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ABSTRACT 
 

Hadoop assumes that the computing capability of cluster's nodes is similar. In such a homogeneous 
environment, every node is assigned an identical load, such approach allows total use of cluster's resources 
and minimize multiple idle or over headed nodes. However, in real world applications, clusters are frequently 
deployed in a heterogeneous context [9,13–15]. In such environments, there is possibly multiple different 
physical servers and different virtual nodes specifications, which provide per consequence different services 
capabilities. Therefore, Hadoop still uses the same native strategy that distributes data blocks equally among 
each DataNode, similarly the load is evenly assigned between nodes, then the basic overall performance of 
Hadoop may also be reduced. 

The main objective during the phases of this research is to find an optimal scheme and an improved 
architecture to optimize the classical architecture of HADOOP and MapReduce, by focusing mainly on the 
algorithm of locality and data distribution in a heterogeneous ecosystem composed of several nodes 
heterogeneous. 

Despite of the native Data Placement strategy that Hadoop framework maintains by default, we 
present in the following a new approach that take in consideration the difference between the cluster nodes 
computing capabilities, with respect to the nature of tasks to adjust data blocks distribution. 

The design of our solution is presented under two major phases, the first one is implemented during 
the HDFS input, and the second one is implemented while processing tasks are initiated. 
 

Keywords: Data, Big Data, Distributed Systems, Heterogeneous Systems, Hadoop Distributed File System; 
Distributed Storage; Distributed Computing, Sequencefile, Mapfile 

 
1. INTRODUCTION  
 

The major drawbacks of such implementation are 
the performance degradation of MapReduce when 
large clusters based on heterogeneous nodes are 
used, and also data locality has not been taken into 
account for geographically dispersed environments, 
because HADOOP assumes all data is stored locally. 

In this article, we will discuss how to improve the 
two fundamental aspects in a classic MapReduce 
architecture; the homogeneity and locality of the 
data! and that if they are not taken into account, they 
can considerably impact the performance of 
MapReduce. 

In our approach, and in the case of critical and 
resource-intensive applications, a balanced 
distribution of tasks to be processed according to the 
resources allocated for each node can always 
improve the performance of the HADOOP platform, 
particularly the operating mode of MapReduce. 

The most important motive is that due to different 
cluster’s nodes capabilities, the assigned tasks are 
consequently achieved asynchronously. Actually, 
some nodes are illegible to accomplish faster 
execution time than others. The assignment of the 
remaining tasks can be improved by selecting wisely 
the most appropriate nodes with respect to data 
placement. Avoiding data transfer and wait event for 
data fetch can minimize the processing time and 
enhance the overall Hadoop performance. 



Journal of Theoretical and Applied Information Technology 
31st March 2022. Vol.100. No 6 

© 2022 Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
1952 

 

 

2. MOTIVATION 
 

For example, in Figure 1, nodes (A, B, C), in this 
order from the fastest to the slowest. Assuming that 
node A can perform processing 3 times faster than 
node C, and 2 times faster than node B. Figure 1(a), 
shows the distribution of data blocks that are 
required for a given processing job as follow, 3 data 
blocks on Node A, 4 data blocks on both Node B and 
Node C. When processing starts, Node A will 
accomplish processing local data blocks earlier than 
others. 

 

Figure 1: nodes A, B, C from the fastest to the slowest 

Figure 1(b), shows that after a certain time, Node 
B and Node C are still processing assigned data 
blocks while Node A is waiting to be assigned new 
tasks by the NameNode. After time 2, Figure 1(c) 
shows that Node A have to wait for data block 
transfer from Node B to be completed before 
processing. Similarly, each time the faster node will 
be assigned task when others are busy, the cluster 
will cumulate delays to get data blocks for 
processing by the available node. Finally, Figure 1(f) 
shows 3 data blocks required by Node A from both 
Nodes B and C, causing delays while executing jobs. 
Considering the complexity and the scale of Hadoop 
clusters, data blocks transfer across big clusters, 
affects heavily the overall Hadoop performance. 

 
3. PAPER ORGANISATION 

In this paper, in section 1.1 we introduced a 
description on how the data placement and the nodes 
capabilities can be improved in Hadoop 
heterogenous cluster. In section 1.2, we present the 

design and the implementation, while describing the 
proposed algorithms. In section 3.3 we present our 
experimental implementation, results and 
evaluations. Finally, in Section 4.4 we conclude by 
a summary of the actual paper contribution. 
 
4. DESIGN AND IMPLEMENTATION 

4.1 Dynamic data placement strategy 
 
Despite of the native Data Placement 

strategy that Hadoop framework maintains by 
default, we present in the following a new approach 
that take in consideration the difference between the 
cluster nodes computing capabilities, with respect to 
the nature of tasks to adjust data blocks distribution. 

The design of our solution is presented 
under two major phases, the first one is implemented 
during the HDFS input, and the second one is 
implemented while processing tasks are initiated. 

 
4.1.1 RatioTable 
 

The RT -Ratio Table- is created in the 
NameNode, it keeps track of the data blocks when 
added to HDFS. The table will be used to decide if 
reallocation of relevant data blocks has to occur after 
task execution. The RT tracks task types and the 
computing capacity of the nodes. The computing 
capacity is given as a ratio, that indicate an average 
of how much time this node takes to execute tasks. 
The NameNode receives a heartbeat message from 
each DataNode, which include the computing 
capacity. 

 
Table1: RatioTable example 

 Node A Node B Node C 
WordCount 3 1.5 1 

Grep 2.5 1.5 1 
 
For simplicity, the Table 1describes the 

same previous Nodes A, B and C, under the 
computing capacity assumption for the first job, 
𝐴(𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦)  =
 3𝑥𝐶(𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦) and 
𝐵(𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦)  =
 1.5𝑥𝐶(𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦). Then we assume that 
it is slightly different for the second job Grep, as 
𝐴(𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦) =
2.5𝑥𝐶(𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦) and 
𝐵(𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦) =
1.5𝑥𝐵(𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦). Then, the RT will 
record the following ratios respectively for 
WordCound and Grep as 3: 1.5: 1 and is 2.5: 1.5: 1 
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4.2 Phase 1: Initialization and Allocation 
 

During data input through HDFS, the 
NameNode initiate the check into the RT. It will 
initially check for execution historical data about the 
same job. If the return is positive, then the 
NameNode will distribute data block to the previous 
DataNodes with respect to their computing ratio. 
Otherwise, the data blocks will be distributed 
equally according to the default Hadoop strategy, 
still the RT will record the new job mapped to the 
value 1 of the corresponding computing ratio of each 
assigned node. 

According to the computing ratios reported 
in the Table 1, for a given WordCount job, if we 
assume an input data that contains 11 data blocks, 
the distribution of those data blocks based on our 
ratios will be allocated as follows:  

 
Table 1: Allocation according to the ratio information 

Assigned data blocks to 
Node A: 

 

|(11 
∗  [ 

3 ]  
=  6)|  3+1.5+1

Assigned data blocks to 
Node B: 

 

|(11 
∗  [ 

1.5 ]  
=  3)|  3+1.5+1

Assigned data blocks to 
Node C: 

 

|(11 
∗  [ 

1 ]  
=  2)|  3+1.5+1

 
However, when no historical data are 

available for a given job, the NameNode can’t get 
any records in the RT, then the data block 
distribution will be similarly among the 3 nodes as 
per the default Hadoop configuration. For example, 
for a new given TeraSort job, the computing capacity 
ratios (1: 1: 1) will be initialized in the RT for future 
decision (see Figure 2). 

 
Figure2: Phase 1 process flow 

4.2.1 Initial Data Allocation Algorithm 
 

 
 

For simplicity in the current phase, the 
powerful node remains favorited to store the left-
over blocks due to ponderation. In other words, 
when Total Blocks is different than Total assigned 
blocks, the powerful node A get additional blocks 
Diff Blocks, where Diff Blocks=Total Blocks – 
Total blocks assigned to A (as per the phase 1 
algorithm).    

 
Phase 2: Capacity Decision and Data 

Reallocation 
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Considering a job J as a set of tasks, once 
job is started, tasks are defined, then assigned to 
nodes. When the tasks execution ends in each 
DataNode, DataNodes reports to the NameNode the 
statuses. NameNode will get also the ratios based on 
their execution time. As of the difference between 
their computing capacity, each node will have 
different availability for tasks slots. Actually, all the 
available task slots can be run in parallel, therefore 
the computing capacity must take into consideration 
both the number of available slots and ratios for 
more accuracy.  

Consider Node A and Node B, while Node 
A is able to perform tasks two times faster than Node 
B. based on that, we suppose that the available task 
slots are also double on A compared to B. For 
simplicity, we will consider a number of task slots 
on both nodes. Assuming two on node A and four on 
node B. We assume that node A perform a given job 
tasks on the 4 task slots  

respectively during 45, 43, 43 and 46 secs, 
as per an average of 44.25 for one task. Similarly, we 
assume that Node B perform a given job tasks on the 
2 task slots respectively during 39 and 40 secs, as per 
an average of 39.5 for one task. 

In term of efficiency, one can consider that 
Node B have better execution time for each task, 
compare to Node A, still node A can process 4 tasks 
simultaneously. Therefore, Node A can be favorited 
when the average compute time of a task divided by 
the number of slots is higher. 

Let’s consider the following 
 

Table 3: Considerations 

𝑇𝑎(𝑋) Average execution time to accomplish 
a set of tasks on node 𝑋  

𝑆(𝑋) The number of task slots on node 𝑋 
 

Then the average time required to complete 

one task on Node 𝑋 is 𝑇𝑡(𝑋) = [
୘ୟ(ଡ଼)

ௌ(௫)
] 

The NameNode will calculate the compute 
ratio for each DataNodes and compare it to the 
previous values if it exists in the RT. The value will 
be updated whenever previous value exists and 
different. Data blocks will be transferred based on 
the obtained ratios, to anticipate the execution of 
transferred data blocks on the faster node. (see 
Figure 3) 

 

 
Figure3: Phase 2 process flow 

4.2.2 Capacity Decision and Data Reallocation 
Algorithm  
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4.3 Experimental Results 
In this section, we present our experimental 

results obtained through conducting test 
deployments to evaluate our proposed algorithms. 

Environment 
In order to conduct our experimental tests, 

we built a Hadoop cluster environment for test 
purpose. The hardware layer is abstracted by an 
OpenStack private cloud platform. That is used to 
provision compute, storage and network resources. 
Our cluster is simulated by one NameNode and 4 
DataNodes. The NameNode VM0 has 4 CPUs, 32 
GB of memory, and 500 GB of storage; The 
DataNode VM1 has 2 CPUs, 16 GB of memory, and 
a 500 GB of storage; The DataNode VM2 has 2 
CPUs, 8 GB of memory and a 500 GB of storage; the 
DataNode VM3 and VM4 has 1 CPU, 4 GB of 
memory, and a 500 GB of storage. All Nodes are 
deployed on Ubuntu 14.04. We use Hadoop version 
2.6.2 and Java version 1.8.0_65. 

Our use of the virtualized resources on 
OpenStack provide us more flexibility to add or 
shrink Nodes capacities according to the purpose or 
each test. 

 
Table 4: Initial resource allocation 

Node CPU RAM Disk 

VM0 
(Master) 

8 64 GB 500 GB 

VM1 
(Slave) 

4 32 GB 500 GB 

VM2 
(Slave) 

4 16 GB 500 GB 

VM3 
(Slave) 

2 8 GB 500 GB 

VM4 
(Slave) 

2 8 GB 500 GB 

 
5. RESULTS 

In this section, we use WordCount and 
Grep, two micro benchmarks abstracted from big 
data Hadoop services over various implementations 
infrastructure. The WordCount program WordCount 
counts the occurrences of all words in the files. It 
takes as input any document format, text files are the 
most common input, and provide an output format <
𝑤𝑜𝑟𝑑 > < 𝑐𝑜𝑢𝑛𝑡 >. The Grep program searches 
for regular expressions from the input files then it 
counts the occurrences of the strings. It takes as input 

format: < 𝑘𝑒𝑦 > < 𝑣𝑎𝑙𝑢𝑒 >, and provide an output 
format < 𝑘𝑒𝑦 > < 𝑣𝑎𝑙𝑢𝑒 >. Both benchmarks are 
provided through Hadoop Libraries. 

 
To evaluate our proposed algorithm 

performance, in a Hadoop heterogeneous cluster, we 
made several rounds of executions. Each round 
contains 10 jobs to be run simultaneously. The jobs 
input is all 1Gb, but not necessarily using the same 
datasets. The average execution time is related to 
each round of execution. 

 

 
Figure 4: Execution time - WordCount job on each node 

 

 
Figure5: Execution time - Grep job on each node 

Initially, we execute both benchmarks 
using different size of data files 1Gb and 2Gb, Figure 
4 shows the average execution for WordCount 
related to both data files sizes. Figure 5 shows the 
average execution time for Grep related to both data 
files sizes. Based on Figure 4 and Figure 5 we 
observed that the execution time is proportional to 
data sizes on each node. The computing capacity 
ratio between nodes is not affected by the processed 
data sizes.  

 
According to Figure 4 and Figure 5 we 

calculated the compute ratio of each node based on 
the two types of jobs, as obtained in Table 5. 
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According to the first results, the size of the 
processed data is not heavily impacting the 
computing capacity ratio. For a WordCount job 
execution, we observed that VM1 node is four times 
faster than VM3 node, and VM2 node is two times 
faster than VM3 node 3. 

 
Table 5: The job computing capacity ratio of 

each node 
Node WordCount Grep 
VM1 4 3 
VM2 2 1.5 
VM3 1 1 
VM4 1 1 

 
 
However, the proposed algorithm is 

principally designed to optimize map tasks, while 
execution time includes also reduce tasks. Moreover, 
there is slightly delays to consider during the 
calculation of the computing ratios, which might 
impact scalability performance. Therefore, we 
continue to execute different jobs to calculate the 
average time required to complete one single task.  

 

 
Figure 6: Average time - WordCount task on each node 

 
Figure 7: Average time - Grep task on each node 

Figure 7 shows the average execution time 
of single WordCount task, on each node with respect 
to data locality. Figure 7 shows the average 
execution time of a single Grep task, similarly with 
respect to data locality.  

 
We observe, that the executing time in both 

cases, locally and non-locally depends on the size of 
the processed a data block as shown in both figures. 
According to both figures 6 and 7, the execution time 
is proportional between the executed task and the 
data block size, regardless of the computing ratio on 
each node, therefore we adopted the same Hadoop 
default block size 64Mb. 

 
According to Figure 6 and Figure 7 we 

calculated the compute ratio of each node for a single 
task, as obtained in Table 8. According to those 
results, for one single task of the WordCount job, we 
observed that VM1 is 4.5 times faster than VM3, 
VM2 is twice time faster than VM3. While for one 
single task of Grep job, VM1 is 3.5 times VM3, 
VM2 is twice faster than VM3. We conclude that 
those ratios are approximately close to the previous 
calculated ratios, only the job execution time is more 
accurate as it takes into consideration the reduce 
phases. Therefore, we update the ratios as in the 
Table 7. 

 
Table 6: The task computing capacity ratio of 

each node 
Node WordCount Grep 
VM1 4.5 3.5 
VM2 2 2 
VM3 1 1 
VM4 1 1 

 

 
Figure 8: Data placement strategy impact on average 

execution time - WordCount 
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Figure 9: Data placement strategy impact on average 

execution time - Grep 

 
Figures 8 and 9 shows the execution time 

for the same benchmark jobs Word-Count and Grep 
while different data allocation strategies are used. In 
this experiment, we had used 2GB as an input of data 
file size, and 64 MB as the default data block size. 
We performed a total of 5 execution cycles, each 
execution cycle contains 10 jobs, the data files input 
is different across the executed jobs. Finally, the 
average execution time of each job is reported for 
evaluation. 

As shown in Figure 8 and Figure 9, our DPP 
algorithm is compared to three data placement cases, 
the native Hadoop strategy, all data blocks are local 
which is the best case, and all data blocks are not 
local as the worst case.  

In the best case, no data blocks are 
transferred, inversely the Hadoop worst case in term 
of data distribution occurs when all the data block 
have to be transferred to be processed. As explained 
in our algorithm the data blocks must be allocated 
based on the computing ratio of each node. 
Therefore, Table 6 values are considered in our 
experiment. We consider data input for the 
WordCount job, as 17 data blocks in HDFS, ratios of 
Table 6 are 4.5, 2, 1, 1. Then, the allocation through 
our DPP algorithm, is as follow, VM1 is assigned 9 
data blocks, VM2 is assigned 4 data blocks, VM3 
and VM4 are both assigned 2 data blocks. The worst 
case is when all of the data blocks are on the same 
slowest node, then other nodes executing tasks have 
to wait until data blocks are completely transferred 
from the slowest node, that is handling all data 
blocks, in our case VM3 or VM4.  

Figure 8 shows how the WordCount job 
execution time is impacted by different type of data 
placement. We found that the proposed algorithm of 
data placement is operating optimally compared to 
the worst case. As our algorithm is based on previous 
job execution to evaluate the computing ratio, the 

first job execution might result in slightly delays as 
of using the native Hadoop strategy. This can be 
easily adjusted once the job execution starts on the 
cluster. Therefore, we are getting nearest average 
execution time based on the implemented algorithm 
compared to the best case. Figure 10 shows that our 
algorithm is able to reduce execution time compared 
to the default Hadoop strategy by 14.33%. Figure 10 
shows that our algorithm can improve the execution 
time compared to the worst case by approximately 
23.8%. 

 

 
Figure 10: Comparison with Hadoop default strategy - 

Job average execution time Ratio 

 
Figure 21: Comparison with worst case - Job average 

execution time Ratio  
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For the Grep job evaluation, Figure 11 
shows that our algorithm is able to reduce execution 
time compared to the default Hadoop strategy by 
23%. Figure 11 shows that our algorithm can 
improve the execution time compared to the worst 
case by approximately 32%. 

 
6. SUMMARY 

In this paper, we proposed a Data 
Placement Policy (DPP) for map tasks of data 
locality to allocate data blocks. The Hadoop default 
data placement strategy is assumed to be applied in 
a homogeneous environment. In a homogeneous 
cluster, the Hadoop strategy can make full use of the 
resources of each node. However, in a heterogeneous 
environment, a produces load imbalance creates the 
necessity to spend additional overhead. The 
proposed DPP algorithm is based on the different 
computing capacities of nodes to allocate data 
blocks, thereby improving data locality and reducing 
the additional overhead to enhance Hadoop 
performance. Finally, in the experiments, for two 
types of applications, WordCount and Grep, the 
execution time of the DPP compared with the 
Hadoop default policy was improved. Regarding 
WordCount, the DPP is improved by up to 24.7%, 
with an average improvement of 14.5%. Regarding 
Grep, the DPP is improved by up to 32.1%, with an 
average improvement of 23.5%. In the future, we 
will focus on other types of jobs to improve Hadoop 
performance such Terasoft and Pi benchmark. 

 
Also, with the importance of AI and 

machine learning, we will improve this work with 
advanced algorithms and provide some answers, 
focusing on the following points: 

 
Which of the machine learning algorithms: 

logistic regression, RNN, decision tree or clustering 
is better suited to address the improve Data 
Placement? 

Which of the machine learning algorithms: 
logistic regression, RNN, decision tree or clustering 
is better suited to address the problem of Data 
Placement, 

 
REFERENCES:  

 
[1] Y. Gao and S. Zheng, "A Metadata Access 

Strategy of Learning Resources Based on 
HDFS," in proceeding International Conference 
on Image Analysis and Signal Processing 
(IASP), pp. 620—622, 2011. 

 

[2] J. Xie, S. Yin, et al. “Improving MapReduce 
performance through data placement in 
heterogeneous Hadoop clusters”, In 2010 IEEE 
International Symposium on Parallel & 
Distributed 

[3] G. Mackey; S. Sehrish; J. Wang. Improving 
metadata management for small files in HDFS. 
IEEE International Conference on Cluster 
Computing and Workshops (CLUSTR). 2009. 
pp.1-4. 

[4] C. Vorapongkitipun; N. Nupairoj. Improving 
performance of small-file accessing in Hadoop. 
IEEE International Conference on Computer 
Science and Software Engineering (JCSSE). 
2014. pp.200-205. 

[5]   A. Patel, Mayuri A. Mehta “A Novel Approach 
for Efficient Handling of Small Files in HDFS”. 
2015. Pp.1-14 

[6] T. White, Hadoop: The Definitive Guide, 4th ed.  
O’Reilly, 2015. 

[7] C. Jin, R. Kang, and R. Li, “VTB-RTRRP: 
Variable Threshold Based Response Time 
Reliability Real-Time Prediction,” IEEE Access, 
vol. 6, pp. 60–71, 2018. 

[8] C.-H. Chen, J.-W. Lin, and S.-Y. Kuo, 
“MapReduce Scheduling for Deadline 
Constrained Jobs in Heterogeneous Cloud 
Computing Systems,” IEEE Trans. Cloud 
Comput., vol. 6, no. 1, pp. 127–140, Jan 2018. 

[9] K. Shvachko, H. Kuang, S. Radia, and R. 
Chansler, “The Hadoop Distributed File 
System,” in Proc.IEEE 26th Symp. MSST, 
Washing-ton, DC, USA, 2010, pp. 1–10. 

[10] R. M. Karp, “Reducibility Among Combinatorial 
Problems,” in Proc. Symp. the Complexity of 
Computer Computations. Springer US, 1972, pp. 
85–103. 

[11] K. Zhang, “A Constrained Edit Distance between 
Unordered Labeled Trees,” Algorithmica, vol. 
15, no. 3, pp. 205–222, Mar. 1996. 

[12] C.-X. Xu, “A Simple Solution to Maximum Flow 
at Minimum Cost,” in Proc. 2nd ICIECS, 
Wuhan, China, 2010, pp. 1–4. 

[13] Z. Han, H. Tan, Y. Wang, and J. Zhou, “Channel 
Selection for Rendezvous with High Link 
Stability in Cognitive Radio Network,” in Proc. 
9th Int. Conf. WASA, Harbin, China, 2014, pp. 
494–506. 

[14] XenServer — Open Source Server 
Virtualization. [Online]. Available at: 

[15] https://xenserver.org/ 
 



Journal of Theoretical and Applied Information Technology 
31st March 2022. Vol.100. No 6 

© 2022 Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
1959 

 

[16] D. Cheng, J. Rao, Y. Guo, C. Jiang, and X. Zhou, 
“Improving Performance of Heterogeneous 
MapReduce Clusters with Adaptive Task 
Tuning,” IEEE Trans. Parallel Distrib. Syst., vol. 
28, no. 3, pp. 774–786, March 2017. 

[17] J. A. Issa, “Performance Evaluation and 
Estimation Model Using Regression Method for 
Hadoop WordCount,” IEEE Access, vol. 3, 
2784–2793, 2015. 

[18] Tom White. Hadoop The Definitive Guide. 
O’Reilly, 2009.  

[19] P. Dreher, C. Byun, C. Hill, V. Gadepally, B. 
Kuszmaul, and J. Kepner, “PageRank Pipeline 
Benchmark Proposal for a Holistic System 
Benchmark for Big-Data Platforms,” in IEEE 
IPDPSW, May 2016, pp. 929–937. 

[20] S. E. Mendili, Y. E. B. E. Idrissi, and N. Hmina, 
“Benchmarking Study on Smart City Data 
Analytics,” in IEEE Int. CiSt, Oct 2016,841–
846. 

[21] MathWorks R . [Online]. Available at: 
https://www.mathworks.com/ 

 
 
 
 


