development Agency

(Bappeda) of Tangerang City is expected to carry

out regional development planning in a transparent,

responsive, efficient, effective, accountable,

participatory, measurable, fair, environmentally and

sustainable manner[1] (Article 5 of Domestic

Regulation No. 86 of 2017. 2017). In addition to

carrying out the planning in the regulation, a

monitoring and evaluation stage of the Work Plan

(renja) is regulated within the span of 1 (one) fiscal

year.

And furthermore, in accordance with the Decree

of the Mayor of Tangerang Number:

800/Kep.313.1-Inspektorat/2017 concerning the

Integrated Corruption Eradication Program Action

Plan, the Corruption Eradication Commission

(KPK) requires a regional financial management

system which includes an Electronic Monitoring

and Evaluation System (E-Monev) .

Therefore, an information system that is able to

facilitate the monitoring & evaluation stages has

been built under the name E-Monev. The

composition of the data for the monitoring and

evaluation phase of the Regional Work Plan (renja)

consists of 4 (four) data elements that complete the

reporting format.

The four data sources in question are sourced

from 4 (four) applications with different platforms,

programming languages, databases and servers. The

details consist of:

Journal of Theoretical and Applied Information Technology
15th April 2022. Vol.100. No 7

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2128

Table 1: Integration Data Source List

NO DOCUMENT DATA APPLICATION PLATFORM

1.

RPJMD

(regional mid-term

development plan)

Programs &

Program

Indicators

E-Planning
PHP

MySQL

2.

DPA

(Budget Execution

Document)

Activities,

Activity

Outputs and

Budget

SIPKDI

(regional financial

management

information

system)

PHP

MySQL

3. Development Report
Physical

Realization

SIEVLAPI

(integrated

evaluation &

reporting

information

system)

PHP

MySQL

4.
SPJ

(Letter of Accountability)

Financial

Realization

SP3KTRA

(Tangerang city

financial

management,

administration &

reporting system)

Java

PostgreSQL

Later, after the above data is available, then the

monitoring and evaluation process can be carried

out by inputting the performance of each indicator

that is coupled with the financial and physical

realization that has also been achieved.

The impact of different and not integrated

systems is that in the monitoring and evaluation

process, users often have to re-enter the basic data.

The following is information on time requirements

if you do manual input [2].

Table 2 Manual Input Time Record

NO FORM NAME

AVERAGE

NUMBER OF

FORMS AN

INSTITUTION

ESTIMATED

TIME

1. Programs & Program Indicators 12 36 Minutes

2.
Activities, Activity Indicators &

Budget
25

1 Hour

15 Minutes

3. Physical Realization 15 32 Minutes

4. Financial Realization 15 38 Minutes

Things like this cause problems both in terms of

inefficient time and of course the risk of errors

when re-entering planning and budgeting data and

the realization that has been achieved.

In terms of application development, integration

has now begun separately for each application using

an API (Application Programming Interface). The

API uses REST (REpresentational State Transfer)

which allows users to directly access information in

a database via HTTP (Hypertext Transfer

Protocol)[3].

The HTTP methods commonly used in REST-

based architectures are (GET, POST, PUT,

DELETE and OPTIONS) and replies are sent in

either simple JSON or XML. So that the

information received can be more easily read on the

client application side [4].

The development using the REST method is also

considered to be still not as expected because every

application developer at the beginning of a work

project is always charged with creating an API.

Making this API apart from being time-consuming

in making applications, will also reduce the quality

of the application due to the lack of detailed time

for application development, so that the project is

then required to return to the project for application

development.

Journal of Theoretical and Applied Information Technology
15th April 2022. Vol.100. No 7

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2129

It can be simulated that if Project X is charged

with creating an API (Application Programming

Language) it will reduce the time to build the

application. whereas Project Y only requires API

analysis if reusable APIs are available from

previous projects.

In government management, data reuse and data

sharing is a stage that becomes a rotating cycle. For

example, the results of the annual budget audit will

be used as a planning evaluation material for the

next fiscal year.

Thus, the use of data integration utilizes a

microservices architecture in which there is a

management API of existing applications that are

considered capable of responding to data integration

needs in the local government management cycle,

which in this case occurs in the Tangerang City

Government.

Microservices are small applications with a

responsibility that can be deployed, scaled and

tested independently. Microservices are used

throughout the industry to facilitate agile data

delivery mechanisms for service-oriented

architectures and to migrate legacy, function-

oriented architectures to highly flexible service

orientations. Microservices software breaks down

systems and applications to a more granular and

modular level [5].

To build a microservice-based architecture that

has a fairly complex and detailed level of data

usage, in this study the Domain-driven design

(DDD) method used is based on the domain model

of each application to be integrated.

Domain-driven design (DDD) is a popular

model-driven methodology for capturing

knowledge of relevant domains for software design.

also to encourage understanding of emerging

domains and design correctness, then emphasizing

agile collaborative modeling from domain experts

and software developers. DDD will capture the

additional need because it provides a means to parse

the domain into context. This context corresponds

to the functionality of microservices that provide

different business process capabilities [6].

As previously explained, the data source which is

the master data in the Monitoring and Evaluation

System is currently still independent and separate

data sources, so that the process carried out requires

repeated input. This creates a problem. The

formulation of the problem is as follows:

1. What kind of architectural design can meet the

needs of data integration for the monitoring and

evaluation system of work plans (renja)?

2. How to build a prototype of an integrated work

plan monitoring and evaluation system so that the

databases of each system can be connected and can

share data?

The objectives of implementing the integrated

monitoring and evaluation system for regional

development planning are:

1. Produce an architecture design for monitoring

system application integration and evaluation of

work plans with a Microservices architectural

approach.

2. Build a prototype of an integrated work plan

monitoring and evaluation system to improve

business processes, namely by reducing repetitive

data input manually.

The benefits expected with the integration of the

monitoring and evaluation system for regional

development planning are as follows:

1. The stages of monitoring and evaluating

development planning data, especially for work

plan data (renja) are carried out by all district, city

and provincial governments throughout Indonesia.

By conducting this case study research, it is

possible to produce an integrated monitoring and

evaluation system architecture that becomes a

reference for all local governments throughout

Indonesia.

2. Furthermore, this research can make good

local government performance judged from the

monitoring and evaluation stage of planning and

reporting that is accountable and achieves with a

good grade level. Which is annually carried out by

the Ministry of State Apparatus Empowerment and

Bureaucratic Reform, as well as the Ministry of

Home Affairs of the Republic of Indonesia.

This research is about how to integrate data using

a microservice architecture using the DDD

(domain-driven design) method, not including API

management, data integration security and load-

balancing techniques for services that will appear

later.

2. METHODOLOGY

A. E-Monev

The Tangerang City Government in carrying

out the Monitoring and Evaluation of the Work

Plan using E-Monev, the data comes from different

Journal of Theoretical and Applied Information Technology
15th April 2022. Vol.100. No 7

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2130

and independent applications. For planning data

using the e-Planning application, budget data using

SIKDI. As for the data on administration and

financial reporting using the SP3KTRA application,

then for the evaluation data and reporting on the

progress of the physical realization of each activity

using the SIEVLAP application..

After the basic data above is available. Thus,

the Monitoring and Evaluation transaction process

can then be carried out. The Monitoring and

Evaluation process in question is by entering

performance data within 3 (three) months of each

existing indicator, the performance data entered can

also be viewed from the achievement of financial

reporting values and physical realizations that have

been achieved..

B. E-Planning

 E-Planning or Regional Development

Planning Information System (SIPPD) is an

information system used for the preparation of the

RKPD (Regional Government Work Plan) and

Renja (Work Plan) of Regional Apparatus

Organizations for planning and budget targets, so

that they can be completed easily, quickly, and

efficiently. appropriate and in accordance with what

is mandated in the Regulation of the Minister of

Home Affairs No. 54 of 2010 concerning the

Implementation of Government Regulation No. 8 of

2008 concerning the Stages of Preparation of

Control and Evaluation of the Implementation of

Regional Government Development Plans

C. SIPKDI

SIPKDI or Regional Financial Management

Information System is an integrated application that

is used as a tool that aims to increase the

effectiveness of the implementation of various

regional financial management regulations based on

the principles of efficiency, economy, effectiveness,

transparency, accountability and auditability. Based

on Permendagri Number 13 of 2006 concerning

Guidelines for Regional Financial Management.

This application is also a manifestation of the

local government's real action in the field of

regional financial management, in order to

strengthen the common perception of regional

financial management systems and procedures in

the interpretation and implementation of various

laws and regulations..

D. SP3KTRA

SP3KTRA, which stands for the Tangerang

City financial management, administration, and

reporting system, is a facilitation of the Tangerang

City regional financial management work process

which is manifested in a high-tech cloud

application system and reflects the integration of

processes and data integration of the overall

implementation of regional financial management.

This application system is built based on

Government Regulation Number 71 of 2010

concerning Government Accounting Standards,

Minister of Home Affairs Regulation Number 64 of

2013 concerning Application of Accrual

Accounting System in Regional Governments and

Minister of Home Affairs Number 13 of 2006

concerning Guidelines for Regional Financial

Management.

E. SIEVLAPI

The Evaluation and Reporting Information

System, which is abbreviated as SIEVLAPI, is an

application that is used as a development reporting

medium for the physical or non-physical realization

of activities or their derivatives, it also includes a

comparison of the realization of financial or budget

reporting that supports the physical realization.

This application system is used by the

Tangerang City Government through the

Development Control Section of the Regional

Secretariat for benchmarking data on development

reporting achievements that are running based on

the active fiscal year. It is also often used as the

basis for evaluating the absorption capacity of the

budget from the activities carried out.

F. Microservices

Microservices can be seen as a technique for

developing software applications that inherit the

principles and concepts of the Service Oriented

Architecture (SOA) style. it is possible to structure

a service-based application as a very small, loosely

coupled collection of software services.

Microservices architecture can be seen as a

new paradigm for programming applications

through a composition of small services, each

running its own process and communicating

through lightweight mechanisms. Microservices for

Journal of Theoretical and Applied Information Technology
15th April 2022. Vol.100. No 7

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2131

their contribution to the application, not for the

lines of code [7].

Microservices is a software architecture

concept where the system consists of small services

that work together and are autonomous, deployable,

scalable, modeled on a bounded context [8].

G. API Gateway

API Gateway An API Gateway is a server that is

the single entry point into the system. This is

similar to the outward side view pattern of object-

oriented design.

An API Gateway encapsulates the internal system

architecture and provides a customized API for

each client. An API Gateway may have other

responsibilities such as authentication, monitoring,

load balancing, caching, request shaping and

request management, and static response handling.

The API Gateway is responsible for routing,

composition, and protocol translation requests. All

requests from clients go through API Gateway first.

It then routes those requests to the appropriate

microservices.

The API Gateway will often handle requests by

implementing multiple microservices and

aggregating the results. It can translate between

web protocols like HTTP and WebSocket and web

protocols that are not commonly used internally [9].

H. Domain-Driven Design

Domain Driven Design is a complex approach

to software development where: Focus on core

domains Explore models in creative collaboration

of domain practitioners and software practitioners

Speak languages everywhere in explicitly

constrained contexts [10].

Domain Driven Design combines design and

development practices, and shows how design and

development can work together to create better

solutions. Good design will speed up development,

while the input that comes from the development

process will improve the design [11].

The Domain Model is not a specific diagram,

it is the idea the diagram is trying to convey. This is

not only the knowledge that lies at the head of the

domain expert, it is a tightly structured and

selective abstraction of that knowledge [11].

Bounded Context is not a Module. The

Bounded Context provides the logical framework

within which the model develops. Modules are used

to organize the elements of the model, so the

Bouded Context will include the Module [11].

Figure 1. Building blocks Domain Driven Design[12]

I. REST

REST is a type of web service that applies the

concept of switching between states. State here can

be described as if the browser requests a web page,

then the server will send the current state of the

web page to the browser. Navigating through the

links provided is the same as changing the state of

the web page. Similarly, REST works, by

navigating through HTTP links to perform certain

activities, as if they were switching states from one

another. [13].

REST Webservices builds integrations in a

lighter and simpler way, and focuses on resources

[14]. The main idea of REST is the concept of

resources as components of the application that

need to be used or addressed [15].

3. RESULT S AND DISCUSSION

According to the results of an interview with

the Head of Development Planning, Evaluation and

Reporting, Bappeda. The owner of this project

suggests studying the monitoring and evaluation

report format, which can be taken from the Minister

of Home Affairs Regulation Number 86 of 2017

with report type E.81.

Journal of Theoretical and Applied Information Technology
15th April 2022. Vol.100. No 7

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2132

Figure 2. Work Plan Monitoring and Evaluation Report

Format

In the report, a monitoring and evaluation

format is made which is carried out by all

provincial governments as well as districts and

cities. And the report format is used as a reference

for monitoring and evaluating work plans. Here is

what the report looks like

From the results of interviews with all

stakeholders involved. So, it can be concluded that

the data requirements needed in data integration for

monitoring and evaluating this work plan, as for the

list are as follows.

Table 3. Data Requirements and Application Sources

NO DATA
APPLICATION

SOURCE

1 Program E-Planning

2 Program Indicator E-Planning

3 Program Budget Plan E-Planning

4 Activity E-Planning

5 Activity Indicator E-Planning

6 Activity Budget Plan E-Planning

7 Activity Budget SIPKDI

8 Outputs of Activities SIPKDI

9 Financial Realization SP3KTRA

10 Physical Realization SIEVLAPI

Next, this data will be made into an API and

entered into the API Gateway. And then it will be

entered into the E-Monev application database for

the basis of monitoring and evaluation and

reporting

A. Analysis of Existing E-Planning

To be able to provide an overview of the flow

in the E-Planning application in order to facilitate

the integration process that will be carried out, a

flowchart is made. This is intended so that the

process of forming the data to be integrated can be

mapped.

This application stores data related to

development planning. All data stored is a plan and

there is no certainty that it will be implemented

because it will be compared with the availability of

funds and other readiness

Figure 3. E-Planning Application System Flow

If you look at the flow above, the E-Planning

application will overwrite the Program and

Activity database as well as other complementary

attributes such as indicators and funding plans or

budgets. All data will be stored in the RPJMD

database after being jointly approved by the Mayor

and DPRD.

B. Analysis of Existing SIPKDI

After the previous application contained planning

data, the SIPKDI application (regional financial

management information system) is an application

that stores budget data that will be carried out

every year.

This budget data is also initially sourced from

planning data in E-Planning which is taken in an

annual format for estimation by each implementing

agency, then it will also be jointly approved by the

mayor and DPRD.

And after ratification, the value of the data will be

stored in this application as a reference for

implementing activities, the outputs to be achieved

are in accordance with the previously agreed

budget provisions. There is also a shift in the

budget due to important needs and aid funds from

the central government, so it is enough to enter

directly into the application

Journal of Theoretical and Applied Information Technology
15th April 2022. Vol.100. No 7

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2133

Figure 4. SIPKDI Application System Flow

C. Analysis of Existing SP3KTRA

Figure 5. SP3KTRA Application System Flow

The SP3KTRA application is an application that is

used as a medium for budget disbursement and

reporting. The basic data used in this application is

data from the SIPKDI application, because all

budget data that is subject to rules is in the

application.

Each agency or OPD submits a request for

disbursement of funds, then the admin will review

the value of the submission against the priority and

availability of funds. If approved, a letter of

disbursement of funds will be issued which will

also be copied to the Bank for direct transfer to the

account to the destination. All disbursement

activities will be recorded and recorded and the

reporting is validated through this application.

D. Analysis of Existing SIEVLAPI

SIEVLAPI or evaluation and reporting information

system is an application that stores everything

related to the physical facts of the regional budget.

In this application, agencies or OPD that carry out

activities or use a budget are required to report

visible activity results in the form of a percentage

of real results to the budget value used.

Figure 6. SIEVLAPI Application System Flow

This application utilizes annual budget data from

the SIPKDI application to be used as the basis for

the physical realization achieved by each activity

implementer. Later each OPD will report the results

of its physical realization and will also be

monitored and validated for the realization value by

the Admin in the Development Control Section..

E. Data integration analysis

From the results of the analysis of the above

application flows. So, it can be described a data

flow chart plan that will be used for integration

into the E-Monev application, especially for the

needs of monitoring and evaluating work plans

using the API..

Journal of Theoretical and Applied Information Technology
15th April 2022. Vol.100. No 7

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2134

Figure 7. E-Monev Data Integration Flow

Next, a service or API will be built according to

the flowchart above. Then the API that has been

created will be registered on the API Gateway so

that every existing service can be easily controlled

and easy to reuse in the future.

The API Gateway that was built aims as a single

entry point that will orchestrate all existing APIs,

so that later the URL address (Uniform Resource

Locator) from each existing application becomes

uniform 1 (one) URL address even though it is

from different applications and different APIs.

F. Microservices Design With a Domain-Driven

Design Approach

The initial phase of this approach using Domain

Driven Design (DDD) is domain analysis. The

domain model is an abstract model of the business

domain. This process is to filter and organize

domain knowledge, and provide a common

language for developers [16]. After conducting an

analysis of the running system, a description of the

domain analysis was found, which is as shown in

the following figure:.

Figure 8. Integration Domain Analysis Monitoring and

Evaluation of Work Plans.

From the domain analysis figure above, it can be

seen that the achievement of indicators to be

monitored and evaluated comes from 2 (two)

groups of data domains, namely (1) the basic data

group for the work plan and (2) the comparison

data group. The details are as follows

Table 4. List of Domains for Monitoring and Evaluation

of Work Plan Integration

Domain

Group
Domain Sub-Domain

Basic Data Planning
List of

Programs &

Activities

Indicator

Budget plan

Budget

Program &

Activity Code

Activity

Results/Outputs

Activity Budget

Comparative

Data

Development

Report

Activity List

Physical Report

Financial

Statements

Activity List

Financial

Statements

The conclusion of this domain analysis is to

produce 4 (four) domains and 10 (ten) sub-

domains. Furthermore, these domains and

subdomains will be used as the basis for integration

development such as determining the number of

services or APIs and so on.

The next discussion will gradually describe a stage

in architectural design using Domain-Driven

Design in the development of system integration in

this study referring to the above domain analysis.

The domain model describes in a structured way

the data flow based on certain parameters, visually

also depicts areas related to activities or data usage

[17]. The following is an overview of the domain of

the integration architecture model that will be

implemented.

Figure 9. Domain Model

From the picture above, the root domain will be

OPD (regional device organization), technically

this parameter can be id_opd or code_opd as the

primary key. This parameter will be used as the

main parameter for other domains, such as

Journal of Theoretical and Applied Information Technology
15th April 2022. Vol.100. No 7

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2135

program domain, activity domain, budget domain,

financial and physical realization domain.

Furthermore, all data flow will go through this root

domain parameter. And for the basic OPD data, the

source will be found from the application which is

the beginning of the stage, namely the E-Planning

application

 Bounded Context

Bounded Context is an approach that separates

large models into smaller contexts explicitly and

the relationship between them [17]. To make it

easier and align the data cross, it is known the

kode_path which is part of the attributes of the

OPD model.

Adjusting to the number of models in the analysis

of the eating domain, the number of bounded

contexts described also amounts to 4 (four) with 1

(one) root domain.

Figure 10. Bounded Context

 Entities

To describe entities or entities and their attributes, it

is very suitable to use class diagrams on UML

(unifield modeling language) diagrams. Class will

also describe the relationship between one entity

with another entity

Figure 11. Entities Diagram

There are at least 11 (eleven) entities that can be

connected to each other to get the expected

integration pattern. Those eleven entities are

1. OPD

2. Program

3. Program indicators

4. Program funding plan

5. Activities

6. Activity indicators

7. Activity funding plan

8. Activity output

9. Activity budget

10. Financial realization

11. Physical realizationValue Object

Figure 12. Diagram Value Object Intergrasi

Value objek describes the identity of an entity or

object, in detail the object value describes the data

type used in each object. Later the API that is

Journal of Theoretical and Applied Information Technology
15th April 2022. Vol.100. No 7

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2136

formed will also adjust the value of this described

object. The following is a list of data types used

for each object or entity in general

1. Opd : integer, string

2. Program : integer, string

3. Program indicators: integer, string

4. Program funding plan: integer, float

5. Activity : integer, string

6. Activity indicators: integer, string

7. Activity funding plan: integer, float

8. Activity output: integer, string

9. Activity budget : integer, float

10. Financial realization : integer, float

11. Physical realization : integer, char

 Services

There are 4 (four) interconnected layers, namely

presentation layer, application layer, domain

layer, and infrastructure layer. The details are

densely packed in the following service diagram:

Figure 13. Service Layer Integration Diagram

Monitoring and Evaluation of Work Plans [18].

The details of these layers are as follows:

1. Preserntation layer : Responsible for

presenting information to users and

interpreting user commands, consisting of

below:

 E-Monev Application

 Web-based application

 Platform uses php-myql Engine

 Its main function is to integrate work

plan data.

2. Aplication layer : The layer that

coordinates application activities. does

not contain any business logic and does

not hold the state of a business object, but

it can hold the progress state of an

application task. consist of:

 programs – synchronization activities

 targets – synchronization budgets,

 synchronization financial realization

report

 physical realization of

synchronization

3. Domain Layer : This layer contains

information about the business domain.

The state of the business object is held

here. business objects, and may have their

state delegated to the infrastructure layer.

Consist of below:

 Planning Domain

 Budget Domain

 Financial Report Domain

 Report Domain

4. Infrastruktur Layer : This layer acts as

supporting information for all other

layers. And this layer implements

business objects. Consist of below

 Database & API E-Planning

 Database & API SIPDKI

 Database & API SP3KTRA

 Database & API SIELAPI

 Kong API Gateway

 Modules

The use of modules is actually common in system

development. The purpose of dividing classes into

modules is a division of responsibility for making

a collection of concepts stand independently.

In this modeling module there are 6 (modules)

with details of 5 (five) distributed modules and 1

(one) main module as a target that will be

connected using Rest-API. The modules are as

follows

1. Program Module, on E-Planning

2. Activity Module, on E-Planning

3. Budget Module, on SIPKDI

4. Financial Realization Module, on SP3KTRA

5. Physical Realization Module, on SIEVLAP

6. Renja Module, on E-Monev (Target Module)

Journal of Theoretical and Applied Information Technology
15th April 2022. Vol.100. No 7

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2137

Figure 14. Modules Diagram

 Factory

Figure 15. Factory Diagram

Factory is where an attribute of an entity or object

will be centered, and in the system that will be

integrated, what will act as a factory is the Work

Plan object. In this object later the distributed

attributes will be collected according to the needs

of the system integration. and as for the installation

of the attributes of the money object to be placed

in the factory, it is as follows:

1. Program

2. Program Indicators

3. Activities

4. Activity Output

5. Budget

6. Financial Realization

7. Physical Realization

 Aggregates

Figure 16. Aggregates Diagram

Compared to the factory, the aggregate is the

source of the entities that will be installed in the

factory. If you review the Factory, you can get 4

(four) aggregates that support data sources in this

integration architecture, namely

1. Programs, from the E-Planning application

2. Program Indicators, from the E-Planning

application

3. Activities, from the E-Planning application

4. Activity Output, from the SIPKDI

application

5. Budget, from the SIPKDI application

6. Financial Realization, from the SP3KTRA

application

7. Physical Realization, from the SIEVLAPI

application

 Repositories

It is responsible for the management of objects life

cycle. It concentrates the creation, change and

objects removal operationsv [19]. Generally, one

repository class is created for one entity. Without a

repository, it will be difficult to unit test the

business processes and duplicate queries can occur

Journal of Theoretical and Applied Information Technology
15th April 2022. Vol.100. No 7

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2138

Figure 17. Repositories Diagram

In the development of an integrated system with

DDD, the repository is limited to only accessing

the aggregate. To decide which repository to

create, we must refer back to system requirements.

The number of queries that will be used refers to

the number of APIs that will be registered on the

API Gateway, and the method used in general is

GET

 Layered Architecture

Before building a Microservice prototype for the

integration of Monitoring and Evaluation of Work

Plans, it is necessary to create a simple model based

on layers that can explain the degradation and

collaboration between layers that will be integrated

from various application sources and in accordance

with the previously described DDD graphs..

Figure 18. Layered Architecture Integration.

G. Microservices Prototype Development

Before building a prototype of a microservice-

based architecture, it is considered necessary to

compare between architectures before

implementing microservices with after building

microservices. The aim is to determine the

transition of the system to the application of

microservices so as to provide clarity on the

development process. Here is a picture of the

architecture

Figure 19. Architecture Before Implementing

Microservices

Figure 20. Architecture After Implementing

Microservices

From Figure 4.19 and Figure 4.20 above, it can be

seen the comparison between before and after

implementing microservices. The most significant

difference is that there is an API Gateway which is

the orchestration of each data service.

H. Service Endpoint Identification

After being able to identify the architecture before

and after the implementation of system integration

in the previous discussion. So, in the next

Journal of Theoretical and Applied Information Technology
15th April 2022. Vol.100. No 7

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2139

discussion, it is to build an endpoint service based

on Rest API.

The endpoint service that is built is identified based

on the functions and domains that have been

previously analyzed using the DDD method. The

following list of service endpoints will be entered

into the API Gateway and will form an orchestra.

Here is a list of endpoints that have been built.

Table 5. List of Service Endpoints

NO URL FUNCTION DOMAIN

1
https://openkeuda.tangerangkota.go.id/services/eplanning/

masterMprogram

LIST OF

PROGRAM

PLANNING

2
https://openkeuda.tangerangkota.go.id/services/eplanning/

masterFinalProgramIndikator

INDICATOR

PROGRAM

PLANNING

3
https://openkeuda.tangerangkota.go.id/services/eplanning/

masterFinalProgram

PLAN

FUND

PROGRAM

PLANNING

4
https://openkeuda.tangerangkota.go.id/services/eplanning/

masterMkegiatan

LIST OF

ACTIVITY

PLANNING

5
https://openkeuda.tangerangkota.go.id/services/eplanning/

masterFinalKegiatan

INDICATOR

ACTIVITY

PLANNING

6
https://openkeuda.tangerangkota.go.id/services/eplanning/

masterFinalKegiatanIndikator

PLAN

FUND

ACTIVITY

PLANNING

7
https://openkeuda.tangerangkota.go.id/services/keuangan_

sipkdi/indikator_prokeg

ACTIVITY

BUDGET
BUDGET

8
https://openkeuda.tangerangkota.go.id/services/keuangan_

sipkdi/pagu_prokeg_skpd

TARGET

ACTIVITY
BUDGET

9
https://opendatav2.tangerangkota.go.id/services/sp3ktra/la

poran_sp3ktra

REALIZATION

FINANCE

FINANCIAL

STATEMENTS

10
https://opendatav2.tangerangkota.go.id/service/sievlap/lap

oran_sievlapi

REALIZATION

PHYSICAL

DEVELOPMENT

REPORT

For the distribution of endpoint placements, it is

divided into 2 (two) URL addresses, namely the

addresses openkeuda.tangerangkota.go.id and

opendatav2.tangerangkota.go.id. The purpose of the

placement on the two URLs is in accordance with

the data designation for the respective affairs of the

data.

The next stage is the development of the API

Gateway. At the development stage of the

Microservice Prototype in this research, using the

API Gateway using a device with an open source

license called KONG, this KONG device runs web-

based, and with this web platform it is hoped that it

will make it easier to use. The following is the

initial view of the KONG API Gateway and is

immediately confronted with username and

password authorization.

If you have successfully authorized, you can access

the services menu in the menu navigation on the

left side. In accordance with the domain described

through DDD, 4 (four) services are registered on

this API Gateway. However, in these 4 services,

there are many microservices that become the

substance of data integration needs that will be

carried out for monitoring and evaluating work

plans.

Furthermore, the API used will be explained in the

following sub-discussion according to the

previously determined domains. After being

registered on the API Gateway, the URL address

naming will be the same, namely:

http://{IP Address/domain}/{service}

Example (Single private IP address):

http://{API Gateway}/eplanning

http://{API Gateway}/sipkdi

http://{API Gateway}/sp3ktra

http://{API Gateway}/sievlap

Journal of Theoretical and Applied Information Technology
15th April 2022. Vol.100. No 7

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2140

I. Integrated System Display

The following is the appearance of the E-Monev

application on Figure 22, Figure 23, Figure 24, and

Figure 25, it is after implementing microservices-

based system integration. In the following display

there is a button with a function to pull data using

the API and it will be stored in the E-Monev

application database.

Figure 22. List Of Program Display

Figure 23. Activity Target Display

Figure 24. Activity Budget Display

Figure 25. Physical Realization Display

4. CONCLUSION

Based on the results of research on the integration

of systems based on the Microservices architecture

to the Monitoring and Evaluation System of the

Work Plan, the following points can be concluded

in this study:

1. Development of microservices using the DDD

method produces an enterprise architecture

design that results in the design and

implementation of integration services that are

as expected in this study and answer the

problems that arose previously.

2. Utilization of system integration saves a lot of

time which initially takes a matter of hours to

just seconds, when compared to the data re-

input pattern as shown in table 6. In addition,

the use of data integration will have an impact

on the correctness of the available data values.

Because with the re-input method there is often

an error in the input data value.

Table 6. Integration Time Record

NO
FORM

NAME

AVERAGE

NUMBER OF

FORMS

ESTIMATED

TIME

1.

Programs &

Program

Indicators

12 1,5 Seconds

2.

Activities,

Activity

Indicators &

Budget

25 7,3 Seconds

3.
Physical

Realization
15 5,1 Seconds

4.
Financial

Realization
15 5,6 Seconds

3. The implementation of the integration

architecture using the Domain-Driven Design

(DDD) method makes the integration system

design easier for the system development

process. DDD can clearly describe the

proposed architectural design ideas to

programmers or system developers. and most

importantly DDD-based architectural design

can accommodate the needs of object-oriented

system development.

4. The implementation of an integrated system

based on microservices using KONG is able to

maximize the integration process of the new

system to be integrated. This is caused by

reusing services or APIs from the API Gateway

that were previously available and not creating

new services or APIs. And what is more about

KONG is that it has a GUI (graphical user

Journal of Theoretical and Applied Information Technology
15th April 2022. Vol.100. No 7

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2141

interface) based interface, so it's quite easy to

use when compared to a CLI (command-line

interface) based interface.

5. The results of the integrated architecture design

produced in this research can be used as a

reference for the data integration model of the

Work Plan Achievement Report (renja) for

other government agencies in Indonesia,

especially local governments at the provincial

government level or the district or city

government level. Because the monitoring and

evaluation stage applies to all government

agencies under the auspices of the Ministry of

Home Affairs.

6. Furthermore, the increasing number of

applications that are integrated through the API

Gateway will certainly add to the burden on the

available resources. In addition to the need to

adjust the needs of existing resources, of

course a load balancer mechanism is also

needed. According to several studies this

method will balance the incoming load against

the strength of the available resources [20].

REFRENCES:

[1] G. Sari, “Evaluasi Capaian Target Rencana Kerja

Terhadap Rencana Strategi Badan Perencanaan

Pembangunan Daerah Bappeda Provinsi

Kepulauan Bangka Belitung Tahun 2017-2018,”

Equity J. Ekon., Vol. 6, No. 02, Pp. 7–24, Aug.

2020, Doi: 10.33019/Equity.V6i02.20.

[2] A. Nasrun, R. A. Hendra, And M. Priandi,

“Urgensi Integrasi Sistem Informasi Akuntansi

Instansi Pemerintah,” J. Tek. Its, 2012.

[3] T. Hidayat, Suhardi, And N. B. Kurniawan,

“Smart City Service System Engineering Based

On Microservices Architecture: Case Study:

Government Of Tangerang City,” In 2017

International Conference On Ict For Smart

Society (Iciss), Sep. 2017, Pp. 1–7, Doi:

10.1109/Ictss.2017.8288864.

[4] S. P. Ong Et Al., “The Materials Application

Programming Interface (Api): A Simple, Flexible

And Efficient Api For Materials Data Based On

Representational State Transfer (Rest)

Principles,” Comput. Mater. Sci., Vol. 97, Pp.

209–215, 2015, Doi:

10.1016/J.Commatsci.2014.10.037.

[5] X. Larrucea, I. Santamaria, R. Colomo-Palacios,

And C. Ebert, “Microservices,” 2021.

[6] F. Rademacher, S. Sachweh, And A. Zündorf,

“Towards A Uml Profile For Domain-Driven

Design Of Microservice Architectures,” Lect.

Notes Comput. Sci. (Including Subser. Lect. Notes

Artif. Intell. Lect. Notes Bioinformatics), Vol.

10729 Lncs, No. Iii, Pp. 230–245, 2018, Doi:

10.1007/978-3-319-74781-1_17.

[7] F. Rademacher, J. Sorgalla, And S. Sachweh,

“Challenges Of Domain-Driven Microservice

Design,” Ieee Softw., 2018.

[8] L. Khoirunnisa, “Rancang Bangun Sistem E-

Learning Berbasis Microservices Dan Domain

Driven Design (Studi Kasus Probistek Uin

Maulana Malik Ibrahim Malang) Oleh : Lia

Khoirunnisa ’,” 2019.

[9] C. Richardson And F. Smith, Microservices -

From Design To Deployment. 2016.

[10] E. Evans, Domain-Driven Design - Tackling

Complexity In The Heart Of Softwarey. 2003.

[11] A. Avram And F. Marinescu, Domain Driven

Design Quickly. 2006.

[12] Uniknow, “Tutorial Domain Driven Design Last

Published: 2015-04-09 | Version: 0.1.8-

Snapshot,” 2020.

Http://Uniknow.Github.Io/Agiledev/Site/0.1.8-

Snapshot/Parent/Ddd/Core/Introduction_Ddd.Ht

ml.

[13] Y. Fauziah, “Aplikasi Iklan Baris Online

Menggunakan Arsitektur Rest Web Service,”

Telematika, Vol. 9, No. 2, 2014, Doi:

10.31315/Telematika.V9i2.286.

[14] A. J. Rettig, S. Khanna, And R. A. Beck, “Open

Source Rest Services For Environmental Sensor

Networking,” Appl. Geogr., Vol. 60, Pp. 294–

300, 2015, Doi: 10.1016/J.Apgeog.2014.11.003.

[15] D. Guinard, M. Mueller, And V. Trifa,

“Restifying Real-World Systems: A Practical

Case Study In Rfid,” Rest From Res. To Pract.,

Pp. 359–379, 2011, Doi: 10.1007/978-1-4419-

8303-9_16.

[16] A. N. Fajar, E. Novianti, And Firmansyah,

“Design And Implementation Of Microservices

System Based On Domain-Driven Design,” Int. J.

Emerg. Trends Eng. Res., Vol. 8, No. 7, Pp.

3058–3062, 2020, Doi:

10.30534/Ijeter/2020/30872020.

[17] J. Mufid, “Mengenal Domain Driven Design,”

Https://Medium.Com, 2020.

Https://Medium.Com/@Mufid.Houraluddin/Men

genal-Domain-Driven-Design-E9b2b1b58cce

(Accessed Oct. 09, 2020).

[18] D. D. Design, I. Domain, And D. Design,

“Introduction Domain Driven Design . Building

Blocks Domain Driven Design,” 2020. .

[19] E. C. S. Santos, D. M. Beder, And R. A. D.

Penteado, “A Study Of Test Techniques For

Integration With Domain Driven Design,” Proc. -

12th Int. Conf. Inf. Technol. New Gener. Itng

2015, No. 20, Pp. 373–378, 2015, Doi:

10.1109/Itng.2015.66.

[20] S. Newman, Building Microservices. 2015.

