
Journal of Theoretical and Applied Information Technology
31st March 2022. Vol.100. No 6

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1951

IMPROVING HADOOP THROUGH DATA PLACEMENT
STRATEGY

MOHAMED EDDOUJAJI1 , HASSAN SAMADI2, MOHAMMED BOUHORMA3
1Dep. Doctoral Studies Research Center, National School of Applied Sciences, Morocco

2Dep. Doctoral Studies Research Center, National School of Applied Sciences, Morocco

3Dep. Doctoral Studies Research Center, Faculty of Sciences and Techniques, Morocco

E-mail: 1m.eddoujaji@gmail.com, 2hsamadi@uae.ac.ma, 2abouhorma@uae.ac.ma,

ABSTRACT

Hadoop assumes that the computing capability of cluster's nodes is similar. In such a homogeneous
environment, every node is assigned an identical load, such approach allows total use of cluster's resources
and minimize multiple idle or over headed nodes. However, in real world applications, clusters are frequently
deployed in a heterogeneous context [9,13–15]. In such environments, there is possibly multiple different
physical servers and different virtual nodes specifications, which provide per consequence different services
capabilities. Therefore, Hadoop still uses the same native strategy that distributes data blocks equally among
each DataNode, similarly the load is evenly assigned between nodes, then the basic overall performance of
Hadoop may also be reduced.

The main objective during the phases of this research is to find an optimal scheme and an improved
architecture to optimize the classical architecture of HADOOP and MapReduce, by focusing mainly on the
algorithm of locality and data distribution in a heterogeneous ecosystem composed of several nodes
heterogeneous.

Despite of the native Data Placement strategy that Hadoop framework maintains by default, we
present in the following a new approach that take in consideration the difference between the cluster nodes
computing capabilities, with respect to the nature of tasks to adjust data blocks distribution.

The design of our solution is presented under two major phases, the first one is implemented during
the HDFS input, and the second one is implemented while processing tasks are initiated.

Keywords: Data, Big Data, Distributed Systems, Heterogeneous Systems, Hadoop Distributed File System;
Distributed Storage; Distributed Computing, Sequencefile, Mapfile

1. INTRODUCTION

The major drawbacks of such implementation are
the performance degradation of MapReduce when
large clusters based on heterogeneous nodes are
used, and also data locality has not been taken into
account for geographically dispersed environments,
because HADOOP assumes all data is stored locally.

In this article, we will discuss how to improve the
two fundamental aspects in a classic MapReduce
architecture; the homogeneity and locality of the
data! and that if they are not taken into account, they
can considerably impact the performance of
MapReduce.

In our approach, and in the case of critical and
resource-intensive applications, a balanced
distribution of tasks to be processed according to the
resources allocated for each node can always
improve the performance of the HADOOP platform,
particularly the operating mode of MapReduce.

The most important motive is that due to different
cluster’s nodes capabilities, the assigned tasks are
consequently achieved asynchronously. Actually,
some nodes are illegible to accomplish faster
execution time than others. The assignment of the
remaining tasks can be improved by selecting wisely
the most appropriate nodes with respect to data
placement. Avoiding data transfer and wait event for
data fetch can minimize the processing time and
enhance the overall Hadoop performance.

Journal of Theoretical and Applied Information Technology
31st March 2022. Vol.100. No 6

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1952

2. MOTIVATION

For example, in Figure 1, nodes (A, B, C), in this
order from the fastest to the slowest. Assuming that
node A can perform processing 3 times faster than
node C, and 2 times faster than node B. Figure 1(a),
shows the distribution of data blocks that are
required for a given processing job as follow, 3 data
blocks on Node A, 4 data blocks on both Node B and
Node C. When processing starts, Node A will
accomplish processing local data blocks earlier than
others.

Figure 1: nodes A, B, C from the fastest to the slowest

Figure 1(b), shows that after a certain time, Node
B and Node C are still processing assigned data
blocks while Node A is waiting to be assigned new
tasks by the NameNode. After time 2, Figure 1(c)
shows that Node A have to wait for data block
transfer from Node B to be completed before
processing. Similarly, each time the faster node will
be assigned task when others are busy, the cluster
will cumulate delays to get data blocks for
processing by the available node. Finally, Figure 1(f)
shows 3 data blocks required by Node A from both
Nodes B and C, causing delays while executing jobs.
Considering the complexity and the scale of Hadoop
clusters, data blocks transfer across big clusters,
affects heavily the overall Hadoop performance.

3. PAPER ORGANISATION

In this paper, in section 1.1 we introduced a
description on how the data placement and the nodes
capabilities can be improved in Hadoop
heterogenous cluster. In section 1.2, we present the

design and the implementation, while describing the
proposed algorithms. In section 3.3 we present our
experimental implementation, results and
evaluations. Finally, in Section 4.4 we conclude by
a summary of the actual paper contribution.

4. DESIGN AND IMPLEMENTATION

4.1 Dynamic data placement strategy

Despite of the native Data Placement

strategy that Hadoop framework maintains by
default, we present in the following a new approach
that take in consideration the difference between the
cluster nodes computing capabilities, with respect to
the nature of tasks to adjust data blocks distribution.

The design of our solution is presented
under two major phases, the first one is implemented
during the HDFS input, and the second one is
implemented while processing tasks are initiated.

4.1.1 RatioTable

The RT -Ratio Table- is created in the
NameNode, it keeps track of the data blocks when
added to HDFS. The table will be used to decide if
reallocation of relevant data blocks has to occur after
task execution. The RT tracks task types and the
computing capacity of the nodes. The computing
capacity is given as a ratio, that indicate an average
of how much time this node takes to execute tasks.
The NameNode receives a heartbeat message from
each DataNode, which include the computing
capacity.

Table1: RatioTable example

 Node A Node B Node C
WordCount 3 1.5 1

Grep 2.5 1.5 1

For simplicity, the Table 1describes the

same previous Nodes A, B and C, under the
computing capacity assumption for the first job,
𝐴(𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦) =
 3𝑥𝐶(𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦) and
𝐵(𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦) =
 1.5𝑥𝐶(𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦). Then we assume that
it is slightly different for the second job Grep, as
𝐴(𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦) =
2.5𝑥𝐶(𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦) and
𝐵(𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦) =
1.5𝑥𝐵(𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦). Then, the RT will
record the following ratios respectively for
WordCound and Grep as 3: 1.5: 1 and is 2.5: 1.5: 1

Journal of Theoretical and Applied Information Technology
31st March 2022. Vol.100. No 6

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1953

4.2 Phase 1: Initialization and Allocation

During data input through HDFS, the
NameNode initiate the check into the RT. It will
initially check for execution historical data about the
same job. If the return is positive, then the
NameNode will distribute data block to the previous
DataNodes with respect to their computing ratio.
Otherwise, the data blocks will be distributed
equally according to the default Hadoop strategy,
still the RT will record the new job mapped to the
value 1 of the corresponding computing ratio of each
assigned node.

According to the computing ratios reported
in the Table 1, for a given WordCount job, if we
assume an input data that contains 11 data blocks,
the distribution of those data blocks based on our
ratios will be allocated as follows:

Table 1: Allocation according to the ratio information

Assigned data blocks to
Node A:

|(11
∗ [

3]
= 6)| 3+1.5+1

Assigned data blocks to
Node B:

|(11
∗ [

1.5]
= 3)| 3+1.5+1

Assigned data blocks to
Node C:

|(11
∗ [

1]
= 2)| 3+1.5+1

However, when no historical data are

available for a given job, the NameNode can’t get
any records in the RT, then the data block
distribution will be similarly among the 3 nodes as
per the default Hadoop configuration. For example,
for a new given TeraSort job, the computing capacity
ratios (1: 1: 1) will be initialized in the RT for future
decision (see Figure 2).

Figure2: Phase 1 process flow

4.2.1 Initial Data Allocation Algorithm

For simplicity in the current phase, the
powerful node remains favorited to store the left-
over blocks due to ponderation. In other words,
when Total Blocks is different than Total assigned
blocks, the powerful node A get additional blocks
Diff Blocks, where Diff Blocks=Total Blocks –
Total blocks assigned to A (as per the phase 1
algorithm).

Phase 2: Capacity Decision and Data

Reallocation

Journal of Theoretical and Applied Information Technology
31st March 2022. Vol.100. No 6

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1954

Considering a job J as a set of tasks, once
job is started, tasks are defined, then assigned to
nodes. When the tasks execution ends in each
DataNode, DataNodes reports to the NameNode the
statuses. NameNode will get also the ratios based on
their execution time. As of the difference between
their computing capacity, each node will have
different availability for tasks slots. Actually, all the
available task slots can be run in parallel, therefore
the computing capacity must take into consideration
both the number of available slots and ratios for
more accuracy.

Consider Node A and Node B, while Node
A is able to perform tasks two times faster than Node
B. based on that, we suppose that the available task
slots are also double on A compared to B. For
simplicity, we will consider a number of task slots
on both nodes. Assuming two on node A and four on
node B. We assume that node A perform a given job
tasks on the 4 task slots

respectively during 45, 43, 43 and 46 secs,
as per an average of 44.25 for one task. Similarly, we
assume that Node B perform a given job tasks on the
2 task slots respectively during 39 and 40 secs, as per
an average of 39.5 for one task.

In term of efficiency, one can consider that
Node B have better execution time for each task,
compare to Node A, still node A can process 4 tasks
simultaneously. Therefore, Node A can be favorited
when the average compute time of a task divided by
the number of slots is higher.

Let’s consider the following

Table 3: Considerations

𝑇𝑎(𝑋) Average execution time to accomplish
a set of tasks on node 𝑋

𝑆(𝑋) The number of task slots on node 𝑋

Then the average time required to complete

one task on Node 𝑋 is 𝑇𝑡(𝑋) = [
୘ୟ(ଡ଼)

ௌ(௫)
]

The NameNode will calculate the compute
ratio for each DataNodes and compare it to the
previous values if it exists in the RT. The value will
be updated whenever previous value exists and
different. Data blocks will be transferred based on
the obtained ratios, to anticipate the execution of
transferred data blocks on the faster node. (see
Figure 3)

Figure3: Phase 2 process flow

4.2.2 Capacity Decision and Data Reallocation
Algorithm

Journal of Theoretical and Applied Information Technology
31st March 2022. Vol.100. No 6

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1955

4.3 Experimental Results
In this section, we present our experimental

results obtained through conducting test
deployments to evaluate our proposed algorithms.

Environment
In order to conduct our experimental tests,

we built a Hadoop cluster environment for test
purpose. The hardware layer is abstracted by an
OpenStack private cloud platform. That is used to
provision compute, storage and network resources.
Our cluster is simulated by one NameNode and 4
DataNodes. The NameNode VM0 has 4 CPUs, 32
GB of memory, and 500 GB of storage; The
DataNode VM1 has 2 CPUs, 16 GB of memory, and
a 500 GB of storage; The DataNode VM2 has 2
CPUs, 8 GB of memory and a 500 GB of storage; the
DataNode VM3 and VM4 has 1 CPU, 4 GB of
memory, and a 500 GB of storage. All Nodes are
deployed on Ubuntu 14.04. We use Hadoop version
2.6.2 and Java version 1.8.0_65.

Our use of the virtualized resources on
OpenStack provide us more flexibility to add or
shrink Nodes capacities according to the purpose or
each test.

Table 4: Initial resource allocation

Node CPU RAM Disk

VM0
(Master)

8 64 GB 500 GB

VM1
(Slave)

4 32 GB 500 GB

VM2
(Slave)

4 16 GB 500 GB

VM3
(Slave)

2 8 GB 500 GB

VM4
(Slave)

2 8 GB 500 GB

5. RESULTS

In this section, we use WordCount and
Grep, two micro benchmarks abstracted from big
data Hadoop services over various implementations
infrastructure. The WordCount program WordCount
counts the occurrences of all words in the files. It
takes as input any document format, text files are the
most common input, and provide an output format <
𝑤𝑜𝑟𝑑 > < 𝑐𝑜𝑢𝑛𝑡 >. The Grep program searches
for regular expressions from the input files then it
counts the occurrences of the strings. It takes as input

format: < 𝑘𝑒𝑦 > < 𝑣𝑎𝑙𝑢𝑒 >, and provide an output
format < 𝑘𝑒𝑦 > < 𝑣𝑎𝑙𝑢𝑒 >. Both benchmarks are
provided through Hadoop Libraries.

To evaluate our proposed algorithm

performance, in a Hadoop heterogeneous cluster, we
made several rounds of executions. Each round
contains 10 jobs to be run simultaneously. The jobs
input is all 1Gb, but not necessarily using the same
datasets. The average execution time is related to
each round of execution.

Figure 4: Execution time - WordCount job on each node

Figure5: Execution time - Grep job on each node

Initially, we execute both benchmarks
using different size of data files 1Gb and 2Gb, Figure
4 shows the average execution for WordCount
related to both data files sizes. Figure 5 shows the
average execution time for Grep related to both data
files sizes. Based on Figure 4 and Figure 5 we
observed that the execution time is proportional to
data sizes on each node. The computing capacity
ratio between nodes is not affected by the processed
data sizes.

According to Figure 4 and Figure 5 we

calculated the compute ratio of each node based on
the two types of jobs, as obtained in Table 5.

Journal of Theoretical and Applied Information Technology
31st March 2022. Vol.100. No 6

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1956

According to the first results, the size of the
processed data is not heavily impacting the
computing capacity ratio. For a WordCount job
execution, we observed that VM1 node is four times
faster than VM3 node, and VM2 node is two times
faster than VM3 node 3.

Table 5: The job computing capacity ratio of

each node
Node WordCount Grep
VM1 4 3
VM2 2 1.5
VM3 1 1
VM4 1 1

However, the proposed algorithm is

principally designed to optimize map tasks, while
execution time includes also reduce tasks. Moreover,
there is slightly delays to consider during the
calculation of the computing ratios, which might
impact scalability performance. Therefore, we
continue to execute different jobs to calculate the
average time required to complete one single task.

Figure 6: Average time - WordCount task on each node

Figure 7: Average time - Grep task on each node

Figure 7 shows the average execution time
of single WordCount task, on each node with respect
to data locality. Figure 7 shows the average
execution time of a single Grep task, similarly with
respect to data locality.

We observe, that the executing time in both

cases, locally and non-locally depends on the size of
the processed a data block as shown in both figures.
According to both figures 6 and 7, the execution time
is proportional between the executed task and the
data block size, regardless of the computing ratio on
each node, therefore we adopted the same Hadoop
default block size 64Mb.

According to Figure 6 and Figure 7 we

calculated the compute ratio of each node for a single
task, as obtained in Table 8. According to those
results, for one single task of the WordCount job, we
observed that VM1 is 4.5 times faster than VM3,
VM2 is twice time faster than VM3. While for one
single task of Grep job, VM1 is 3.5 times VM3,
VM2 is twice faster than VM3. We conclude that
those ratios are approximately close to the previous
calculated ratios, only the job execution time is more
accurate as it takes into consideration the reduce
phases. Therefore, we update the ratios as in the
Table 7.

Table 6: The task computing capacity ratio of

each node
Node WordCount Grep
VM1 4.5 3.5
VM2 2 2
VM3 1 1
VM4 1 1

Figure 8: Data placement strategy impact on average

execution time - WordCount

Journal of Theoretical and Applied Information Technology
31st March 2022. Vol.100. No 6

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1957

Figure 9: Data placement strategy impact on average

execution time - Grep

Figures 8 and 9 shows the execution time

for the same benchmark jobs Word-Count and Grep
while different data allocation strategies are used. In
this experiment, we had used 2GB as an input of data
file size, and 64 MB as the default data block size.
We performed a total of 5 execution cycles, each
execution cycle contains 10 jobs, the data files input
is different across the executed jobs. Finally, the
average execution time of each job is reported for
evaluation.

As shown in Figure 8 and Figure 9, our DPP
algorithm is compared to three data placement cases,
the native Hadoop strategy, all data blocks are local
which is the best case, and all data blocks are not
local as the worst case.

In the best case, no data blocks are
transferred, inversely the Hadoop worst case in term
of data distribution occurs when all the data block
have to be transferred to be processed. As explained
in our algorithm the data blocks must be allocated
based on the computing ratio of each node.
Therefore, Table 6 values are considered in our
experiment. We consider data input for the
WordCount job, as 17 data blocks in HDFS, ratios of
Table 6 are 4.5, 2, 1, 1. Then, the allocation through
our DPP algorithm, is as follow, VM1 is assigned 9
data blocks, VM2 is assigned 4 data blocks, VM3
and VM4 are both assigned 2 data blocks. The worst
case is when all of the data blocks are on the same
slowest node, then other nodes executing tasks have
to wait until data blocks are completely transferred
from the slowest node, that is handling all data
blocks, in our case VM3 or VM4.

Figure 8 shows how the WordCount job
execution time is impacted by different type of data
placement. We found that the proposed algorithm of
data placement is operating optimally compared to
the worst case. As our algorithm is based on previous
job execution to evaluate the computing ratio, the

first job execution might result in slightly delays as
of using the native Hadoop strategy. This can be
easily adjusted once the job execution starts on the
cluster. Therefore, we are getting nearest average
execution time based on the implemented algorithm
compared to the best case. Figure 10 shows that our
algorithm is able to reduce execution time compared
to the default Hadoop strategy by 14.33%. Figure 10
shows that our algorithm can improve the execution
time compared to the worst case by approximately
23.8%.

Figure 10: Comparison with Hadoop default strategy -

Job average execution time Ratio

Figure 21: Comparison with worst case - Job average

execution time Ratio

Journal of Theoretical and Applied Information Technology
31st March 2022. Vol.100. No 6

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1958

For the Grep job evaluation, Figure 11
shows that our algorithm is able to reduce execution
time compared to the default Hadoop strategy by
23%. Figure 11 shows that our algorithm can
improve the execution time compared to the worst
case by approximately 32%.

6. SUMMARY

In this paper, we proposed a Data
Placement Policy (DPP) for map tasks of data
locality to allocate data blocks. The Hadoop default
data placement strategy is assumed to be applied in
a homogeneous environment. In a homogeneous
cluster, the Hadoop strategy can make full use of the
resources of each node. However, in a heterogeneous
environment, a produces load imbalance creates the
necessity to spend additional overhead. The
proposed DPP algorithm is based on the different
computing capacities of nodes to allocate data
blocks, thereby improving data locality and reducing
the additional overhead to enhance Hadoop
performance. Finally, in the experiments, for two
types of applications, WordCount and Grep, the
execution time of the DPP compared with the
Hadoop default policy was improved. Regarding
WordCount, the DPP is improved by up to 24.7%,
with an average improvement of 14.5%. Regarding
Grep, the DPP is improved by up to 32.1%, with an
average improvement of 23.5%. In the future, we
will focus on other types of jobs to improve Hadoop
performance such Terasoft and Pi benchmark.

Also, with the importance of AI and

machine learning, we will improve this work with
advanced algorithms and provide some answers,
focusing on the following points:

Which of the machine learning algorithms:

logistic regression, RNN, decision tree or clustering
is better suited to address the improve Data
Placement?

Which of the machine learning algorithms:
logistic regression, RNN, decision tree or clustering
is better suited to address the problem of Data
Placement,

REFERENCES:

[1] Y. Gao and S. Zheng, "A Metadata Access

Strategy of Learning Resources Based on
HDFS," in proceeding International Conference
on Image Analysis and Signal Processing
(IASP), pp. 620—622, 2011.

[2] J. Xie, S. Yin, et al. “Improving MapReduce
performance through data placement in
heterogeneous Hadoop clusters”, In 2010 IEEE
International Symposium on Parallel &
Distributed

[3] G. Mackey; S. Sehrish; J. Wang. Improving
metadata management for small files in HDFS.
IEEE International Conference on Cluster
Computing and Workshops (CLUSTR). 2009.
pp.1-4.

[4] C. Vorapongkitipun; N. Nupairoj. Improving
performance of small-file accessing in Hadoop.
IEEE International Conference on Computer
Science and Software Engineering (JCSSE).
2014. pp.200-205.

[5] A. Patel, Mayuri A. Mehta “A Novel Approach
for Efficient Handling of Small Files in HDFS”.
2015. Pp.1-14

[6] T. White, Hadoop: The Definitive Guide, 4th ed.
O’Reilly, 2015.

[7] C. Jin, R. Kang, and R. Li, “VTB-RTRRP:
Variable Threshold Based Response Time
Reliability Real-Time Prediction,” IEEE Access,
vol. 6, pp. 60–71, 2018.

[8] C.-H. Chen, J.-W. Lin, and S.-Y. Kuo,
“MapReduce Scheduling for Deadline
Constrained Jobs in Heterogeneous Cloud
Computing Systems,” IEEE Trans. Cloud
Comput., vol. 6, no. 1, pp. 127–140, Jan 2018.

[9] K. Shvachko, H. Kuang, S. Radia, and R.
Chansler, “The Hadoop Distributed File
System,” in Proc.IEEE 26th Symp. MSST,
Washing-ton, DC, USA, 2010, pp. 1–10.

[10] R. M. Karp, “Reducibility Among Combinatorial
Problems,” in Proc. Symp. the Complexity of
Computer Computations. Springer US, 1972, pp.
85–103.

[11] K. Zhang, “A Constrained Edit Distance between
Unordered Labeled Trees,” Algorithmica, vol.
15, no. 3, pp. 205–222, Mar. 1996.

[12] C.-X. Xu, “A Simple Solution to Maximum Flow
at Minimum Cost,” in Proc. 2nd ICIECS,
Wuhan, China, 2010, pp. 1–4.

[13] Z. Han, H. Tan, Y. Wang, and J. Zhou, “Channel
Selection for Rendezvous with High Link
Stability in Cognitive Radio Network,” in Proc.
9th Int. Conf. WASA, Harbin, China, 2014, pp.
494–506.

[14] XenServer — Open Source Server
Virtualization. [Online]. Available at:

[15] https://xenserver.org/

Journal of Theoretical and Applied Information Technology
31st March 2022. Vol.100. No 6

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1959

[16] D. Cheng, J. Rao, Y. Guo, C. Jiang, and X. Zhou,
“Improving Performance of Heterogeneous
MapReduce Clusters with Adaptive Task
Tuning,” IEEE Trans. Parallel Distrib. Syst., vol.
28, no. 3, pp. 774–786, March 2017.

[17] J. A. Issa, “Performance Evaluation and
Estimation Model Using Regression Method for
Hadoop WordCount,” IEEE Access, vol. 3,
2784–2793, 2015.

[18] Tom White. Hadoop The Definitive Guide.
O’Reilly, 2009.

[19] P. Dreher, C. Byun, C. Hill, V. Gadepally, B.
Kuszmaul, and J. Kepner, “PageRank Pipeline
Benchmark Proposal for a Holistic System
Benchmark for Big-Data Platforms,” in IEEE
IPDPSW, May 2016, pp. 929–937.

[20] S. E. Mendili, Y. E. B. E. Idrissi, and N. Hmina,
“Benchmarking Study on Smart City Data
Analytics,” in IEEE Int. CiSt, Oct 2016,841–
846.

[21] MathWorks R . [Online]. Available at:
https://www.mathworks.com/

