
Journal of Theoretical and Applied Information Technology
31st March 2022. Vol.100. No 6

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1885

DETECTING OBJECTS FROM AERIAL IMAGES USING
SINGLE-STAGE DETECTION METHOD

1ANGELICA FAUSTINE, 2GEDE PUTRA KUSUMA

1,2Computer Science Department, BINUS Graduate Program – Master of Computer Science,

Bina Nusantara University, Jakarta, Indonesia, 11480

E-mail: 1angelica.faustine@binus.ac.id, 2inegara@binus.edu

ABSTRACT

One of the applications of object detection and recognition are detecting object from aerial images. There are
various further applications of object detection in aerial images, it can be used for tracking objects,
implementation for unmanned aerial vehicles (UAV), traffic surveillance, and calculating objects. As the
applications of detecting objects from aerial images get wider and more common, the accuracy of object
detection becomes more important. This paper evaluates the effects of changing the backbone of YOLOv4
(You Only Look Once), the current state-of-the-art single-stage object detection method, with EfficientNet
and EfficientNetv2, the image classification method. The experiment was done with the CARPK dataset, a
dataset of aerial images of cars in a parking lot taken by drones that suit car detection. The result of changing
the backbone of YOLOv4 with EfficientNetB3 manage to increase the detection accuracy to 99.23% in the
CARPK dataset.

Keywords: Aerial Image, Car Detection, EfficientNet, EfficientNetv2, YOLOv4

1. INTRODUCTION

One of the processes that a system can do with
image data type is object detection and recognition.
The data collected from this object detection and
recognition process will then be used by the system
to do other things. The object detection and
recognition process itself has been used a lot in our
daily life, such as in our mobile devices where we
can use our face to unlock the phone lock, in a smart
car where they can detect obstacles around the car,
and even on a surveillance camera at a red light
which then used by the government to track our plate
number when we make a violation. Not only in our
daily life, the object detection and recognition
processes are also used in the healthcare area to
detect abnormalities in bones and even cells. Object
detection is also used on aerial images taken from
drones to detect corps, cars, planes, and many other
things. The important uses of object detection and
recognition process make development in this area
keeps ongoing.

For a system to run, there must be an algorithm,
a bridge that connects the developer’s idea to the
system brain. In object detection itself, there’re 2
types of algorithms which are single-stage
algorithms and two-stage algorithms. Each
algorithm has its own capabilities wherein single-

stage algorithms speed has become their number one
priority meanwhile, in two-stage algorithms
accuracy has become their top priority. However,
with the development of single-stage algorithms that
keeps on happening, this algorithm has also
increased their accuracy which led to the use of
single-stage object detection to be used in real-time.
You Only Look Once (YOLO) [1] is a single-stage
object detection method that claims to outperform
the two-stage detection method Region with CNN
features (R-CNN) [2] and Deformable Parts Models
(DPM) [3]. YOLO itself has been updated a few
times with YOLO9000 [4], YOLOv3 [5], and even
YOLOv4 [6]. In every update of YOLO, there are
always changes on the backbone part of YOLO
which interests a lot of people to try changing the
backbone of YOLO.

From this variety of updates in YOLO, we
attempt to evaluate the effect of changing the
backbone of YOLO on detecting objects from aerial
imaging. To do this, we decide to use CARPK [7]
dataset, a dataset that contains captured cars in
parking lots from drone-view. We decide to use
EfficientNet [8], the backbone of EfficientDet [9],
and EfficientNetv2 [10], an updated version of
EfficientNet as the backbone of YOLOv4. This
experiment aimed to detect cars in the CARPK

Journal of Theoretical and Applied Information Technology
31st March 2022. Vol.100. No 6

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1886

dataset using the bounding boxes method while
trying to increase the detection accuracy or reduce
the error score of YOLOv4.

2. RELATED WORKS

In order to find an idea to do an object detection
using bounding boxes while increasing the detection
accuracy or reducing the error score, we did some
research on previously done methods in the object
detection area. We collected papers from the last 5
years that do experiment with object detection
methods. In a few research that has been done
recently [11] [12] [13], it is proved that the current
single-stage object detection method has higher
accuracy while still able to run faster than the two-
stage object detection method. From an experiment
that has been done [11], YOLOv3 is found to have
higher accuracy than Faster R-CNN in a dataset
made out of images containing Hauler, Excavator,
and Wheeled Loader. In an experiment done with
PASCAL VOC2012 and MSCOCO dataset [12],
SSD and SSOD seem to have similar accuracy with
Faster R-CNN and Mask R-CNN but have
significantly higher speeds than Faster R-CNN and
Mask R-CNN. While another experiment on
underwater video [13] shows that YOLOv3, Scheme
1, and Scheme 2 have a higher speed detection than
Fast R-CNN and Faster R-CNN.

Some attempt to make an updated version on an
existing single-stage object detector has been made
before like Detection with Enriched Semantics
(DES) [14], Recurrent Rolling Convolution (RRC)
[15], Gradient Harmonizing Mechanism (GHM)
[16], and AlignDet [17] or an attempt to just to
increase the accuracy of an exist single-stage object
detector like RetinaNet also happen before [18] [19].
In the experiment of making DES [14], the developer
decided to use Single Shot Detector (SSD) for the
detection and VGG-16 as the backbone in
VOC2007, VOC2012, and MS COCO dataset. By
adding semantic enrichment and global activation
module, both DES300 and DES512 manage to have
higher accuracy than SSD300 and SSD512 but have
slower detection time.

Another object detection method is RRC [15], a
single-stage end-to-end trainable object detection
network. In the making process of RRC, the
developer decided to use the reduced VGG-16
network as the backbone and train on the KITTI
dataset with a few reference settings from SSD as
SSD also use a reduced VGG-16 network as the
backbone. From the experiment, it is shown that
RRC has higher accuracy than SSD.

Another proposed object detection model is
GHM [16], a proposed method to train a single-stage

object detection model. The developer decides to use
GHM-C (Gradient Harmonizing Mechanism into
loss for classification) and GHM-R (Gradient
Harmonizing Mechanism into loss for regression)
with RetinaNet-FPN-ResNet-101 and RetinaNet-
FPN-ResNeXt-101 as the backbone. When being
trained on the MS COCO dataset, the proposed
method with RetinaNet-FPN-ResNeXt-101 achieve
higher accuracy than YOLOv3. In the experiment
related to the RoIAlign operator and im2col
operator, RoIConv operator and AlignDet is made
[17]. AlignDet that uses ResNeXt-101 as backbone
was trained on the MS COCO dataset managed to
get higher accuracy than YOLOv3, SSD, and
RetinaNet.

Some experiment intends to increase the
performance of RetinaNet has been done before.
One attempt to increase the performance of
RetinaNet500 is by adding AP-Loss [18] This
attempt resulted in the increase of RetinaNet500
accuracy by 3%. This experiment is tested on
VOC2007, VOC2012, and MS COCO dataset.
Another attempt to increase the performance of
RetinaNet is by turning it into a multi-stage object
detection which is then named as Cas-RetinaNet
[19]. The result showed after training and testing
using the MS COCO dataset indicate that Cas-
RetinaNet using ResNet-101 as backbone manage to
increase the accuracy of RetinaNet by 2%. Both of
these experiments manage to surpass YOLOv2 and
YOLOv3.

As we may know, YOLO is an example of a
single-stage object detection method. The
implementation of YOLO itself is quite common,
especially in YOLOv2 and YOLOv3. There is an
experiment using YOLOv2 with Grozi-3.2k dataset
[20] where the experiment is done with modification
to detect grocery products in customer use case and
management use case. This experiment is done by
changing the descriptors, local feature, threshold
refinement, and reranking strategy in the category-
based. This experiment reported with the most
increase of mAP happened when all of the changes
were applied.

Another experiment using YOLOv2 in shelf
images [21], shows that the amount of iteration,
threshold, and class model will give a different result
when training. It is proven from the experiment that
when the iteration number is too big there is a chance
that overfitting will happen, a threshold value that’s
too big will make the object to be undetectable, and
when the threshold value too small it will make
wrong objects to be detected, and the number of
classes will increase the number of iteration and time
needed for training. In one experiment YOLOv3 and

Journal of Theoretical and Applied Information Technology
31st March 2022. Vol.100. No 6

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1887

YOLOv2 are used to detect weapons from
surveillance system dataset [22]. The result shows
that YOLOv3 outperformed YOLOv2 with higher
accuracy.

The implementation of object detection in aerial
image datasets also has been done a few times
before. A few research has been conducted to detect
objects on the sea like ships [23] or object on land
like humans [24], and even vehicles like cars [25]. In
research to detect ships [23], the authors make a
comparison of accuracy between YOLOv3 and
Mask-RCNN to a dataset that they make by
themselves. The authors find that the Mask-RCNN
has higher accuracy and faster detection than
YOLOv3. In another research to detect humans from
Unmanned Aerial Vehicle (UAV) [24], the author
improved the accuracy of YOLOv3 on a dataset that
they make by making a new backbone called UAV-
YOLO.

In research to detect cars from aerial images
VEDAI dataset [25], the author proposed a method
to improve the performance of YOLOv3 by
increasing the number of conv2D_BN_Leaky layers
of the res block in the backbone area. The result
shows that the proposed method manage to achieve
higher accuracy than the original YOLOv3.

From the information that we got from
evaluating research papers, we found that changing
the backbone of an object detector is a common
method to increase the detection accuracy of the said
object detector. We also found that single-stage
object detection was currently faster and has similar
accuracy with two-stage object detection. YOLO
was one of the single-stage object detectors that were
commonly used and experimented on in the previous
version. From this information, we decided to
change the backbone of YOLOv4 in an attempt to
increase detection accuracy.

3. THEORY AND METHODS

3.1 Object Detection and Recognition

Nowadays Artificial Intelligence (AI) is applied
in robots and machines with the ability to think like
a human or animal [26]. For this AI to work, it needs
data to be inputted in a form of text, sound, video, or

images. In a system where the data is inputted as
images, the first action that needed to be done is the
object detection and recognition process. For a
system to be able to do an object detection and
recognition process, it needs to go through a deep
learning process where the data is no longer
explicitly given by the developer. This process will
make the machine learn how to process an image
into data that they need.

In a learning process, there is a training process
where the system will learn to take the information
of object location and object name in a set of labeled
images by processing it in repeat. The images from
the dataset will be inputted in batches size of images
which usually called as minibatch. When the whole
dataset was trained by one iteration, it become an
epoch of training. Usually, when training a dataset,
the number of epochs will affect the accuracy of the
machine learning. When the number of epochs is too
small the model will be underfitted and when the
number of epochs is too large the model will be
overfitted. In the training process, there will also be
a validation process which is done to evaluate the
ability of the system in detecting object location and
recognizing the object name. This validation process
will also be used to determine the system's accuracy
in the object detection and recognition process.

In the detecting process, the most common way
for a system to detect and recognize an object is by
making a bounding box around the said object. In
order for the system to make this bounding box, the
system will first make grids in the inputted image
where each of the boxes inside the grid will have its
own identity. This identity will then be used by the
system to make possible bounding boxes. From this,
the system will have a lot of bounding boxes around
1 object. Each bounding box will then have its own
confidence score calculated based on the ground
truth box. Using the threshold set by the developer,
the best bounding box will then be chosen. This
process can be seen in Figure 1. After the bounding
box is made, the system will do the recognition
process by trying to label the object based on its
name. The result of the object detection and
recognition process can be seen in Figure 2.

Journal of Theoretical and Applied Information Technology
31st March 2022. Vol.100. No 6

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1888

Figure 1. Object Detection Flow

Figure 2. Final Result of Object Detection and Recognition

3.2 YOLO

You Only Look Once (YOLO) is the current
single-stage detection method that is still being

updated and have a great performance in speed. The
detection in YOLO was done by using a moving
window and area to detect objects more accurately

Journal of Theoretical and Applied Information Technology
31st March 2022. Vol.100. No 6

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1889

and have minimum error. In detecting an object,
YOLO will divide the picture into grids and make
bounding boxes as in Figure 1. Each bounding box
in YOLO will carry object class, x, y, w, and h. The
x and y will represent the center coordinate of the
bounding box while the w and h represent the width
and height of the bounding box. The bounding box
generated from object detection will then has a
confidence score which is calculated by the
Pr(object)*IoU where IoU is the Intersection over
Union.

YOLOv1 [1] was made with Googlenet as the
backbone and manage to detect objects with 45 FPS
on Titan X GPU which is fast at that time. In a faster
YOLO version, it even manages to get to 150 FPS.
However, YOLOv1 only manage to predict with 2
bounding boxes and 1 class in 1 grid cell. This
resulted in YOLOv1 being unable to detect objects
that are close to each other and have small sizes.
YOLOv1 is also only able to detect 49 objects and
has a relatively high localization error.

To update YOLOv1, YOLOv2 [4] was made.
YOLOv2 was proposed together with the
classification model Darknet-19 as the backbone.
YOLOv2 itself was made to improve recall and
localization while maintaining the classification
accuracy of YOLOv1. To increase the number of
objects can that can be detected by 1 grid cell, anchor
boxes were used in YOLOv2. With the change of
backbone, YOLOv1 and YOLOv2 also have
different outputs from the network. If in YOLOv1
the output of the network was 7x7x30, in YOLOv2
the output of the network was 13x13x(anchor
boxes*(1+4+20)) which will be 13x13x125 if the
anchor boxes are 5.

Even after the making of YOLOv2, the detection
of smaller objects is still become an obstacle for
YOLO. In YOLOv3 [5] shortcut connection was
used to fix this problem. However, this becomes a
new problem as YOLOv3 has worse performance in
detecting medium and large objects. To do this, there
is a change in the backbone area as the developer
proposed to be called Darknet-53. Darknet-53 is a
hybrid approach of Darknet-19 with some residual
network and shortcut connection. To fix the
detection based on size, YOLOv3 proposed another
method to make the predict boxes. Where the
YOLOv1 and YOLOv2 only predict the output from
the last layer, YOLOv3 makes 3 times prediction in
3 different scales. YOLOv3 will detect in the scale
of 13x13x[3*(4+1+class)], 26x26x[3*(4+1+class)],
and 52x52x[3*(4+1+class)] where class is the total
number of classes in the dataset. In the case of the
Pascal VOC dataset where there are 20 classes, it
will be 13x13x75, 26x26x75, and 52x52x75. The

13x13 will be in charge of detecting large objects,
26x26 will be in charge of detecting medium objects
and 52x52 will be in charge of detecting small
objects.

Figure 3 The Application of CSPNet to ResNe(X)t [27]

In the latest update of YOLO, YOLOv4 [6]
makes quite a major change from the previous
YOLOv3 from the backbone part to the neck part of
YOLO. In the backbone part of YOLOv4, there is a
slight update that the author did to the previous
backbone using Cross Stage Partial Network
(CSPNet) [27]. The example of changes using
CSPNet can be seen in Figure 3. The method that
was done in ResNe(X)t was also done in Darknet-53
with the new proposed name as CSPDarknet-53.
YOLOv4 uses CSPDarknet-53 as the backbone. In
the neck area, YOLOv4 uses Spatial Pyramid
Pooling (SPP) [28], and Path Aggregation Network
(PAN) [29]. Meanwhile, for the head area, YOLOv4
still uses the YOLOv3 head. The architecture of
CSPDarknet-53 can be seen in Table 1. The proposes
of making YOLOv4 itself is to make a powerful
YOLO that’s more efficient and suitable for single

Journal of Theoretical and Applied Information Technology
31st March 2022. Vol.100. No 6

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1890

GPU training while giving Bag of Freebies and Bag
of Specials method of object detection.

Table 1 Structure of CSPDarknet-53

Type Output Layers

Convolutional 256 x 256 1

DarknetConv2D_BN_Mish 128 x 128 1

csp_resblock_body 128 x 128 1

csp_resblock_body 64 x 64 2

csp_resblock_body 32 x 32 8

csp_resblock_body 16 x 16 8

csp_resblock_body 8 x 8 4

Avgpool

Connected

Softmax

3.3 EfficientNet

EfficentNet [8] is a group of models made out of
convolutional neural networks which used a
compound scaling method to uniformly increase the
depth, width, and resolution of the network. These
models are named EfficientNet-B0 until
EfficientNet-B7 where the increase of the number at
the model’s name indicates the increase of the model
size. The bigger the size of the model also resulted
in the increase of accuracy of the model since the
width, depth, and resolution of the network also
increase. The EfficientNet uses MBConv blocks in
their architecture that consists of a few layers that
can be seen in Figure 4. The initial network of
EfficientNet-B0 based on the reported paper can be
seen in Table 2.

Table 2. Structure of EfficientNet-B0 [8]

Stage
(i)

Operator
(Ƒi)

Resolutio
n

(Ĥi × Ŵi)

#Channels
(Ĉi)

#Layers
(Ĺi)

1 Conv3x3 224 × 224 32 1

2 MBConv1, k3x3 112 × 112 16 1

3 MBConv6, k3x3 112 × 112 24 2

4 MBConv6, k5x5 56 × 56 40 2

5 MBConv6, k3x3 28 × 28 80 3

6 MBConv6, k5x5 14 × 14 112 3

7 MBConv6, k5x5 14 × 14 192 4

8 MBConv6, k3x3 7 × 7 320 1

9 Conv1x1 & Pooling &
FC

7 × 7 1280 1

Figure 4 The Architecture of MBConv

To increase the size of the model, the developer
of EfficientNet decide to use compound scaling
where compound coefficient (ø) was used to increase
depth, width, and the resolution of the network using
equations 1-5.

𝑑𝑒𝑝𝑡ℎ: 𝑑 = 𝛼ø(1) (1)

𝑤𝑖𝑑𝑡ℎ: 𝑤 = 𝛽ø (2)

𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛: 𝑟 = 𝛾ø1 (3)

𝑠. 𝑡. 𝛼 × 𝛽ଶ × 𝛾ଶ » 2 (4)

𝛼 ≥ 1, 𝛽 ≥ 1, 𝛾 ≥ 1 (5)

3.4 EfficientNetv2

EfficientNetv2 [10] is an updated version of
EfficientNet where the author found a way to
increase the performance of EfficientNet while
reducing the amount of time needed for training. The
author proposed a Fused-MBConv as a replacement
for some MBConv that was used in the previous
version of EfficientNet. The proposed Fused-
MBConv can be seen in Figure 5. However, this
replacement was only done in a few stages of
EfficientNet as the author found that changing all
parts of the EfficientNet reduces the performance of
the model. The author also changes the way they
named the model into EfficientNetV2-S until
EfficientNetV2-M/L. To make this variety of
models, the author still uses the same scaling method
as the old EfficientNet. The structure of
EfficientNetV2-S can be seen in Table 3.

Table 3. Structure of EfficientNetV2-S [10]

Stage Operator Stride #Channels #Layers
0 Conv3x3 2 24 1
1 Fused-MBConv1, k3x3 1 24 2
2 Fused-MBConv4, k3x3 2 48 4
3 Fused-MBConv4, k3x3 2 64 4
4 MBConv4, k3x3, SE0.25 2 128 6

Journal of Theoretical and Applied Information Technology
31st March 2022. Vol.100. No 6

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1891

5 MBConv6, k3x3, SE0.25 1 160 9
6 MBConv6, k3x3, SE0.25 2 256 15
7 Conv1x1 & Pooling & FC - 1280 1

Figure 5 The Architecture of Fused-MBConv

4. PROPOSED METHOD

The dataset that was used in this experiment is
CARPK [7] dataset. This dataset consists of aerial
images of cars in 4 different parking lots taken by the
drone. This dataset contains nearly 90000 cars with
bounding box annotation. The bounding boxes given
were recorded with top-left points and the bottom-
right points. The detected cars from the dataset
include cars on the edge of the image. This dataset
was usually used as a counting object dataset. The
dataset was divided into 989 training images and 459
testing images.

To detect cars, we use a single-stage detection
method YOLOv4. An object detector architecture is
usually divided into head, neck, and backbone.
Usually, the backbone is in charge of the feature
extractor, while the head is in charge of the object
detection itself which will result in the making of
bounding boxes and classification confidence. The
neck however is in charge of processing the feature
extracted by the backbone to connect with the object

detection in the head area. Changing the backbone of
an object detector is something that has been
commonly done by other developers to improve the
accuracy or speed of an object detector.

This is the reason why we want to evaluate the
effect of changing the backbone of YOLOv4 in
detecting cars from aerial images. The backbone of
YOLOv4 is called CSPDarknet-53. To change this
backbone, we decide to look at EfficientNet, the
backbone of EfficientDet that has higher accuracy
than YOLOv4 and EfficientNetV2. The reported
result of EfficientNet and CSPDarknet-53 when
being trained and tested on ImageNet shows that
EfficientNet achieves better accuracy than
CSPDarknet-53. Based on these results, we decided
to try to use EfficientNet-B3 to replace CSPDarknet-
53 as the backbone of YOLOv4. We also attempt to
use EfficientNetV2 as the backbone of YOLOv4 as
EfficientNetV2 was reported to have better results
and run faster than the old EfficientNet. The result
of classification on the ImageNet dataset of
CSPDarknet-53 and EfficientNet can be seen in
Table 4 while the result of EfficientNetV2 can be
seen in Table 5. In the experiment of detecting
objects and counting cars on the CARPK dataset, we
decide to evaluate a few proposed models including
the original YOLOv4. The architecture of the
original YOLOv4 using CPSDarknet-53 with input
images size 416x416 can be seen in Figure 6. The
SPP and PANet in the architecture indicate the neck
part of YOLOv4. From the architecture, we can see
that in the head part of YOLOv4, the prediction was
done in 3 different scales resolution just like the head
part of YOLOv3.

From the feature extraction that happened on the
CSPDarknet-53, there is concatenation from
CSP_Resblock_Body-3 and CSP_Resblock_Body-4
as the output of CSP_Resblock_Body-3 has a
resolution of 52x52 and the output of
CSP_Resblock_Body-4 has a resolution of 26x26.
Both of these concatenations happen at the end of the
block.

Table 4. The Performance of CSPDarknet-53, and EfficientNet on ImageNet [30]

 CSPDarknet-53 B0 B1 B2 B3 B4 B5 B6 B7
Top-1 80.1 77.1 79.1 80.1 81.6 82.9 83.6 84.0 84.3

Top-5 95.1 93.3 94.4 94.9 95.7 96.4 96.7 96.8 97.0

Table 5. The Performance of EfficientNetv2 on ImageNet

 S M L B0v2 B1v2 B2v2 B3v2
Top-1 83.9 85.2 85.7 78.7 79.8 80.5 82.1

Journal of Theoretical and Applied Information Technology
31st March 2022. Vol.100. No 6

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1892

Figure 6. YOLOv4 Architecture with CSPDarknet-53 as The Backbone

Figure 7. YOLOv4 Architecture with EfficientNet-B3 as The Backbone

Figure 8. YOLOv4 Architecture with EfficientNetV2-S as The Backbone

As stated previously, our proposed method was
to change the backbone area of YOLOv4, thus from
the original YOLOv4, we only change the
architecture of CSPDarknet-53. From the original
architecture of YOLOv4, we can see that the image
scale that was used to be extracted into the prediction
process are the image with scale size 52x52, 26x26,
and 13x13. Thus we decide to use the same image
scale to extract the prediction from our proposed
model. The architecture of YOLOv4 with
EfficientNet-B3 as the backbone with input image
size 416x416 can be seen in Figure 7. Since the
architecture of EfficientNet is different from

CSPDarknet-53, there are 2 proposed models that we
try on EfficientNet-B3.

The first proposed models make a concatenation
from the end of block MBConv6-3 to get the 52x52
resolution and the end of block MBConv6-5 to get
the 26x26 resolution. The second proposed models
make a concatenation from the middle of MBConv6-
4 to get the 52x52 resolution and the middle of
MBConv6-6 to get the 26x26 resolution.

Another experiment that we did was to change
the backbone of YOLOv4 with EfficientNetV2-s.
The architecture of YOLOv4 with EfficientNetV2-S
as the backbone with input image size 416x416 can

Journal of Theoretical and Applied Information Technology
31st March 2022. Vol.100. No 6

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1893

be seen in Figure 8. As EfficientNetV2 has a similar
architecture with EfficientNet, we also tried 2
proposed models with EfficientNetV2-S.

On the first proposed model, we use
concatenation from the end of block Fused-
MBConv4-3 to get the 52x52 resolution and the end
of block MBConv6-5 to get the 26x26 resolution.
For the second proposed model, we use
concatenation from the middle of block MBConv4-
4 to get the 52x52 resolution and the middle of block
MBConv6-6 to get the 26x26 resolution.

5. RESULT AND DISCUSSION

In the training process, we implement YOLOv4
and our proposed method in the Keras environment.
The whole training and testing process was run on
the cloud in Kaggle. For each model, we used 8 batch
sizes, SGD optimizer with no momentum, and a
0.001 learning rate. In the training process, we used
the transfer learning method with a total of 40 epochs
while freezing the backbone, and then continue
training after unfreezing the backbone layer up to
250 epochs. We also applied a reduced learning rate
with the patience of 10 epochs and early stopping
with the patience of 50 epochs. For training, we
shuffle and split a total of 989 training image into
80% of training dataset and 20% of validation
dataset. While the testing dataset was consisted of
459 images. The size of the input image used in this
experiment was 416x416 as this input size was the
input size recommended by YOLOv4. When we test
our model accuracy, we use 0.5 threshold.

From the implementation result of object
detection using YOLOv4 and the proposed method,
we also calculate the Mean Absolute Error (MAE)
and Root Mean Square Error (RMSE) of the model
by calculating the difference number of predicted
cars and number of ground truth cars in each test
image using equation 6 and equation 7.

𝑀𝐴𝐸 =
ଵ

௡
∑ |𝑓௜ − 𝑦௜|௡

௜ (6)

𝑅𝑀𝑆𝐸 = ට
ଵ

௡
∑ (𝑓௜ − 𝑦௜)ଶ௡

௜ (7)

The result of implementing YOLOv4 with the
proposed model on the CARPK dataset when tested
on the validation dataset is shown in Table 6 while
the result, when tested on the testing dataset, is
shown in Table 7.

Table 6. The mAP, Mean Absolute Error (MAE), and
Root Mean Square Error (RMSE) from Validation

Dataset

Model mAP% MAE RMSE
YOLOv4 98.60 0.53 1.14
YOLOv4+EfficientNetB3 (end of the
block)

98.79 0.57 1.26

YOLOv4+EfficientNetB3 (middle
block)

99.23 0.51 1.08

YOLOv4+EfficientNetV2-S (end of
the block)

96.88 1.01 1.89

YOLOv4+EfficientNetV2-S (middle
block)

98.29 0.68 1.44

Table 7. The mAP, Mean Absolute Error (MAE), and

Root Mean Square Error (RMSE) from Testing Dataset

Model mAP% MAE RMSE
Layout Proposal Network [7] - 23.80 36.79
YOLOv4 74.91 21.65 28.07
YOLOv4+EfficientNetB3 (end of the
block)

70.05 23.40 29.41

YOLOv4+EfficientNetB3 (middle
block)

74.22 21.23 27.69

YOLOv4+EfficientNetV2-S (end of
the block)

63.93 25.58 30.98

YOLOv4+EfficientNetV2-S (middle
block)

73.62 21.25 27.52

It is shown that there are big differences in mAP
values when we do validation and testing. From what
we learned, the dataset of training and testing turn
out to be very different. The example of the training
dataset can be seen in Figure 9 while the example of
the testing dataset can be seen in Figure 10.

Figure 9 The Example of Training Image of CARPK
Dataset

Journal of Theoretical and Applied Information Technology
31st March 2022. Vol.100. No 6

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1894

Figure 10 The Example of testing Image of CARPK
Dataset

The effect of such different images makes the
model have lower confidence in detecting the object.
The contrast of the image also causes the model to
have difficulty detecting the cars. However, the
proposed models still have a good MAE and RMSE
score as it’s lower than the result given by the
reported MAE and RMSE score of LPN.

6. CONCLUSION & FUTURE WORKS

From this experiment, we found that the
detection result of YOLOv4 was initially good. The
change of backbone to EfficientNetB3 and
EfficientNetV2-S shows that there’s a slight increase
in the accuracy on validation and a slight decrease
on MAE and RMSE. From this experiment, we
manage to show that there is a possibility of an
increase in YOLOv4 performance by changing the
backbone area. We also managed to achieve the
highest accuracy in validation with EfficientNetB3
middle block and achieved the lowest MAE and
RMSE on testing by using the EfficientNetB3
middle block version as the backbone of YOLOv4.
There is some limitation in our experiment such as
the small number of dataset and the inconsistency
between the training data and the testing data. As the
original weight of EfficientNetV2 wasn’t formatted
in the Keras version, we might also not be using the
latest weight version. These limitations cause our
testing results lower than the validation result. In the
future, we would like to try changing the backbone
part of YOLOv4 with other classification models
that were better than EfficientNetB3 and
EfficientNetV2-S. We also would like to try to use
the model that has been enhanced to be used on
different datasets.

REFERENCE:

[1] J. Redmon, S. Divvala, R. Girschick and A.
Farhadi, "You Only Look Once: Unified,
Real-Time Object Detection," 2016 IEEE
Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 779-788.

[2] R. Girshick, J. Donahue, T. Darrell and J.
Malik, "Rich feature hierarchies for accurate
object detection and semantic segmentation,"
2014 IEEE Conference on Computer Vision
and Pattern Recognition, 2014, pp. 580-587.

[3] P. F. Felzenszwalb, R. B. Girshick, D.
McAllester and D. Ramanan, "Object
Detection with Discriminatively Trained Part-
Based Models," IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 32,
2010, pp. 1627-1645.

[4] J. Redmon and A. Farhadi, "YOLO9000:
Better, Faster, Stronger," 2017 IEEE
Conference on Computer Vision and Pattern
Recognition (CVPR), 2017, pp. 6517-6525.

[5] J. Redmon and A. Farhadi, "YOLOv3: An
Incremental Improvement," arXiv, 2018.

[6] A. Bochkovskiy, C.-Y. Wang and H.-Y. M.
Liao, "YOLOv4: Optimal Speed and
Accuracy of Object Detection," arXiv, 2020.

[7] M.-R. Hsieh, Y.-L. Lin and W. H. Hsu,
"Drone-based Object Counting by Spatially
Regularized Regional Proposal Networks,"
ICCV, 2017.

[8] M. Tan and Q. V. Le, "EfficientNet:
Rethinking Model Scaling for Convolutional
Neural Networks," in Proceedings of the 36th
International Conference on Machine
Learning, vol. 97, PMLR, 2019, pp. 6105-
6114.

[9] M. Tan, R. Pang and Q. V. Le, "EfficientDet:
Scalable and Efficient Object Detection,"
2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR),
2020, pp. 10778-10787.

[10] M. a. L. Q. Tan, "EfficientNetV2: Smaller
Models and Faster Training," Proceedings of
the 38th International Conference on Machine
Learning, vol. 139, 2021, pp. 10096--10106.

[11] S. K. Chadalawada, "Real Time Object
Detection and Recognition Using Deep
Learning Methods," Digitala Vetenskapliga
Arkivet (DiVA), 2020.

[12] B. Qiang, R. Chen, M. Zhou, Y. Pang, Y. Zhai
and M. Yang, "Convolutional Neural
Networks-Based Object Detection Algorithm

Journal of Theoretical and Applied Information Technology
31st March 2022. Vol.100. No 6

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1895

by Jointing Semantic Segmentation for
Images," MDPI Open Access Journals, 2020.

[13] F. Han, J. Yao, H. Zhu and C. Wang,
"Underwater Image Processing and Object
Detection Based on Deep CNN Method,"
Hindawi, 2020.

[14] Z. Zhang, S. Qiao, C. Xie, W. Shen, B. Wang
and A. L. Yuille, "Single-Shot Object
Detection with Enriched Semantics," arXiv,
2017.

[15] J. Ren, X. Chen, J. Liu, W. Sun, J. Pang, Q.
Yan, Y.-W. Tai and L. Xu, "Accurate Single
Stage Detector Using Reccurent Rolling
Convolution," IEEE Explore, 2017.

[16] B. Li, Y. Liu and X. Wang, "Gradient
Harmonized Single-stage Detector," arXiv,
2018.

[17] Y. Chen, C. Han, N. Wang and Z. Zhang,
"Revisiting Feature Alignment for One-stage
Object Detection," arXiv, 2019.

[18] K. Chen, J. Li, W. Lin, J. See, J. Wang, L.
Duan, Z. Chen, C. He and J. Zou, "Towards
Accurate One-Stage Object Detection with
AP-Loss," arXiv, 2019.

[19] H. Zhang, H. Chang, B. Ma, S. Shan and X.
Chen, "Cascade RetinaNet: Maintaining
Consistency for Single-Stage Object
Detection," arXiv, 2019.

[20] A. Tonioni, E. Serra and L. D. Stefano, "A
deep learning pipeline for product recognition
on store shelves," IEEE Explore, 2018.

[21] C. G. Melek, E. B. Sonmez and S. Albayrak,
"Object Detection in Shelf Images with
YOLO," IEEE explore, 2019.

[22] S. Narejo, B. Pandey, D. Esenarro vargas, C.
Rodriguez and M. R. Anjum, "Weapon
Detection Using YOLO V3 for Smart
Surveillance System," Hindawi, vol. 2021,
2021.

[23] D. Zhao and X. Li, "Ocean Ship Detection and
Recognition Algorithm," 2020 Asia-Pacific
Conference on Image Processing, Electronics
and Computers (IPEC), 2020.

[24] M. Liu, X. Wang, A. Zhou, X. Fu, Y. Ma and
C. Piao, "UAV-YOLO: Small Object
Detection on Unmanned Aerial Vehicle
Perspective," Sensors, vol. 20, 2020.

[25] B. Xu, B. Wang and Y. Gu, "Vehicle
Detection in Aerial Images Using Modified
YOLO," 2019 IEEE 19th International
Conference on Communication Technology,
2019.

[26] Z. Mohammed, "Artificial Intelligence
Definition, Ethics and Standards,"
ResearchGate, 2019.

[27] C.-Y. Wang, H.-Y. Mark Liao, Y.-H. Wu, P.-
Y. Chen, J.-W. Hsieh and I.-H. Yeh, "CSPNet:
A New Backbone that can Enhance Learning
Capability of CNN," 2020 IEEE/CVF
Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), 2020, pp.
1571-1580.

[28] K. He, X. Zhang, S. Ren and J. Sun, "Spatial
Pyramid Pooling in Deep Convolutional
Networks for Visual Recognition," IEEE
Transactions on Pattern Analysis and
Machine Intelligence, vol. 37, 2015, pp. 1904-
1916.

[29] S. Liu, L. Qi, H. Qin, J. Shi and J. Jia, "Path
Aggregation Network for Instance
Segmentation," in 2018 IEEE/CVF
Conference on Computer Vision and Pattern
Recognition, 2018, pp. 8759-8768.

[30] O. Russakovsky, J. Deng, H. Su, J. Krause, S.
Satheesh, S. Ma, Z. Huang, A. Karpathy, A.
Khosla, M. Bernstein and e. al, "ImageNet
Large Scale Visual Recognition Challenge,"
International Journal of Computer Vision, vol.
115, no. 3, 2015, pp. 211-252.

