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ABSTRACT 

 
One of the applications of object detection and recognition are detecting object from aerial images. There are 
various further applications of object detection in aerial images, it can be used for tracking objects, 
implementation for unmanned aerial vehicles (UAV), traffic surveillance, and calculating objects. As the 
applications of detecting objects from aerial images get wider and more common, the accuracy of object 
detection becomes more important. This paper evaluates the effects of changing the backbone of YOLOv4 
(You Only Look Once), the current state-of-the-art single-stage object detection method, with EfficientNet 
and EfficientNetv2, the image classification method. The experiment was done with the CARPK dataset, a 
dataset of aerial images of cars in a parking lot taken by drones that suit car detection. The result of changing 
the backbone of YOLOv4 with EfficientNetB3 manage to increase the detection accuracy to 99.23% in the 
CARPK dataset. 
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1. INTRODUCTION 

One of the processes that a system can do with 
image data type is object detection and recognition. 
The data collected from this object detection and 
recognition process will then be used by the system 
to do other things. The object detection and 
recognition process itself has been used a lot in our 
daily life, such as in our mobile devices where we 
can use our face to unlock the phone lock, in a smart 
car where they can detect obstacles around the car, 
and even on a surveillance camera at a red light 
which then used by the government to track our plate 
number when we make a violation. Not only in our 
daily life, the object detection and recognition 
processes are also used in the healthcare area to 
detect abnormalities in bones and even cells. Object 
detection is also used on aerial images taken from 
drones to detect corps, cars, planes, and many other 
things. The important uses of object detection and 
recognition process make development in this area 
keeps ongoing. 

For a system to run, there must be an algorithm, 
a bridge that connects the developer’s idea to the 
system brain. In object detection itself, there’re 2 
types of algorithms which are single-stage 
algorithms and two-stage algorithms. Each 
algorithm has its own capabilities wherein single-

stage algorithms speed has become their number one 
priority meanwhile, in two-stage algorithms 
accuracy has become their top priority. However, 
with the development of single-stage algorithms that 
keeps on happening, this algorithm has also 
increased their accuracy which led to the use of 
single-stage object detection to be used in real-time. 
You Only Look Once (YOLO) [1] is a single-stage 
object detection method that claims to outperform 
the two-stage detection method Region with CNN 
features (R-CNN) [2] and Deformable Parts Models 
(DPM) [3]. YOLO itself has been updated a few 
times with YOLO9000 [4], YOLOv3 [5], and even 
YOLOv4 [6]. In every update of YOLO, there are 
always changes on the backbone part of YOLO 
which interests a lot of people to try changing the 
backbone of YOLO.  

From this variety of updates in YOLO, we 
attempt to evaluate the effect of changing the 
backbone of YOLO on detecting objects from aerial 
imaging. To do this, we decide to use CARPK [7] 
dataset, a dataset that contains captured cars in 
parking lots from drone-view. We decide to use 
EfficientNet [8], the backbone of EfficientDet [9], 
and EfficientNetv2 [10], an updated version of 
EfficientNet as the backbone of YOLOv4. This 
experiment aimed to detect cars in the CARPK 
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dataset using the bounding boxes method while 
trying to increase the detection accuracy or reduce 
the error score of YOLOv4.   

2. RELATED WORKS 

In order to find an idea to do an object detection 
using bounding boxes while increasing the detection 
accuracy or reducing the error score, we did some 
research on previously done methods in the object 
detection area. We collected papers from the last 5 
years that do experiment with object detection 
methods. In a few research that has been done 
recently [11] [12] [13], it is proved that the current 
single-stage object detection method has higher 
accuracy while still able to run faster than the two-
stage object detection method. From an experiment 
that has been done [11], YOLOv3 is found to have 
higher accuracy than Faster R-CNN in a dataset 
made out of images containing Hauler, Excavator, 
and Wheeled Loader. In an experiment done with 
PASCAL VOC2012 and MSCOCO dataset [12], 
SSD and SSOD seem to have similar accuracy with 
Faster R-CNN and Mask R-CNN but have 
significantly higher speeds than Faster R-CNN and 
Mask R-CNN. While another experiment on 
underwater video [13] shows that YOLOv3, Scheme 
1, and Scheme 2 have a higher speed detection than 
Fast R-CNN and Faster R-CNN. 

Some attempt to make an updated version on an 
existing single-stage object detector has been made 
before like Detection with Enriched Semantics 
(DES) [14], Recurrent Rolling Convolution (RRC) 
[15], Gradient Harmonizing Mechanism (GHM) 
[16], and AlignDet [17] or an attempt to just to 
increase the accuracy of an exist single-stage object 
detector like RetinaNet also happen before [18] [19]. 
In the experiment of making DES [14], the developer 
decided to use Single Shot Detector (SSD) for the 
detection and VGG-16 as the backbone in 
VOC2007, VOC2012, and MS COCO dataset. By 
adding semantic enrichment and global activation 
module, both DES300 and DES512 manage to have 
higher accuracy than SSD300 and SSD512 but have 
slower detection time. 

Another object detection method is RRC [15], a 
single-stage end-to-end trainable object detection 
network. In the making process of RRC, the 
developer decided to use the reduced VGG-16 
network as the backbone and train on the KITTI 
dataset with a few reference settings from SSD as 
SSD also use a reduced VGG-16 network as the 
backbone. From the experiment, it is shown that 
RRC has higher accuracy than SSD.  

Another proposed object detection model is 
GHM [16], a proposed method to train a single-stage 

object detection model. The developer decides to use 
GHM-C (Gradient Harmonizing Mechanism into 
loss for classification) and GHM-R (Gradient 
Harmonizing Mechanism into loss for regression) 
with RetinaNet-FPN-ResNet-101 and RetinaNet-
FPN-ResNeXt-101 as the backbone. When being 
trained on the MS COCO dataset, the proposed 
method with RetinaNet-FPN-ResNeXt-101 achieve 
higher accuracy than YOLOv3. In the experiment 
related to the RoIAlign operator and im2col 
operator, RoIConv operator and AlignDet is made 
[17]. AlignDet that uses ResNeXt-101 as backbone 
was trained on the MS COCO dataset managed to 
get higher accuracy than YOLOv3, SSD, and 
RetinaNet. 

Some experiment intends to increase the 
performance of RetinaNet has been done before. 
One attempt to increase the performance of 
RetinaNet500 is by adding AP-Loss [18] This 
attempt resulted in the increase of RetinaNet500 
accuracy by 3%. This experiment is tested on 
VOC2007, VOC2012, and MS COCO dataset. 
Another attempt to increase the performance of 
RetinaNet is by turning it into a multi-stage object 
detection which is then named as Cas-RetinaNet 
[19]. The result showed after training and testing 
using the MS COCO dataset indicate that Cas-
RetinaNet using ResNet-101 as backbone manage to 
increase the accuracy of RetinaNet by 2%. Both of 
these experiments manage to surpass YOLOv2 and 
YOLOv3. 

As we may know, YOLO is an example of a 
single-stage object detection method. The 
implementation of YOLO itself is quite common, 
especially in YOLOv2 and YOLOv3. There is an 
experiment using YOLOv2 with Grozi-3.2k dataset 
[20] where the experiment is done with modification 
to detect grocery products in customer use case and 
management use case. This experiment is done by 
changing the descriptors, local feature, threshold 
refinement, and reranking strategy in the category-
based. This experiment reported with the most 
increase of mAP happened when all of the changes 
were applied.  

Another experiment using YOLOv2 in shelf 
images [21], shows that the amount of iteration, 
threshold, and class model will give a different result 
when training. It is proven from the experiment that 
when the iteration number is too big there is a chance 
that overfitting will happen, a threshold value that’s 
too big will make the object to be undetectable, and 
when the threshold value too small it will make 
wrong objects to be detected, and the number of 
classes will increase the number of iteration and time 
needed for training. In one experiment YOLOv3 and 
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YOLOv2 are used to detect weapons from 
surveillance system dataset [22]. The result shows 
that YOLOv3 outperformed YOLOv2 with higher 
accuracy. 

The implementation of object detection in aerial 
image datasets also has been done a few times 
before. A few research has been conducted to detect 
objects on the sea like ships [23] or object on land 
like humans [24], and even vehicles like cars [25]. In 
research to detect ships [23], the authors make a 
comparison of accuracy between YOLOv3 and 
Mask-RCNN to a dataset that they make by 
themselves. The authors find that the Mask-RCNN 
has higher accuracy and faster detection than 
YOLOv3. In another research to detect humans from 
Unmanned Aerial Vehicle (UAV) [24], the author 
improved the accuracy of YOLOv3 on a dataset that 
they make by making a new backbone called UAV-
YOLO. 

In research to detect cars from aerial images 
VEDAI dataset [25], the author proposed a method 
to improve the performance of YOLOv3 by 
increasing the number of conv2D_BN_Leaky layers 
of the res block in the backbone area. The result 
shows that the proposed method manage to achieve 
higher accuracy than the original YOLOv3. 

From the information that we got from 
evaluating research papers, we found that changing 
the backbone of an object detector is a common 
method to increase the detection accuracy of the said 
object detector. We also found that single-stage 
object detection was currently faster and has similar 
accuracy with two-stage object detection. YOLO 
was one of the single-stage object detectors that were 
commonly used and experimented on in the previous 
version. From this information, we decided to 
change the backbone of YOLOv4 in an attempt to 
increase detection accuracy. 

3. THEORY AND METHODS 

3.1 Object Detection and Recognition 

Nowadays Artificial Intelligence (AI) is applied 
in robots and machines with the ability to think like 
a human or animal [26]. For this AI to work, it needs 
data to be inputted in a form of text, sound, video, or 

images. In a system where the data is inputted as 
images, the first action that needed to be done is the 
object detection and recognition process. For a 
system to be able to do an object detection and 
recognition process, it needs to go through a deep 
learning process where the data is no longer 
explicitly given by the developer. This process will 
make the machine learn how to process an image 
into data that they need.  

In a learning process, there is a training process 
where the system will learn to take the information 
of object location and object name in a set of labeled 
images by processing it in repeat. The images from 
the dataset will be inputted in batches size of images 
which usually called as minibatch. When the whole 
dataset was trained by one iteration, it become an 
epoch of training. Usually, when training a dataset, 
the number of epochs will affect the accuracy of the 
machine learning. When the number of epochs is too 
small the model will be underfitted and when the 
number of epochs is too large the model will be 
overfitted. In the training process, there will also be 
a validation process which is done to evaluate the 
ability of the system in detecting object location and 
recognizing the object name. This validation process 
will also be used to determine the system's accuracy 
in the object detection and recognition process. 

In the detecting process, the most common way 
for a system to detect and recognize an object is by 
making a bounding box around the said object. In 
order for the system to make this bounding box, the 
system will first make grids in the inputted image 
where each of the boxes inside the grid will have its 
own identity. This identity will then be used by the 
system to make possible bounding boxes. From this, 
the system will have a lot of bounding boxes around 
1 object. Each bounding box will then have its own 
confidence score calculated based on the ground 
truth box. Using the threshold set by the developer, 
the best bounding box will then be chosen. This 
process can be seen in Figure 1. After the bounding 
box is made, the system will do the recognition 
process by trying to label the object based on its 
name. The result of the object detection and 
recognition process can be seen in Figure 2.
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Figure 1. Object Detection Flow 

 

 

Figure 2. Final Result of Object Detection and Recognition 

3.2 YOLO 

You Only Look Once (YOLO) is the current 
single-stage detection method that is still being 

updated and have a great performance in speed. The 
detection in YOLO was done by using a moving 
window and area to detect objects more accurately 
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and have minimum error. In detecting an object, 
YOLO will divide the picture into grids and make 
bounding boxes as in Figure 1. Each bounding box 
in YOLO will carry object class, x, y, w, and h. The 
x and y will represent the center coordinate of the 
bounding box while the w and h represent the width 
and height of the bounding box. The bounding box 
generated from object detection will then has a 
confidence score which is calculated by the 
Pr(object)*IoU where IoU is the Intersection over 
Union.  

YOLOv1 [1] was made with Googlenet as the 
backbone and manage to detect objects with 45 FPS 
on Titan X GPU which is fast at that time. In a faster 
YOLO version, it even manages to get to 150 FPS. 
However, YOLOv1 only manage to predict with 2 
bounding boxes and 1 class in 1 grid cell. This 
resulted in YOLOv1 being unable to detect objects 
that are close to each other and have small sizes. 
YOLOv1 is also only able to detect 49 objects and 
has a relatively high localization error. 

To update YOLOv1, YOLOv2 [4] was made. 
YOLOv2 was proposed together with the 
classification model Darknet-19 as the backbone. 
YOLOv2 itself was made to improve recall and 
localization while maintaining the classification 
accuracy of YOLOv1. To increase the number of 
objects can that can be detected by 1 grid cell, anchor 
boxes were used in YOLOv2. With the change of 
backbone, YOLOv1 and YOLOv2 also have 
different outputs from the network. If in YOLOv1 
the output of the network was 7x7x30, in YOLOv2 
the output of the network was 13x13x(anchor 
boxes*(1+4+20)) which will be 13x13x125 if the 
anchor boxes are 5. 

Even after the making of YOLOv2, the detection 
of smaller objects is still become an obstacle for 
YOLO. In YOLOv3 [5] shortcut connection was 
used to fix this problem. However, this becomes a 
new problem as YOLOv3 has worse performance in 
detecting medium and large objects. To do this, there 
is a change in the backbone area as the developer 
proposed to be called Darknet-53. Darknet-53 is a 
hybrid approach of Darknet-19 with some residual 
network and shortcut connection. To fix the 
detection based on size, YOLOv3 proposed another 
method to make the predict boxes. Where the 
YOLOv1 and YOLOv2 only predict the output from 
the last layer, YOLOv3 makes 3 times prediction in 
3 different scales. YOLOv3 will detect in the scale 
of 13x13x[3*(4+1+class)], 26x26x[3*(4+1+class)], 
and 52x52x[3*(4+1+class)] where class is the total 
number of classes in the dataset. In the case of the 
Pascal VOC dataset where there are 20 classes, it 
will be 13x13x75, 26x26x75, and 52x52x75. The 

13x13 will be in charge of detecting large objects, 
26x26 will be in charge of detecting medium objects 
and 52x52 will be in charge of detecting small 
objects. 

 

Figure 3 The Application of CSPNet to ResNe(X)t [27] 

In the latest update of YOLO, YOLOv4 [6] 
makes quite a major change from the previous 
YOLOv3 from the backbone part to the neck part of 
YOLO. In the backbone part of YOLOv4, there is a 
slight update that the author did to the previous 
backbone using Cross Stage Partial Network 
(CSPNet) [27]. The example of changes using 
CSPNet can be seen in Figure 3. The method that 
was done in ResNe(X)t was also done in Darknet-53 
with the new proposed name as CSPDarknet-53. 
YOLOv4 uses CSPDarknet-53 as the backbone. In 
the neck area, YOLOv4 uses Spatial Pyramid 
Pooling (SPP) [28], and Path Aggregation Network 
(PAN) [29]. Meanwhile, for the head area, YOLOv4 
still uses the YOLOv3 head. The architecture of 
CSPDarknet-53 can be seen in Table 1. The proposes 
of making YOLOv4 itself is to make a powerful 
YOLO that’s more efficient and suitable for single 
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GPU training while giving Bag of Freebies and Bag 
of Specials method of object detection.  

 
Table 1 Structure of CSPDarknet-53 

Type Output Layers 

Convolutional 256 x 256 1 

DarknetConv2D_BN_Mish 128 x 128 1 

csp_resblock_body 128 x 128 1 

csp_resblock_body 64 x 64 2 

csp_resblock_body 32 x 32 8 

csp_resblock_body 16 x 16 8 

csp_resblock_body 8 x 8 4 

Avgpool  

Connected 

Softmax 

 
3.3 EfficientNet 

EfficentNet [8] is a group of models made out of 
convolutional neural networks which used a 
compound scaling method to uniformly increase the 
depth, width, and resolution of the network. These 
models are named EfficientNet-B0 until 
EfficientNet-B7 where the increase of the number at 
the model’s name indicates the increase of the model 
size. The bigger the size of the model also resulted 
in the increase of accuracy of the model since the 
width, depth, and resolution of the network also 
increase. The EfficientNet uses MBConv blocks in 
their architecture that consists of a few layers that 
can be seen in Figure 4. The initial network of 
EfficientNet-B0 based on the reported paper can be 
seen in Table 2. 

Table 2. Structure of EfficientNet-B0 [8] 

Stage 
(i) 

Operator 
(Ƒi) 

Resolutio
n 

(Ĥi × Ŵi) 

#Channels 
(Ĉi) 

#Layers 
(Ĺi) 

1 Conv3x3 224 × 224 32 1 

2 MBConv1, k3x3 112 × 112 16 1 

3 MBConv6, k3x3 112 × 112 24 2 

4 MBConv6, k5x5 56 × 56 40 2 

5 MBConv6, k3x3 28 × 28 80 3 

6 MBConv6, k5x5 14 × 14 112 3 

7 MBConv6, k5x5 14 × 14 192 4 

8 MBConv6, k3x3 7 × 7 320 1 

9 Conv1x1 & Pooling & 
FC 

7 × 7 1280 1 

 

 
 

Figure 4 The Architecture of MBConv 

To increase the size of the model, the developer 
of EfficientNet decide to use compound scaling 
where compound coefficient (ø) was used to increase 
depth, width, and the resolution of the network using 
equations 1-5. 

 
𝑑𝑒𝑝𝑡ℎ: 𝑑 =  𝛼ø(1)  (1) 

𝑤𝑖𝑑𝑡ℎ: 𝑤 =  𝛽ø   (2) 

𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛: 𝑟 =  𝛾ø1  (3) 

𝑠. 𝑡. 𝛼 ×  𝛽ଶ  ×  𝛾ଶ » 2  (4) 

𝛼 ≥ 1, 𝛽 ≥ 1, 𝛾 ≥ 1  (5) 

 
3.4 EfficientNetv2 

EfficientNetv2 [10] is an updated version of 
EfficientNet where the author found a way to 
increase the performance of EfficientNet while 
reducing the amount of time needed for training. The 
author proposed a Fused-MBConv as a replacement 
for some MBConv that was used in the previous 
version of EfficientNet. The proposed Fused-
MBConv can be seen in Figure 5. However, this 
replacement was only done in a few stages of 
EfficientNet as the author found that changing all 
parts of the EfficientNet reduces the performance of 
the model. The author also changes the way they 
named the model into EfficientNetV2-S until 
EfficientNetV2-M/L. To make this variety of 
models, the author still uses the same scaling method 
as the old EfficientNet. The structure of 
EfficientNetV2-S can be seen in Table 3. 

Table 3. Structure of EfficientNetV2-S [10] 

Stage Operator Stride #Channels #Layers 
0 Conv3x3 2 24 1 
1 Fused-MBConv1, k3x3 1 24 2 
2 Fused-MBConv4, k3x3 2 48 4 
3 Fused-MBConv4, k3x3 2 64 4 
4 MBConv4, k3x3, SE0.25 2 128 6 
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5 MBConv6, k3x3, SE0.25 1 160 9 
6 MBConv6, k3x3, SE0.25 2 256 15 
7 Conv1x1 & Pooling & FC - 1280 1 

 

 

Figure 5 The Architecture of Fused-MBConv 

 

4. PROPOSED METHOD 

The dataset that was used in this experiment is 
CARPK [7] dataset. This dataset consists of aerial 
images of cars in 4 different parking lots taken by the 
drone. This dataset contains nearly 90000 cars with 
bounding box annotation. The bounding boxes given 
were recorded with top-left points and the bottom-
right points. The detected cars from the dataset 
include cars on the edge of the image. This dataset 
was usually used as a counting object dataset. The 
dataset was divided into 989 training images and 459 
testing images. 

To detect cars, we use a single-stage detection 
method YOLOv4. An object detector architecture is 
usually divided into head, neck, and backbone. 
Usually, the backbone is in charge of the feature 
extractor, while the head is in charge of the object 
detection itself which will result in the making of 
bounding boxes and classification confidence. The 
neck however is in charge of processing the feature 
extracted by the backbone to connect with the object 

detection in the head area. Changing the backbone of 
an object detector is something that has been 
commonly done by other developers to improve the 
accuracy or speed of an object detector.  

This is the reason why we want to evaluate the 
effect of changing the backbone of YOLOv4 in 
detecting cars from aerial images. The backbone of 
YOLOv4 is called CSPDarknet-53. To change this 
backbone, we decide to look at EfficientNet, the 
backbone of EfficientDet that has higher accuracy 
than YOLOv4 and EfficientNetV2. The reported 
result of EfficientNet and CSPDarknet-53 when 
being trained and tested on ImageNet shows that 
EfficientNet achieves better accuracy than 
CSPDarknet-53. Based on these results, we decided 
to try to use EfficientNet-B3 to replace CSPDarknet-
53 as the backbone of YOLOv4. We also attempt to 
use EfficientNetV2 as the backbone of YOLOv4 as 
EfficientNetV2 was reported to have better results 
and run faster than the old EfficientNet. The result 
of classification on the ImageNet dataset of 
CSPDarknet-53 and EfficientNet can be seen in 
Table 4 while the result of EfficientNetV2 can be 
seen in Table 5. In the experiment of detecting 
objects and counting cars on the CARPK dataset, we 
decide to evaluate a few proposed models including 
the original YOLOv4. The architecture of the 
original YOLOv4 using CPSDarknet-53 with input 
images size 416x416 can be seen in Figure 6. The 
SPP and PANet in the architecture indicate the neck 
part of YOLOv4. From the architecture, we can see 
that in the head part of YOLOv4, the prediction was 
done in 3 different scales resolution just like the head 
part of YOLOv3. 

From the feature extraction that happened on the 
CSPDarknet-53, there is concatenation from 
CSP_Resblock_Body-3 and CSP_Resblock_Body-4 
as the output of CSP_Resblock_Body-3 has a 
resolution of 52x52 and the output of 
CSP_Resblock_Body-4 has a resolution of 26x26. 
Both of these concatenations happen at the end of the 
block. 

 

Table 4. The Performance of CSPDarknet-53, and EfficientNet on ImageNet [30] 

 CSPDarknet-53 B0 B1 B2 B3 B4 B5 B6 B7 
Top-1 80.1 77.1 79.1 80.1 81.6 82.9 83.6 84.0 84.3 

Top-5 95.1 93.3 94.4 94.9 95.7 96.4 96.7 96.8 97.0 

 
Table 5. The Performance of EfficientNetv2 on ImageNet 

 S M L B0v2 B1v2 B2v2 B3v2 
Top-1 83.9 85.2 85.7 78.7 79.8 80.5 82.1 
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Figure 6. YOLOv4 Architecture with CSPDarknet-53 as The Backbone 

 

Figure 7. YOLOv4 Architecture with EfficientNet-B3 as The Backbone 

 

Figure 8. YOLOv4 Architecture with EfficientNetV2-S as The Backbone

As stated previously, our proposed method was 
to change the backbone area of YOLOv4, thus from 
the original YOLOv4, we only change the 
architecture of CSPDarknet-53. From the original 
architecture of YOLOv4, we can see that the image 
scale that was used to be extracted into the prediction 
process are the image with scale size 52x52, 26x26, 
and 13x13. Thus we decide to use the same image 
scale to extract the prediction from our proposed 
model. The architecture of YOLOv4 with 
EfficientNet-B3 as the backbone with input image 
size 416x416 can be seen in Figure 7. Since the 
architecture of EfficientNet is different from 

CSPDarknet-53, there are 2 proposed models that we 
try on EfficientNet-B3. 

The first proposed models make a concatenation 
from the end of block MBConv6-3 to get the 52x52 
resolution and the end of block MBConv6-5 to get 
the 26x26 resolution. The second proposed models 
make a concatenation from the middle of MBConv6-
4 to get the 52x52 resolution and the middle of 
MBConv6-6 to get the 26x26 resolution.  

Another experiment that we did was to change 
the backbone of YOLOv4 with EfficientNetV2-s. 
The architecture of YOLOv4 with EfficientNetV2-S 
as the backbone with input image size 416x416 can 
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be seen in Figure 8.  As EfficientNetV2 has a similar 
architecture with EfficientNet, we also tried 2 
proposed models with EfficientNetV2-S. 

On the first proposed model, we use 
concatenation from the end of block Fused-
MBConv4-3 to get the 52x52 resolution and the end 
of block MBConv6-5 to get the 26x26 resolution. 
For the second proposed model, we use 
concatenation from the middle of block MBConv4-
4 to get the 52x52 resolution and the middle of block 
MBConv6-6 to get the 26x26 resolution. 

5. RESULT AND DISCUSSION 

In the training process, we implement YOLOv4 
and our proposed method in the Keras environment. 
The whole training and testing process was run on 
the cloud in Kaggle. For each model, we used 8 batch 
sizes, SGD optimizer with no momentum, and a 
0.001 learning rate. In the training process, we used 
the transfer learning method with a total of 40 epochs 
while freezing the backbone, and then continue 
training after unfreezing the backbone layer up to 
250 epochs. We also applied a reduced learning rate 
with the patience of 10 epochs and early stopping 
with the patience of 50 epochs. For training, we 
shuffle and split a total of 989 training image into 
80% of training dataset and 20% of validation 
dataset. While the testing dataset was consisted of 
459 images. The size of the input image used in this 
experiment was 416x416 as this input size was the 
input size recommended by YOLOv4. When we test 
our model accuracy, we use 0.5 threshold. 

From the implementation result of object 
detection using YOLOv4 and the proposed method, 
we also calculate the Mean Absolute Error (MAE) 
and Root Mean Square Error (RMSE) of the model 
by calculating the difference number of predicted 
cars and number of ground truth cars in each test 
image using equation 6 and equation 7. 

 

𝑀𝐴𝐸 =
ଵ

௡
∑ |𝑓௜ − 𝑦௜|௡

௜   (6) 

𝑅𝑀𝑆𝐸 = ට
ଵ

௡
∑ (𝑓௜ − 𝑦௜)ଶ௡

௜   (7) 

 

The result of implementing YOLOv4 with the 
proposed model on the CARPK dataset when tested 
on the validation dataset is shown in Table 6 while 
the result, when tested on the testing dataset, is 
shown in Table 7.  

Table 6. The mAP, Mean Absolute Error (MAE), and 
Root Mean Square Error (RMSE) from Validation 

Dataset 

Model mAP% MAE RMSE 
YOLOv4 98.60 0.53 1.14 
YOLOv4+EfficientNetB3 (end of the 
block) 

98.79 0.57 1.26 

YOLOv4+EfficientNetB3 (middle 
block) 

99.23 0.51 1.08 

YOLOv4+EfficientNetV2-S (end of 
the block) 

96.88 1.01 1.89 

YOLOv4+EfficientNetV2-S (middle 
block) 

98.29 0.68 1.44 

  
Table 7. The mAP, Mean Absolute Error (MAE), and 

Root Mean Square Error (RMSE) from Testing Dataset 

Model mAP% MAE RMSE 
Layout Proposal Network [7] - 23.80 36.79 
YOLOv4 74.91 21.65 28.07 
YOLOv4+EfficientNetB3 (end of the 
block) 

70.05 23.40 29.41 

YOLOv4+EfficientNetB3 (middle 
block) 

74.22 21.23 27.69 

YOLOv4+EfficientNetV2-S (end of 
the block) 

63.93 25.58 30.98 

YOLOv4+EfficientNetV2-S (middle 
block) 

73.62 21.25 27.52 

 

It is shown that there are big differences in mAP 
values when we do validation and testing. From what 
we learned, the dataset of training and testing turn 
out to be very different. The example of the training 
dataset can be seen in Figure 9 while the example of 
the testing dataset can be seen in Figure 10. 

 

 

Figure 9 The Example of Training Image of CARPK 
Dataset 
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Figure 10 The Example of testing Image of CARPK 
Dataset 

The effect of such different images makes the 
model have lower confidence in detecting the object. 
The contrast of the image also causes the model to 
have difficulty detecting the cars. However, the 
proposed models still have a good MAE and RMSE 
score as it’s lower than the result given by the 
reported MAE and RMSE score of LPN. 

6. CONCLUSION & FUTURE WORKS 

From this experiment, we found that the 
detection result of YOLOv4 was initially good. The 
change of backbone to EfficientNetB3 and 
EfficientNetV2-S shows that there’s a slight increase 
in the accuracy on validation and a slight decrease 
on MAE and RMSE. From this experiment, we 
manage to show that there is a possibility of an 
increase in YOLOv4 performance by changing the 
backbone area. We also managed to achieve the 
highest accuracy in validation with EfficientNetB3 
middle block and achieved the lowest MAE and 
RMSE on testing by using the EfficientNetB3 
middle block version as the backbone of YOLOv4. 
There is some limitation in our experiment such as 
the small number of dataset and the inconsistency 
between the training data and the testing data. As the 
original weight of EfficientNetV2 wasn’t formatted 
in the Keras version, we might also not be using the 
latest weight version. These limitations cause our 
testing results lower than the validation result. In the 
future, we would like to try changing the backbone 
part of YOLOv4 with other classification models 
that were better than EfficientNetB3 and 
EfficientNetV2-S. We also would like to try to use 
the model that has been enhanced to be used on 
different datasets. 
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