
Journal of Theoretical and Applied Information Technology
31st March 2022. Vol.100. No 6

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1643

INTERNET-OF-THINGS: A SYSTEM DEVELOPMENT LIFE
CYCLE (SDLC)

MAI ALFAWAIR

AlBalqa Applied University

Mai.alfauri@bau.edu.jo

ABSTRACT

The Internet-of-Things (IoT) is a revolutionary technology that connects everyday objects to the Internet.
The utilization of IoT systems created integrated systems that transformed communication, administration,
and monitoring in various fields such as smart homes, healthcare monitoring, and even environmental
monitoring, giving users more control over everyday objects and adding to the complexity of such systems.
The successful development of IoT systems requires software engineering to extend beyond the traditional
development strategies or System Development Lifecycle (SDLC), particularly owing to the heterogeneity
and complexity of such systems. This paper provides an innovation by expanding the traditional System
Development Lifecycle (SDLC) to accommodate the nature of IoT systems, making the traditional SDLC
more convenient for use to develop IoT systems. This has been achieved by editing some of the already
existing SDLC processes, as well as adding some other processes to the traditional SDLC. Such additions
include aspects unique to IoT systems development, for example, things requirement, communication
requirement, system component integration, and system operation, as well as other additions to the
traditional SDLC. Results clearly demonstrate that IoT application development has become more
systematic, efficient, and hence, requiring less time for development since the IoT SDLC has facilitated
project management and improved the overall quality of the process.

Keywords: Internet-Of-Things (IOT), System Development Lifecycle (SDLC), Network Development,
Software Engineering

1. INTRODUCTION

Readily available high-speed Internet
connections and the presence of everyday objects
such as mobile phones, cars and other objects that
can connect to the Internet have given such objects
more value in light of their ability to facilitate our
everyday lives. The utilization of everyday objects
connected to a network to perform their specific
tasks under greater user control, thereby offering
increased convenience, led to the emergence of the
IoT paradigm. IoT systems provide a platform
whereby multiple objects can connect and
communicate over a network under the umbrella
of modern wireless telecommunications. Users
nowadays can use their smart phones to access and
control objects through applications to manage
their everyday lives.

IoT systems, like any other IT system, consist
of a combination of hardware and software.
Smartphones, sensors attached to objects, and
other standalone devices constituting the hardware
component of such systems, which can be installed

and maintained by the manufacturers. The relevant
software used to operate such objects and devices,
including mobile applications, require appropriate
design, development and maintenance in order to
provide effective overall functionality of IoT
systems. IT research in the fields of IoT and
System Development Life Cycle (SDLC) has
allowed such technology to rise and flourish,
providing a favorable environment for such
technology to grow rapidly and successfully.

From a software engineering point of view,
traditional SDLC is created for the purpose of
application development for classical computer
systems, which includes designing software that
performs specific tasks intended for utilization by
the end-user. On the other hand IoT systems have
many stakeholders: such systems involve
interconnecting heterogeneous devices that are
owned and managed by many independent entities,
making the development process challenging.
Traditional SDLC is considered basic and generic
for the development of adequate software that suits
the requirements of IoT systems, and hence does

Journal of Theoretical and Applied Information Technology
31st March 2022. Vol.100. No 6

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1644

not fully support the development lifecycle of IoT
systems. This paper provides an innovation by
proposing an SDLC adapted for IoT systems,
advancing some of the already existing inadequate
SDLC processes, as well as adding some other
processes to the traditional SDLC. Such additions
consider aspects unique to IoT systems
development, including ‘things’ requirement,
communication requirement, system component
integration, and system operation. The advantage
of such innovation is the provision of a more
systematic and efficient SDLC for IoT systems,
facilitating project management, decreasing
development time, and improving the overall
quality of the development process.

This matter is particularly important because
IoT systems require software that permits
advanced levels of productivity, provided against a
background of high-quality service. Additionally,
when considering SDLC, IoT systems require
advanced maintenance and evolution beyond
installation and implementation as new objects
may periodically be added or removed, and as user
requirements may change frequently. The
maintenance and evolution of IoT systems should
also be facilitated by tools that save time and
work, since IoT requires continuous growth. In [1],
the author mentions this issue.

This paper proposes an SDLC for IoT
systems, as the nature of such systems requires
special considerations regarding development,
implementation and subsequent maintenance.
Basic SDLC is considered universal and generic,
yet certain challenges arise when it is implemented
for IoT systems. Basic SDLC is quite insufficient
when developing a complex heterogeneous system
IoT, with everyday objects constituting an integral
part of such systems. This article expands the basic
SDLC for any system, applying special
development components to preexisting stages and
adding new developmental steps to the lifecycle.
This paper includes firstly a literature review on
IoT systems and conventional SDLC, followed by
a description of the defined SDLC for IoT
systems, including a discussion of its
characteristics and an explanation of its processes.

2. RELATED WORK

The International Telecommunications Union
defines IoT as "enabling advanced services by
interconnecting (physical and virtual) things based
on existing and evolving interoperable information
and communication technologies" [2]. In [3], the

authors state that there are four essential
characteristics in IoT terms for a device to be
considered a 'thing'. These are:

1. The device must be able to collect and
transmit data. IoT devices should collect
information and either send it to another device in
their environment or directly to the Internet.

2. The device must possess action-based
responses. IoT devices should be developed to
respond according to particular conditions.

3. The device must be capable of receiving
information. IoT devices should be developed in a
way to receive information from a network.

4. The device must be capable of communicating
with others. IoT devices should be developed in a
way to communicate with other devices on a
network. [20]

The high impact of IoT systems on various
aspects of users' everyday lives is considered their
main strength. They are now integrated into many
areas of life, such as the home environment,
business management, healthcare, transportation,
logistics and industry. This involvement has
become so extensive that the US National
Intelligence Council (NIC) expects that "by 2025
Internet nodes may reside in everyday things –
food packages, furniture, paper documents, and
more". [4]

2.1. IoT Architecture

The basic architecture of any IoT system
consists of three layers: [5][6] physical, network
and application. An IoT reference model was
released by the IoT World Forum (IWF) to serve
as a common framework, accelerating IoT
deployment, and encouraging the development of
replicable models [7]. This reference model
consists of seven layers, shown in Figure 1:

1- Physical devices and controllers:
consists of all the devices and controllers
that control IoT devices; the “things” in
IoT systems.

2- Connectivity: comprises of
communication and processing units,
such as routers and firewalls, allowing all
IoT devices to communicate with each
other, and with application platforms,
such as computers and smartphones.

3- Edge computing: responsible for
converting network data, which is usually
high-volume, into low-volume
information suitable for storage and

Journal of Theoretical and Applied Information Technology
31st March 2022. Vol.100. No 6

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1645

higher-level processing. Filtering and
processing of incoming data occurs at this
layer, rendering data accessible to the
next layers.

4- Data accumulation: different types of
data in different formats coming from
heterogenous IoT devices are stored on
this layer.

5- Data abstraction: responsible for the
aggregation and formatting of data so that

it is accessible by applications more
effectively.

6- Application: encompasses a wide range
of applications that utilize IoT input data
or control IoT devices, allowing for
information interpretation to occur.

7- Collaboration and processes: different
IoT applications run by users are able to
communicate and collaborate to make IoT
data more useful.

Figure 1: IoT World Forum (IWF) Reference Model [7].

2.2. IoT Challenges and Risks

Despite the several benefits IoT technology
offers, and the praise it has gained, it faces many
challenges and poses many risks to users
[8][9][10]. These can be summarized as:

1. Privacy: since the IoT technology consists
of large amounts of data concerning
everyday objects, and potentially other
private data such as users' locations, private
property or even personal health records,
users are concerned that the increasing
amount of private data housed by the IoT
may be accessed by others. Much work
must be done in order to ensure these
privacy concerns are met.

2. Security: this relates to privacy, and
concerns the reliance of IoT systems on
networks. Securing users' data from
unauthorized access becomes a challenge.
Many researchers are working to achieve
high levels of security. Indeed, the NIC
states that “to the extent that everyday

objects become information security risks,
the IoT could distribute those risks far more
widely than the Internet has to date”.
[4][11]

3. Compatibility: devices from various
manufacturers are connected by a network.
Compatibility must thus be ensured to
maintain the proper functioning of the
entire system. Although this problem may
be addressed if all the manufacturers agree
on and implement a common standard,
technical issues will nevertheless persist.

4. Data integrity: integrity means that the
data is correct and is not modified. Data
integrity is ensured by maintaining secure
network connections by the use of many
techniques such as end-to-end encryption.
[12]

5. Data confidentiality: messages must be
securely transmitted across the network,
and must be protected from unauthorized
access by the use of a variety of techniques
including requiring identification in order

(7) Collaboration and Processes
(Involving people and Business Processes)

(6) Application
(Reporting, Analytics, Control)

(5) Data Abstraction
(Aggregation and Access)

(4) Data Accumulation
(Storage)

(3) Edge Computing
(Data Element Analysis and Transformation)

(2) Connectivity
(Communication and Processing Units)

(1) Physical Devices and Controllers
(All devices "things" in IoT)

Journal of Theoretical and Applied Information Technology
31st March 2022. Vol.100. No 6

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1646

to permit actions to be carried out on the
network.

6. Data authentication: this ensures that IoT
data is sent from the correct sender to the
specified receiver by correctly identifying
every object on the network. There are
many other challenges to IoT technology.

An important challenge stated in [1] is the
fact that traditional software development
techniques are considered generic when
developing robust software suiting the
requirements implied by IoT systems, which is
why they do not fully support the development life
cycle of IoT systems. This is particularly due to
the fact that IoT systems require software that
permits advanced levels of productivity, provided
against a background of high-quality service.
Additionally, when considering SDLC, [13] IoT
systems require advanced maintenance and
evolution beyond installation and implementation,
as new objects may periodically be added or
removed, and as user requirements may change
frequently. Furthermore, the maintenance and
evolution of IoT systems should be facilitated by
tools that save time and effort, since IoT requires
continuous growth. Yet Leau et al. offer no
solution to this problem. The present paper
proposes one [13].

2.3. Software Engineering Highly Decentralised
Systems

Ian Sommerville, the father of software
engineering, has defined it as "an engineering
discipline that is concerned with all aspects of
software production". [14] Software engineering is
thus concerned with the organization of software
development in a systematic way, which is
sometimes called the software process, or the

Software Development Life Cycle (SDLC). [13] It
is a sequence of activities that result in the
development of a software product. These
activities include the following:

2.4. Software Specification

In this process, the customer and the engineer
understand and define the services required from
the software that is to be produced, and the
constraints on its operation and development. The
agreed requirements are specified in a document
called the Software Requirement Specification
(SRS). This process is also called software
requirements, and is organized into the software
requirement engineering process that comprises
four stages as shown in Figure 2 [15]:
A. Feasibility study: an analysis to assess if the

development of the software is financially
effective and technically applicable. The
feasibility study must be relatively cheap and
quick.

B. Requirement elicitation and analysis: an
analysis of the system's requirements in order
to understand its specifications. This may
involve developing system models and
prototypes.

C. Requirement specification: involves
translating the system's requirements into
written documents (user and system
requirements), in order to perform the next
phase.

D. Requirement validation: involves checking
system requirements for completeness and
consistency. Errors in the system requirements
document produced at the previous stage are
inevitably discovered and modified
accordingly.

Figure 2: The Software requirement engineering process.

Journal of Theoretical and Applied Information Technology
31st March 2022. Vol.100. No 6

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1647

2.4.1. software development
This is the process of converting the

specifications determined in the previous stage
into an executable system. It consists of designing
and programming the software. [16] In the design
process, the software’s structure is determined and
a data model is constructed in order to produce a
system architecture, database specification, and
interface and component specifications. These are
produced through the following activities:

A. Architectural design: in this phase,
designers determine the overall structure of
the system with its components by defining
the system’s modules and sub-systems with
their distributions and relationships.

B. Interface design: this phase deals with
designing interfaces for the system and its
components.

C. Component design: in which each
component of the system is designed to
determine its functionality and operations,
taking into account the reuse of existing
components.

D. Database design: in this phase, the
database is designed. This includes
designing the structure of the system's data
and its representation in the database,
taking into account the reuse of existing
databases.

2.4.2. software validation
This phase includes both validation and

verification to confirm that the designed software
meets the customer’s predetermined specifications
and expectations. [17] Both the process validation
and the product are validated. Process validation
involves checking each stage of the software
development process in order to ensure that the
development process is proceeding correctly and
in a cost-effective manner. The main product
validation technique used is program testing, in
which the system is run using test data to visualize
its functionality and detect defects, as well as to
check it against the customer’s requirements to

ensure that it meets the customer's expectations.
Any defect detected will undergo a debugging
process whereby this defect is corrected. Repeated
testing is carried out after the debugging process in
order to visualize the fixed changes, and the entire
system is again tested. If any further bugs are
detected they are fixed, and the system is tested
again. This cycle is repeated until no more bugs
are found. The entire testing process consists of
the following three testing levels: [18]

A. Component testing: every component of
the system is tested separately and
independently.

B. System testing: the components that have
passed the component testing level are
integrated and tested as a whole, in order to
detect any defect that arises from
component interaction and to find issues
arising from component interfaces. The
process’s functional and non-functional
requirements are also tested.

C. Acceptance testing: the system is tested
using real data supplied by the customer in
a process called acceptance testing to
ensure that the system meets their
requirements. This process ensures that the
customer will accept the system for
operational use.

2.4.3. software evolution
 In this context, “evolution” refers to making

any changes in the existing software.
Modifications accommodate changing customer
and market requirements. This stage is also
considered as part of software maintenance. [19]

3. SDLC FOR IOT

This section will describe an SDLC that suits
the technical nature and needs of the IoT
technology. This SDLC is detailed in figure 3 and
then explained:

Journal of Theoretical and Applied Information Technology
31st March 2022. Vol.100. No 6

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1648

Figure 3: Detailed illustration of SDLC for IoT systems.

3.1. Specifications
The first step in the cycle is the determination

of specifications. Such specifications are similar to
the specifications in the conventional SDLC, yet
the specifications of IoT systems are enhanced in
this SDLC to suite the complex architecture and
additional components of the IoT system.
System specifications are set mainly by the
customer according to their requirements.
Customers in this phase play an important role by
describing their requirements and their
expectations of the system. The specifications of
any IoT system are nevertheless set not only by the
customer, but are partly determined by the nature
of the "things" the customer wants to handle and
empower, in order to ensure compatibility between
the different technical standards run on different
objects. The specifications of such systems are
also determined by the developers themselves,
who also have their own requirements based on
their customers’ requirements, in order to develop
the required fully-functional system. Developers
therefore play some part in setting and enhancing
the specifications set by the customer, since the
developers integrate objects running on the various
platforms that are the components of IoT systems.

As developers are considered experts in
developing these systems, they may further
empower those systems depending on customer
needs, sometimes thinking outside the box and
showing their creativity in integrating real-life
objects in user-controlled comprehensive systems
without diverging from customers’ needs and
requirements. As a consequence, developers in IoT
systems are actively involved in modifying and
positively empowering customer specifications.

In this step, system engineers are responsible
for documenting the system specifications
collected from customers and system developers.
The system engineer therefore studies the technical
requirements of the system architecture with the
components of the system (i.e., the "things") and
the needs of system developers, all in relation to
the specifications and needs of the customer. The
system engineer then analyzes these requirements
in order to clarify, organize, categorize and present
them in a written document called in the present
paper the Internet-of-Things System Specifications
(IoTSS) document, equivalent to the Software
Requirement Specification (SRS) document, in
order to clarify all the requirements. This
document, written by the system engineer, should

Journal of Theoretical and Applied Information Technology
31st March 2022. Vol.100. No 6

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1649

include the following categories of requirements
types as defined by this paper:

1. Functional requirements: this type of
requirement describes what the IoT system
should do and the services that the
developer and customer agree the system
should provide.

2. Non-functional requirements: the system
engineer in this type of requirement
describes the relevant constraints on the
development and operation of the IoT
system in accordance with Quality-of-
Service (QoS) metrics.

3. "Things" requirements: the requirements
of each "thing" (i.e., object) in the IoT
system that enable such objects to interact
with other components of the system
should be described in this type of
requirement.

4. Environmental requirements: this
describes the environment such as the
power supply and networking
requirements within which the IoT system
will work.

5. Communication requirements: the
communication that should occur between
the IoT system components (the "things"),
the messages, the data, its track of travel
from and to the different kinds of
components, where it is saved, and how it
is retrieved is outlined in this type of
requirements.

After these requirements are collected by the
system engineer, they are drafted in an initial
document that is reviewed by the developer and
the customer as well as the system engineer,
creating a final draft that is called the IoTSS,
which serves as the contract between the client and
the supplier.

3.2. Service Level Agreement

The previously described IoTSS includes a
section called the Service Level Agreement (SLA).
The SLA determines several aspects of the service
provided and includes basic data such as the title
and ID of the SLA, the type of application, and the
start and end dates. Individuals and groups
involved with the project and the QoS metrics used
for the IoT system are also determined in the SLA.
The SLA must be standardized so that it is
understood by all the stakeholders involved in the
development of the IoT system. The level of
service a customer can expect from a provider is
set also in the SLA. The developmental activities

the developer should follow are also specified in
the SLA. The authors in [21] propose a specialized
model for SLA specification in IoT applications,
such that this proposed SLA is standardized and
understood by all the stakeholders.

3.3. Design

In software engineering, a pattern refers to
any recurring problem with a corresponding
solution specific to it. Such patterns occur on three
levels: architectural and design patterns and
idioms. Architectural patterns describe a system's
structural organization and its division into
subsystems, each with specific functions and
responsibilities. Design patterns describe system
objects, components and subsystems with their
interactions. Idioms are the lowest-level pattern
describing the way to implement certain aspects of
system components through the use of
programming languages and their features.

In our SDLC for IoT, when the system
engineer has published the IoTSS, the designers of
the IoT system translate this document into an
appropriate design. The designers will firstly
determine the objects to be used in the IoT system,
which are regarded as the system’s building
blocks. The IoT system’s architecture, which
includes the communication paths between the
different IoT system components (i.e. the
communication interfaces, gateways and patterns
is then designed. The different sources and
destinations of data are also determined at this
stage, with data integration schemes also being
outlined. The exact placement of sensors on each
of the IoT system components is determined in
relation to data collection and communication. The
designer is responsible at this stage for creating
design sketches and publishing them in a design
document called in the present paper the Internet
of Things System Design (IoTSD), which will be
used later by the developers. The designer may
also create a prototype illustrating the system
components and how they interact. A simulation
may also be created, showing how the IoT system
would operate and how the data will travel
between the various components of the IoT
system.

3.4. Implementation, Integration, and
System Operation

The implementation process, in which
developers translate the design into an executable
system, directly follows the design process. In the

Journal of Theoretical and Applied Information Technology
31st March 2022. Vol.100. No 6

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1650

basic SDLC, implementation refers to
programming the required software. Software is
implemented either by developing and
programming a new system adapted to the
customer’s specific demands or reusing pre-
existing components to develop the required
system.

In this SDLC for IoT, the essentials of
software implementation are similar to those in the
traditional implementation in SDLC, but with
distinct differences that require discussion. The
traditional implementation process in basic SDLC
is concerned with software development. The task
of the developer in IoT system implementation is,
however, to work on real-life objects, developing
software to manage and control such objects in
order to organize and connect them in a network.
Developers gather the required system objects, the
'things'; either such objects are suitable for use in
an IoT environment, or they are modified to fit as
required by adding special functionality
components such as sensors to enable objects to
perform a specific function. Objects can even be
manufactured to perform particular functions.
Software is developed according to customer
requirements and the anticipated functionality of
the system, all in accord with the objects’
requirements. Comprehensive software
components are developed for specific objects and
devices in IoT systems to enable them to operate
and interact with other components in the IoT
environment. Software development also includes
development of a Graphical User Interface (GUI)
to allow user communication with the system and
control on its various components. Developers at
this stage test each system component in isolation
to ensure that components perform their intended
functions, after which they connect all system
components into a network, allowing effective
object-object as well as user-object
communication. In this process, developers must
decide on an IoT communication protocol in order
to settle the connection issues between objects in
the process of communication and exchanging
data.

In order to integrate system components with
developed software within a network, the concept
of integration has also been applied to the
implementation process in the SDLC for IoT
systems. This is done to ensure smooth operation
of the IoT system, with all its heterogeneous
components. For this specific reason, an operation

process has been added to implementation in the
SDLC for IoT.

During this operation process the integrated
system is settled in its intended location and
connected to a network to initiate its operation. An
initial test is performed while operating the
system, before thoroughly testing the system as a
whole at the next stage.

3.5. IoT System Testing and Validation

This phase is indeed conducted throughout
the development process, yet it is emphasized after
the system has been developed. Starting from the
specification phase, testing is carried out in the
context of customers and developers verifying the
required specifications with those written in the
IoTSS. In the design phase, the system engineer
verifies that the design document (IoTSD) is well
matched with the system specifications (IoTSS).
After implementation has taken place, the system’s
operation is tested to check its functionality. The
whole system is then tested against customer
specifications to check that it meets customer
requirements.

In basic SDLC the testing phase comprises
component, system and acceptance testing. In the
testing phase of SDLC for IoT, the same elements
are tested, but to a higher level to accommodate
the nature of IoT systems. In the component
testing performed by the system developer, each
system object (or 'thing') is tested individually, as
are the software components, to check that they
meet the intended requirements. When all system
components have passed these tests, the next level
of system testing is performed. Here, the
integrated components of the system are tested as a
whole for functionality and operation. This level of
testing is thus also called operation testing, and is
carried out by the testing group that includes
system developers, system engineers, software
engineers, computer engineers and a network
engineer. This testing group tests the entire system
including system objects, software and network
connections. After passing this level of testing,
acceptance testing must be performed. Here, the
customer joins the testing group to check that the
system operates according to their requirements.
The system is configured and operated at the
customer site, allowing the customer to test the
system on-site. Since this is the third level of
testing, the system has already been thoroughly
tested in terms of functionality, so the purpose of
this level is for the customer to 'accept' the system

Journal of Theoretical and Applied Information Technology
31st March 2022. Vol.100. No 6

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1651

– hence the name "acceptance testing". After the
testing phase is complete, the testing team
documents the entire procedure in the so-called
testing report. This report contains all the
information regarding in this phase such as the
cases, results and the discovered bugs and defects
revealed in the testing phase. The testing report is
used to fix the bugs that have been revealed. Once
the bugs have been fixed, it is used to re-test the
system, acting as evidence of system testing
throughout the testing phase, as well as being used
for maintenance and evolution in later phases.

3.6. Maintenance and Evolution

Once the IoT system has been fully
implemented, it is operated at the customer site.
After operation, any change or modification to the
system required by the customer calls for
maintenance and/or evolution. The required
modification is identified and implemented, and
the system is subsequently tested. Documentation
of any modification also occurs at this stage.

3.7. Documentation

All the documents created throughout the
system development phases are collected and kept
in an archive. These documents are retrieved when
needed, such as during system maintenance and
evolution.

4. EVALUATION AND RESULTS

The IOTSDLC needs to be evaluated in terms
of applicability and specificity to IoT systems, as
well as the efficiency of IoT system development
when IOTSDLC is applied. This is essential in
order to ensure the applicability and efficiency of
IOTSDLC when used to develop IoT systems. To
carry out the evaluation, three projects were
developed using the IOTSDLC under our full
supervision to test the results: A smart parking
system, and two smart home systems. The
developers for our three projects have previously
developed smart home and parking systems with
similar system requirements using the IWF
reference model described previously, which is
considered one of the state-of-art models for IoT
system development. When previously developing
these projects, direct programming and
implementation were used, taking direct feedback
from customers, and making changes accordingly
if possible. This conventional method enforced
rework, and is effort and time-consuming. When
developing the three systems using the IOTSDLC,

the development scheme was strictly followed and
each process in development was documented. For
each project, a development plan was proposed in
advance for the entire project in accordance with
the IOTSDLC. During development, each phase of
the plan was followed accordingly, sometimes
modified to adapt real circumstances. The time and
the people involved with each relevant process
were monitored and recorded carefully for
comparison purposes.

The completion of the three projects using
the IOTSDLC on time proves that the IOTSDLC is
applicable for the development of IoT systems,
denoting the clarity of its phases, and the
simplicity it yields for the development of IoT
systems. Management of the development of IoT
systems became more outlined, and hence, easier
to perform.

After development completion, feedback was
collected from all stakeholders taking part in the
three projects, and the results were analyzed. The
results show that all stakeholders agree that
IOTSDLC development process is fully applicable
with IoT systems and exhibits the following
results.

4.1. Development Time

The results were analyzed and compared with
those from similar projects who have not used the
IOTSDLC. The result demonstrated using the
IOTSDLC is the decreased development time.
When comparing the development time of similar
projects, projects following the IOTSDLC took
less time than the projects that have not, with the
difference in time being more apparent in larger
projects requiring more time, i.e. IOTSDLC shows
higher time efficiency for larger projects requiring
more time as shown in Figure 4.

Journal of Theoretical and Applied Information Technology
31st March 2022. Vol.100. No 6

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1652

Figure 4: Comparison of the time required to complete
groups of similar projects done with and without

IOTSDLC.

4.2. Productivity

During development of each project, the time
and the people involved with each relevant process
were monitored carefully for comparison purposes.
The organized structure of the IOTSDLC allows
IoT system development to be smoothly
completed, avoiding rework, and thus increasing
productivity. As each project has been developed
after the other using the IOTSDLC, it has been
noticed that the productivity has been enhancing.
This is partially due to natural increase in
productivity over time due to repeated
development by developers, and more importantly
this is attributed to the organized structure of
IOTSDLC, allowing system development to be
smoothly completed, and avoiding rework.

4.3. Quality

The criteria of analysis of the results includes
the time of development of IoT systems using
IOTSDLC in comparison with conventional
development processes, as well as the applicability
of system development using IOTSDLC implied
through the productivity of system developers.
Results clearly demonstrate that IoT application
development has taken less time for completion,
and hence has become more systematic and
efficient, since the IOTSDLC has facilitated
project management and improved the overall
quality of the process.

Stakeholders also confirmed that application
development became more systematic than not
using this approach. As a result, more projects of
similar requirements could be accomplished using
the same time period when implementing
IOTSDLC. Hence, we can confidently state that
following the IOTSDLC has made application
development more systematic.

Project managers of the three projects noticed
that the IOTSDLC has facilitated project
development not just in terms of completion, but
also in terms of management. A tailored SDLC has
made the development process clear, easy to
follow, and allowing project planning to be easily
performed. As a result, IOTSDLC has taken into
account certain development aspects not
previously tackled, improving the overall quality
of the development process.

Since the IOTSDLC requires full
documentation for every process, whenever
maintenance or evolution of the system is needed,
these processes will also run smoothly and more
effectively, saving effort, and requiring less
investigation time. This is another circumstance
where the carefully created IOTSDLC will save
more effort and time, even for future development
and improvement.

5. CONCLUSION

IoT system development is indeed a complex
process, taking into account the development and
integration of various software, hardware, and
networking requirements. The overall basic
scheme of system development, in fact, shares
many similarities with the basic model of system
development: The System Development Life
Cycle (SDLC). The development process tailored
for IoT systems, the IOTSDLC, has been
presented in this paper, and deals with such
systems in the same manner as for traditional
systems, yet the nature of IoT systems requires
special development considerations due to the
complexity of the system and the variability of its
components.

The IOTSDLC tackles the defects found in
all phases of traditional SDLC when developing
IoT systems. IOTSDLC further specifies system
specifications, allowing system engineers to
specify additional 'object' requirements determined
by the specific objects that will constitute the IoT
system, and how such objects will influence data
communication and integration, taking into

3

5

7

3.5

6

9

0

2

4

6

8

10

A B C

Ti
m

e
(M

on
th

s)

Projects

Projects done with IOTSDLC

Similar projects done without IOTSDLC

Journal of Theoretical and Applied Information Technology
31st March 2022. Vol.100. No 6

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1653

account the complexity of the system architecture
that is to be fully specified in the design phase, and
including the concomitant usage of multiple
communication interfaces with gateways and
sensors.

The development of a system prototype also
distinguishes the SDLC for IoT systems, allowing
system engineers and customers to assess their
expectations of the system and seeing how the
system components will integrate and operate.
Implementation and testing the components of the
IoT SDLC are also taken to a further level by
component testing, which involves testing each
object on its own and then, after integration,
holistically testing the entire system. The overall
implementation of such development process, the
IOTSDLC, has shown to facilitate overall system
development, avoiding rework, increasing
productivity of systems development, and
outlining a clear map for specifications and
integration of IoT system components, allowing
facilitated project development, and enhanced
project management.

REFERENCES

[1] Sarhan, Qusay Idrees. "Internet of things: a
survey of challenges and issues." International
Journal of Internet of Things and Cyber-
Assurance 1.1 (2018): 40-75.

[2] Wortmann, Felix, and Kristina Flüchter. "Internet
of things." Business & Information Systems
Engineering 57.3 (2015): 221-224.

[3] Palma Genicio, Daniel, et al. "An Internet of
things example: classrooms access control over
near field communication." (2014).

[4] National Intelligence Council, Disruptive Civil
Technologies – Six Technologies with Potential
Impacts on US Interests Out to 2025,
Conference Report CR 2008-07,
http://www.dni.gov/ 1666nic/NIC_home.html .

[5] Madakam, Somayya, R. Ramaswamy, and
Siddharth Tripathi. "Internet of Things (IoT): A
literature review." Journal of Computer and
Communications 3.05 (2015): 164.

[6] Yun, Miao, and Bu Yuxin. "Research on the
architecture and key technology of Internet of
Things (IoT) applied on smart grid." 2010
International Conference on Advances in Energy
Engineering. IEEE, 2010.

[7] Stalling, William. “The Internet of Things:
Network and Security Architecture,” Internet
Protoc. J., vol. 18, no. 4, pp. 2–24, 2015.

[8] Khan, Rafiullah, et al. "Future internet: the
internet of things architecture, possible
applications and key challenges." 2012 10th

international conference on frontiers of
information technology. IEEE, 2012.

[9] Lee, In, and Kyoochun Lee. "The Internet of
Things (IoT): Applications, investments, and
challenges for enterprises." Business
Horizons 58.4 (2015): 431-440.

[10] Hwang, Yong Ho. "Iot security & privacy:
threats and challenges." Proceedings of the 1st
ACM Workshop on IoT Privacy, Trust, and
Security. ACM, 2015.

[11] Jing, Qi, et al. "Security of the Internet of
Things: perspectives and challenges." Wireless
Networks 20.8 (2014): 2481-2501.

[12] De Cremer, David, Bang Nguyen, and Lyndon
Simkin. "The integrity challenge of the Internet-
of-Things (IoT): on understanding its dark
side." Journal of Marketing Management 33.1-2
(2017): 145-158.

[13] Leau, Yu Beng, et al. "Software development
life cycle AGILE vs traditional
approaches." International Conference on
Information and Network Technology. Vol. 37.
No. 1. 2012.

[14] Sommerville, Ian. "Software engineering 9th
Edition." ISBN-10137035152 (2011).

[15] Kotonya, Gerald, and Ian
Sommerville. Requirements engineering:
processes and techniques. Wiley Publishing,
1998.

[16] Schwaber, Ken, and Mike Beedle. Agile
software development with Scrum. Vol. 1. Upper
Saddle River: Prentice Hall, 2002.

[17] Rakitin, Steven R. Software verification and
validation for practitioners and managers.
Artech House, Inc., 2001.

[18] Naik, Kshirasagar, and Priyadarshi
Tripathy. Software testing and quality
assurance: theory and practice. John Wiley &
Sons, 2011.

[19] Bennett, Keith H., and Václav T. Rajlich.
"Software maintenance and evolution: a
roadmap." Proceedings of the Conference on the
Future of Software Engineering. ACM, 2000.

[20] Shabbir, Ghulam, et al. "Network performance
enhancement of multi-sink enabled low power
lossy networks in SDN based Internet of
Things." International Journal of Parallel
Programming (2018): 1-32.

[21] Alqahtani, Awatif, et al. "End-to-end service
level agreement specification for iot
applications." 2018 International Conference on
High Performance Computing & Simulation
(HPCS). IEEE, 2018.

