
Journal of Theoretical and Applied Information Technology
31st March 2022. Vol.100. No 6

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1864

CROSSCUTTING CONCERNS (ASPECTS) IDENTIFICATION
IN THE EARLY STAGE OF ASPECT-ORIENTED SOFTWARE

DEVELOPMENT

AWS A. MAGABLEH1, RAZAN RABABAH2

1Department of Information Systems, Faculty of Computer Science and Information Technology, Yarmouk

University, Irbid, Jordan

2Department of Information Systems, Faculty of Computer Science and Information Technology, Yarmouk
University, Irbid, Jordan

E-mail: 1Aws.magableh@yu.edu.jo, 22016930005@ses.yu.edu.jo

ABSTRACT

Aspect-oriented programming (AOP) can effectively solve code-tangling and code-scattering that are
caused by the attributes of crosscutting concerns or aspects. To date, research in the field of aspect
orientation has concentrated on the implementation stage of the software development life cycle. Also,
quite a good number of studies on aspect orientation have been conducted on the later stage of software
development. However, less attention has been paid to aspect orientation at the requirement analysis stage,
i.e., the early stage of software development. Therefore, the aim of this research is to propose an approach
for analyzing and extracting crosscutting aspects from software requirements specifications by using a
natural language processing technique, namely, the educated text stemmer algorithm. Moreover, this
research focuses on the auto analysis and extraction of aspects from specifications written in the Arabic
language because a lot of companies and organizations are still using English language-based requirements
approaches for Arabic systems. The results of the proposed approach show promise because the proposed
Arabic miner tool was able to extract the greatest number of candidate aspects from Arabic requirements
specifications. The approach was evaluated by comparing the results that it automatically extracted with
those extracted manually by software engineering experts. The accuracy of the experts’ efforts was 88%,
whereas the accuracy of the proposed approach was 36%, which can be ascribed to the poorness of the
Arabic data set and Arabic WordNet tool. Nevertheless, the proposed approach has potential, and the
experimental results offer insights on how to further develop the proposed tool.

Keywords: Crosscutting concerns, Aspects, Aspect-oriented, AO, Aspect identification, Aspect elicitation,
Early stage of software development life cycle, Arabic requirements specification, AO miner.

1. INTRODUCTION

Requirement engineering (RE) is one of the most
important factors that affect the success of the
software development process because in
requirements analysis the software analyst identifies
the stakeholders’ and customers’ needs. One of the
main approaches used by the system analyst is the
object-oriented analysis and design or OOAD
approach, which helps the system analyst to identify
both the user requirements and the system
requirements. This approach enables the
identification, discovery and selection of the main
business logic, as well as the various packages and
classes of the system and their relationships.
Generally, these relationships can be classified into

primary concerns and crosscutting concerns, as
illustrated in Figure 1.

Figure 1: Requirement’s classification [32]

Journal of Theoretical and Applied Information Technology
31st March 2022. Vol.100. No 6

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1865

Although an object-oriented (OO) approach is
sufficient for achieving success in software
engineering projects, the approach has some
inherent problems that affect its ability to handle
issues related to the maintainability and modularity
of the developed system [23]. In particular, the OO
approach is unable to deal with relatively new
terminologies such as crosscutting concerns (or
aspects). An aspect represents any behavior that
cannot be modularized and composed effectively in
one single entity or object. It might be a non-
functional requirement or a specification such as
reliability, security, and logging that cannot be
represented by using the predefined techniques and
tools available in OO approaches. Any attempt to
deal with aspects as an OO object/class will lead to
the poor modularization of the aspects, which will
then accordingly lead mainly to two problems in the
design and later stages of the software development
process, namely, scattering and tangling. As
illustrated in Figure 2, scattering occurs when the
responsibility related to or assigned to an
abstraction and localized in the abstraction is also
localized at one or more other abstractions that are
not responsible for said responsibility [32], while
tangling occurs when an abstraction deals with
responsibilities that do not belong to its scope [31]
Thus, the aspect-oriented (AO) approach was
invented to resolve these problems.

Figure 2: Scattering and tangling [32]

Therefore, the purpose of this research is to build
an approach that can automatically extract aspects
from software requirements specifications. The
work also specifically focuses on requirements
written in the Arabic language. A good analysis of
requirements reduces the possibility of errors
arising in the later stages of the software
development project that can waste time, effort and
money. For system development and the
automation of software development activities,
robust techniques are required to elicit aspects from
natural-language text. The systems that have been
developed in the Middle East suffers from the

drawback that software requirements specifications
have to be written in the English language in order
for them to be automatically analyzed.

It is posited here that natural language processing
(NLP) and machine learning (ML) techniques can
be used for handling the Arabic language, thereby
enabling the construction of an approach that can
help requirements engineers in the requirements
engineering step of the software development
process who are working for clients who require
Arabic language-based systems. It is envisaged that
such an approach will not only facilitate the
completeness and correctness of aspect elicitation,
but also reduce the effort spent by requirements
analysts in translating Arabic terms into the English
language so that they can use existing requirements
analysis approaches. In short, the motivation for
developing a tool for identifying Arabic system
requirements is twofold: (1) to enhance software
systems that are based on the Arabic language,
especially those are used by entities such as
government ministries in Saudi Arabia and (2) to
enhance the Arabic language usage so that it can be
used in the software development life cycle
(SDLC).

It has been noticed in software development that
Aspects/crosscutting concerns are being attempted
to be identified, modelled, and programmed at later
stages to the software developments, which means
there is no consistency of mapping between
requirements and developments, cost of change will
be high, cost of maintenance if any amendments
have to take place on the object and aspect will
need high effort and high cost. Additionally, Arabic
community and society of programmers are
increasing and Arabic system users and clients
whose requirement is in Arabic are also increasing
thus, it was observed that a need to have an
approach that supports Aspect/crosscutting
concerns identification from Arabic client
requirements is essential.

2. PROBLEM STATEMENT
The requirements analysis process is

critical for the success of a software development
project. Recent research studies have attempted to
find ways to automatically extract aspects from
software requirements specification documents in
order to avoid the time-consuming task of manually
extracting the aspect requirements and to reduce the
errors that can occur in the later stages of the
SDLC. A decent number of research studies have
investigated aspect-oriented (AO) requirements
engineering and the development of tools for the
mining of candidate aspects. However, to date, to

Journal of Theoretical and Applied Information Technology
31st March 2022. Vol.100. No 6

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1866

the best of our knowledge, there are no research
studies that have investigated aspect extraction
from Arabic software requirements specifications.

This research proposed an involuntary approach for
obtaining aspects/Crosscutting approach from
Arabic user requirements based on NLP techniques
in order to share a common understanding of the
structure of information among stakeholders and
software engineer. The proposed approach relies on
mixing of a proposed set of identification rules to
identify the candidate aspects, and an automated
NLP algorithm. our approach is the first to utilize
an Arabic natural language algorithm to extract
candidate aspects from Arabic requirements. The
research was motivated by the idea that a good
analysis of requirements would reduce the
possibility of errors arising during the later stages
of software development projects which result in
wasted time, effort, and money.

3. RESEARCH QUESTIONS

This research attempts to answer the following
questions:
 RQ1: How feasible is it to implement an

aspect miner to elicit crosscutting concerns
from Arabic requirements specifications that
support the early stages of aspect-oriented
software development (AOSD)?

 RQ2: How can the accuracy of an Arabic

aspect miner be measured and how accurate is
the miner?

4. LITERATURE REVIEW

In this section, first, some background on the
concept of aspect orientation is provided in order to
highlight the contribution of this study. Then, the
techniques that are used to elicit aspects are
reviewed.

4.1 Aspect-Oriented Software Development

(AOSD)

Aspect-oriented software development [26] is based
on the advanced concept of the separation of
concerns. The aim of this type of software
development process is to encapsulate crosscutting
concerns into new units called aspects in order to
enhance the modularity of the software. Four main
types of AOSD process [27] can be employed in the
SDLC. The first is aspect-oriented requirement
engineering (AORE), which is used in the early

stage of AOSD. Aspect-oriented requirement
engineering enables the requirements engineer to
identify, specify, represent, and document
crosscutting concerns (aspects) by providing the
engineer with the systematic means and
methodologies to do so. Various AORE approaches
[28] have been developed to deal with crosscutting
concerns, based on different perspectives, and these
approaches deal with functional concerns, non-
functional concerns, or both. However, all the
approaches share the same goals, which are aspect
identification, aspect separation, aspect
representation, and aspect composition [8][9][10].

The second type of AOSD process is aspect-
oriented modeling or AOM. This process is
implemented in the design stage of the SDLC,
when the designer has to realize the proposed
system, which contains a set of requirements. At
this point in the software development process, the
designer has to think about the behavioral aspects
of the system as well as its structural aspects.

A third process that can also be applied in AOSD is
aspect-oriented programming (AOP). Aspect-
oriented programming is a relatively new
programming paradigm that has been introduced
with the objective of creating better and more
effective systems. In order to understand how AOP
works, it is important to know the following
terminology:
 Join point: A well-defined point in program

implementation (calling or executing
techniques are examples of join points);

 Point-cut: A collection of models used to select
a join point;

 Advice: A method-like structure containing
extra behavior to be added to and injected into
the corresponding join point;

 Aspect: An embodiment of a crosscutting
concern (in the context of OO programming,
an aspect is somewhat comparable to a class);

 Aspect weaving: A method by which the
aspect’s behavior is combined with the initial
code – in other words, weaving is a method of
combining the crosscutting concerns with a
program.

The fourth and final AOSD process is aspect-

oriented quality assurance or AOQA. This is used
in the testing phase and is a significant part of the
design process. Detecting software faults is one of
the key objectives of testing. Such testing takes
place throughout the SDLC because it is crucial

Journal of Theoretical and Applied Information Technology
31st March 2022. Vol.100. No 6

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1867

that defects are identified as soon as possible during
the development of software systems.

Any comparison of software development
approaches needs to be done at the phase level of
the SLDC because each phase of the SDLC has its
own requirements. Hence, there are different
comparison criteria for each phase. In the AOSD
approach, the criteria for the requirement
engineering phase is based on the provision of
support for the aspectual concerns at the early stage
of software development, and there should be
distinct mapping between the aspects and the final
products or goals of the system. The criteria that are
used for the software specification phases are based
on the extent of the usage of the supporting tools,
the verification steps, and the independency of the
language. In the software design phase, the criteria
that are used are the quality properties and the
extent of the traceability and the reusability of the
Aspects [4].

4.2 Aspect-Oriented Requirement Engineering

(AORE)

The inability of OO to represent and decompose
crosscutting concerns at the early stage of software
development led to the development of AORE [2].
Aspect-oriented requirement engineering aims at
achieving the advanced separation of concerns. It
mainly involves the use of modular reasoning and
composition realization. Modular reasoning is
related to keeping the concern isolated from any
other concerns that are affected by or influenced by
the concern in order to understand the concern in
isolation. Composition realization realizes the
dependencies and the relationships between
concerns in order to understand the properties of
the system as a whole [20][21].

Aspects or crosscutting concerns are entities that
represent the requirements that are not related
strictly to specific decomposition modularization
units. For instance, the use case unit is the best
option for the modularization of functional
requirements. However, non-functional
requirements [30] cannot belong to a specific use
case module. Instead, such requirements normally
crosscut multiple use cases. This problem is solved
by the use of the crosscutting concern or aspect,
which acts as an encapsulation of one or more
requirements related to a specific matter of interest
[11]. Hence it can be said that the crosscutting
concerns concept denotes the relationship between
two elements when one of those elements affects

the other element or restricts the other element’s
implementation [18].

In 2008, Blaine and colleagues stated that there are
some issues that need to be addressed in regard to
how to elicit quality requirements, how to find the
trade-off between them, and how to measure the
quality requirements [5]. A decade later, in 2018,
Tamai and colleagues tried to solve these problems
by proposing a tool named the QR miner [10] for
analyzing the quality requirements in the software
requirements specification in terms of their volume,
balance, and structure. To achieve this goal, they
used ML and NLP, and especially a deep learning
technique to find and classify quality requirement
sentences. Figure 3 below shows the flow of the
QR miner.

Figure 3: QR miner [10]

Earlier, in 2005, Sampaio and his team proposed
the EA-miner tool [27] to automatically extract the
aspects and their crosscutting relationships, and the
non-aspectual requirements by utilizing the
WMATRIX [29] natural language processor that
pre-processes the input document to get relevant
information. The WMATRIX provides part-of-
speech (POS) and semantic tagging, as well as
frequency analysis. The flow of the EA-miner is
illustrated in Figure 4 below.

Figure 4: EA-miner approach [29]

Journal of Theoretical and Applied Information Technology
31st March 2022. Vol.100. No 6

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1868

Later, in 2010, Boudlal and his team proposed a
tool that can be used to perform multiple NLP tasks
on the Arabic language, such as morphological
analysis, disambiguation and (POS) tagging. Their
work is an extended version of the Alkhalil Morpho
Sys analyzer [1] which is based on a large set of
Arabic morphological rules and on the integration
of linguistic resources [6]. Microsoft has developed
by Microsoft Advanced Technology Lab in Cairo
for processing Arabic text. It is a set of NLP
components, such as a morphological analyzer
(SARF), parser, spell-checker, auto corrector,
named entity recognizer (NER), POS tagger, etc.
These components are presented to the users in the
form of web services.

In a similar vein, in 2009, Habash and his team
proposed a toolkit that can be used to process
Arabic natural language. It performs different tasks
such as POS tagging, discretization, etc. In the
toolkit, the morphological analysis and
disambiguation for Arabic (MADA) component
handles the morphological analysis and
disambiguation of Arabic text, and the (TOKAN)
component is used to define a large set of possible
tokenization schemes that can be generated from
the disambiguation analyses produced by the
MADA component. The researchers proposed a
semi-automated approach for constructing a
sequence diagram from Arabic-language software
requirements, which is based on the use of a
MADA+TOKAN Arabic parser as a first step,
which parses each token in the text and associates it
with its corresponding tag. After the parsing step is
completed, and before moving to the second phase,
the tags are placed into three groups: subjects,
receivers, and participants. The subject group must
be defined in the parsing phase because the subject
group defines the caller or the sender in the
sequence diagram. On the other hand, the receiver
and participant must be defined during the
construction of the sequence diagram phase. Hence
sequence tables also need to be constructed during
the analysis process [13].

Other approaches that have been developed to solve
the identification of requirements include that [14]
[15] [17], who proposed a method for classifying
requirements into functional, non-functional,
temporal, and non-temporal by using the J48 and
the PERTree classification algorithms. Li in [33]
presented an example of the usage of deep learning
in one of the software engineering tasks, namely,
bug report summarization. The researchers found

that there is a noticeable trend of using deep
learning techniques in different software
engineering phases. However, they also found that
there are effectiveness, efficiency,
understandability, and testability problems in the
usage of deep learning models in software
engineering task [16] classified the content of the
software requirements specification into
requirements or information by using convolutional
neural networks. On the other hand, [25] proposed
a methodology to evaluate the quality of system
requirements as the quality experts using a ML
algorithm (the rule induction algorithm). Other
researchers have tried to analyze AO requirement
using formal methods [7] [3].

In the current study, the algorithm that is used for
the identification of crosscutting concerns (aspects)
in the early stage of AOSD is the (ETS) algorithm
(Al Shammari & Lin, 2008). The ETS algorithm is
an Arabic stemmer. The reason behind the usage of
this stemmer is that the other available Arabic
stemmers suffer from high stemming error rates.
Generally, Arabic stemmers stem all the words
blindly and show poor performance in respect of
compound words.

Therefore, in the first phase of the proposed
approach, the ETS algorithm is used to preprocess
the Arabic requirements text. It is also used to
apply a part of one of the proposed heuristic rules
that is employed to improve requirements
identification. The second phase involves the
identification of the participants, where the
participant groups include the sender/caller, the
main actor, and the receiver. Then, the next phase is
message identification, and usually the message is
the action for each statement. The action here is
defined as the object. To the best of our knowledge,
the proposed approach is the first to be built to
extract candidate aspect requirements in the Arabic
language.

The literature did not focus on obtaining Aspects
from Arabic requirement, it was always focused on
obtaining and identifying Aspect from English
requirement text, thus not much has been done on
Arabic language.

Journal of Theoretical and Applied Information Technology
31st March 2022. Vol.100. No 6

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1869

5. RESEARCH METHODOLOGY AND
PROPOSED APPROACH

5.1 Overall Research Design

This research proposes the usage of NLP
techniques to build an approach to extract a list of
candidate aspects from Arabic software
requirements specifications. Figure 5 illustrates the
steps of the proposed approach, which are
described in detail in the following.

Figure 5: Proposed aspect extraction approach

The proposed approach accepts an Arabic software
requirements specification and an Excel file that
contain most of the aspects that are used in different
system domains. These aspects have been translated
into the Arabic language to create a domain aspect
dictionary as input text especially for this research.

In the proposed approach, first, the non-functional
aspects are extracted. Then, the proposed algorithm
and Arabic WordNet are used to extract the
functional aspects. This extraction process begins
with normalization, which is followed by stop word
removal and tokenization. Then, a dictionary of
verbs is automatically created, and aggressive
stemming of the verbs in the documents is
performed, the output of which is a list of stemmed
verbs. After that, the functional aspects are
extracted by finding the repeated verbs in the data
set and then comparing them with the domain

aspect dictionary built specifically for the purpose
of this research.

5.2 Research Phases

5.2.1 Data Set
The data set used in this research is a collection of
software requirements specifications that are
written in the Arabic language. These specifications
constitute a raw natural language text without any
classification of the use cases and without any
identification numbers for the requirements. The
Arabic requirements of real systems are not fully
available on the internet and the Arabic software
requirements specification documents that are
available on the internet are generally of poor
quality. Therefore, in this research the used data is
an English library system translated into Arabic.
Hence the domain aspect dictionary is built based
on English software requirements specifications
[12].

5.2.2 Construction of the Functional and Non-

Functional Domain Aspects Dictionary
This research uses the pure data set to extract the
candidate functional and non-functional domain
aspects. This is done manually by revising the
documents and trying to extract the aspects based
on an analysis of the system requirements and find
the crosscutting concerns of the system. Then, these
aspects are translated into the Arabic language and
stored in an Excel spreadsheet.

5.2.3 Aspect Extraction
Before applying the ETS algorithm, preprocessing
of the library system is conducted. Preprocessing
means that the research approach takes the text data
as input written in Arabic, which represents user
requirements (a set of reconstruction rules is
applied). A set of reconstruction rules is applied to
transform the input user requirements into a simple,
short and unambiguous format, which decreases
ambiguity of the input, handles incompleteness, and
produces more accurate results. After the user
enters the requirements text, the syntactic
reconstruction rules are applied to the input text.
These rules are as follows:
o The sentences of the user requirements text

should be complete, i.e., end with a full stop and
have no ellipses.

o The user requirements should be written in
Modern Standard Arabic or MSA.

o The user requirements should be free of
misspellings and typos [24].

Journal of Theoretical and Applied Information Technology
31st March 2022. Vol.100. No 6

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1870

o The user requirements should be grammatically
correct [24].

o The user requirements text should consist of
short sentences.

o If a sentence is in the passive voice, it should be
converted into the active voice [22].

o The user requirements should not contain
hidden pronouns.

The ETS algorithm and Arabic WordNet are used
to extract the candidate aspects. The algorithm
depends on the usage of stop words in order to
define the list of verbs and nouns in the text.
Usually, stop words are removed in the early stage
of text preprocessing. To identify the candidate
aspects, the ETS algorithm refers to a list of stop
words, in which the stop words are categorized as
either useful or useless. The useless stop words do
not give any benefit to the subsequent words,
whereas the useful stop words can indicate the
syntactical category of the subsequent stop words.
Tables 1 and 2 give some examples of useful
Arabic stop words.

Table 1: Arabic Prepositions Preceding Verbs

Preposition English equivalent
 Wherever حيثما
 Whenever كلما
 If إذا

 When (not for question) عندما

Table 2: Arabic Circumstantial Nouns Indicating Time
and Place

Preposition English equivalent
 until, near, towards, to إلى
 in front of أمام

 In the direction of باتجاه
 Aside, next to, beside بجانب
 After بعد
 Between بين
 Below, beneath, down تحت
 Till (time and location) حتى
 Outside of خارج
 ,Through, during خلال
 Through عبر
 Over على
 Above, up فوق
 In (time, location, duration) في
 Before قبل

 Near قريب
 Since منذ

 Behind, beyond وراء

 Before applying the ETS algorithm, normalization
is performed to make the data set more consistent.
Normalization consists of the following steps:
o Convert text to Unicode
o Remove diacritics and punctuation
o Remove non-letters (e.g., numbers)
o Replace آ with double alif (اا)
o Replace ى with ا
o Replace initial إ with أ
o Replace all hamza forms ئ ,ؤ ,ء with أ.

After that, the steps work on documenting
normalization and special stop words removal
process. In this phase, useless stop words are
removed in order to reduce the size of the data set.
Then, the nouns are identified by locating stop
words that precede nouns, or words starting with
definite articles. The identified words are flagged as
nouns in preparation for the stemming phase. In the
stemming phase (first phase), the verbs have to be
identified by locating the stop words that always
precede the verbs. Then, the identified nouns and
verbs are separately added to the global dictionary
and tagged as nouns and verbs. In the aspect
extraction phase, there is no need to know the
identified nouns, so the noun dictionary is
discarded. In the Arabic language there are no
consecutive verbs, so the word that follows a verb
is categorized as a noun or a stop word. If the word
is not a stop word, then the word is flagged as a
noun and added to the noun dictionary. Verbs are
stemmed using the Khoja root-based stemmer [19],
and nouns are lightly stemmed. The Khoja root-
based stemmer [19] is an algorithm that works
based on the elimination of the suffixes, prefixes,
and infixes of a given Arabic word.

6. RESULTS AND EVALUATION

In order to extract the candidate aspects of this
system, the proposed approach applies the
following steps:

o The ETS algorithm and Arabic WordNet is
used to extract the sentences that have
verbs from the data set in order to extract
all the verbs that act as the functional
requirements of the system. Note the
algorithm finds the functional and non-
functional sentences due to the small size
of the used data set.

o The ETS algorithm is used to identify the
verb sentences (see Figure 6 for
examples).

Journal of Theoretical and Applied Information Technology
31st March 2022. Vol.100. No 6

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1871

Figure 6: ETS verb sentences

o Heuristic rules are used to find the “non-

functional” requirements which act as an
adjective in Arabic so the algorithm
extracts them. Note that in this research,
the non-functional aspects are extracted by
comparing the text of the data set with the
Excel file built for the domain functional
and non-functional aspects (see Figure 7).

Figure 7: Candidate non-functional aspects

o The first heuristic rule identifies the

actions (i.e., verbs) in the requirements
and the actions or verbs that are identified
as shared between more than one actor of
the system are considered to be functional
aspects (see Figure 8).

Figure 8: Candidate functional aspects

The evaluation of the performance of the proposed
approach was a bit challenging because, as
explained earlier, it is difficult to find subject
matter experts and/or respondents to help in the
evaluation as aspect orientation is not well known
and well used in the software development industry
in the Middle East. We therefore decided to use a
simple and decent evaluation method that involved
comparing the aspects identified in our proof of the
concept tool with the aspects extracted manually by
a requirements analyst and then calculating the
recall of both results. As a result of the poor
availability in the local area of system analysts who
understand the aspect requirements concepts, the
evaluation of the research depended on only a few
participants. The participants consisted of a few
instructors from Yarmouk University and Al-
Albayt University, a few Masters students
undertaking research in the field of OO and AO in
computer information systems, and two members of
the local Jordanian software engineering industry.
To illustrate the benefits of using the proposed
automatic Arabic aspect extraction approach over
manual extraction, the e-library management
system requirements were used as a case study.

The results of our experiment revealed that there is
a lack in the performance of the proposed approach
in terms of its ability to extract the candidate
aspects. This lack may be caused by the poorness of
the Arabic data set, the poorness of the Arabic
WordNet which does not have enough synonyms
for the extracted verbs, and the poorness of the
predefined dictionary of domain aspects.

Journal of Theoretical and Applied Information Technology
31st March 2022. Vol.100. No 6

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1872

Table 3 shows the number of candidate
aspects that were extracted correctly and incorrectly
from the user requirements. Table 4 shows the
number of candidate aspects that were extracted
correctly and incorrectly by the proposed approach
as compared against the average number extracted
by the evaluators.

Table 3: Candidate Aspects Extracted by the Evaluators

Evaluato

r
No. of

function
al

aspects

No. of
incorrect
function

al
aspects

No. of
non-

function
al

aspects

No. of
incorrect

non-
function

al
aspects

Evaluator
1

2 0 1 2

Evaluator
2

3 0 4 0

Evaluator
3

2 0 4 0

Table 4: Number of Extracted Candidate Functional and
Non-Functional Aspects

Evaluator # correct # incorrect # missing
Arabic Aspect

Miner (Our
Proposed

Tool)

14 0 2

Evaluators
(averaged)

8 1 3

When the proposed approach was applied

to the same requirements, the number of extracted
candidate functional aspects was 11 and the number
of extracted non-functional aspects was 4. Hence
the total number of extracted aspects was 14.
However, the results extracted by evaluators are 8.
Our proposed approach and the associated proof of
concept tool managed to extract more Aspects from
the same requirement used in both cases. The
results summarized in Table 4.

The performance of the proposed approach was
evaluated by calculating the recall, precision, and f-
measure values, which are used to determine the
overall level of accuracy. The precision, recall, and
f-measure are calculated as follows:

Precision =

Recall =

F-measure =

Where the number of correctly identified

elements is denoted as | N correct |, the number of
incorrectly identified elements is denoted as | N
incorrect |, and the number of elements that were
not identified but should have been is denoted as |
N missing |.

The overall performance of the evaluators
in terms of precision, recall, and f-measure was
92%, 51%, and 66%, respectively. The
performance of the proposed approach was as
follows: precision = 45%, recall = 31%, and f-
measure = 36%.

7. CONCLUSION AND FUTURE WORK

This research has some limitations. First, the scope
of this study is limited by the Arabic software
requirements specification documents that are
available over the web. Second, the lack of
availability of other research studies related to
Arabic AORE limits the comparison of the results
of this study with those of related works. Third,
Arabic WordNet does not contain a huge set of
words and synonyms, so this reduces the efficiency
of the results produced by the proposed approach.
Lastly, the results of the performance comparison
were limited due to the lack of Arabic system
analysts with expert knowledge and experience in
regard to the meaning and usage of aspects because
aspect orientation is not a very well-known concept
in the market.

This research proposed an automatic approach for
extracting candidate aspects from Arabic user
requirements based on NLP techniques in order to
share a common understanding of the structure of
information among stakeholders and software
engineer. The proposed approach relies on
combining of a proposed set of identification rules
to identify the candidate aspects, and an automated
NLP algorithm. This approach is the first to utilize
an Arabic natural language algorithm to extract
candidate aspects from Arabic requirements. The
purpose of this research proposal was to build an
approach that can automatically extract the aspects
from Arabic software requirements specifications in

Journal of Theoretical and Applied Information Technology
31st March 2022. Vol.100. No 6

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1873

order to facilitate requirements analysis by reducing
the time and effort consumed in this stage of the
SDLC. It was envisaged that the approach could be
more accurate than those obtained by requirements
engineers depending on their knowledge alone. The
research was motivated by the idea that a good
analysis of requirements would reduce the
possibility of errors arising during the later stages
of software development projects which result in
wasted time, effort, and money.

Although the results of this research were not as
good as hoped, they show that the proposed
approach has some potential. Therefore, in
future work, we aim to 1) enhance the used data set
so that it is bigger and contains pure Arabic user
requirements that are not translated, 2) try to enrich
the Arabic WordNet with more verbs and more
synonyms, and 3) study the grammatical structure
of the Arabic language in order to enhance the
aspect identification rules to enable the accurate
extraction of more aspects.

REFERENCES

[1] Alami, N., Arman, N., & Khamyseh, F. (2017).

A semi-automated approach for generating
sequence diagrams from Arabic user
requirements using a natural language
processing tool. ICIT 2017 - 8th International
Conference on Information Technology,
Proceedings,309–314.

[2] Alves, V., Schwanninger, C., Barbosa, L.,
Rashid, A., Sawyer, P., Rayson, P., ... &
Rummler, A. (2008, September). An
exploratory study of information retrieval
techniques in domain analysis. In 2008 12th
International Software Product Line
Conference (pp. 67-76). IEEE.

[3] Alshareef, S. F., Maatuk, A. M., Abdelaziz, T.
M., & Hagal, M. (2020, September).
Validation Framework for Aspectual
Requirements Engineering (ValFAR).
In Proceedings of the 6th International
Conference on Engineering & MIS 2020 (pp.
1-7)

[4] Braude, E. J., & Bernstein, M. E.
(2016). Software engineering: modern
approaches. Waveland Press.

[5] Blaine, J. D., & Cleland-Huang, J. (2008).
Software quality requirements: How to
balance competing priorities. IEEE
Software, 25(2), 22-24.

[6] Boudlal, A., Lakhouaja, A., Mazroui, A.,
Meziane, A., Bebah, M. O., & Shoul, M.
(2010). Alkhalil Morpho Sys: A
Morphosyntactic analysis system for Arabic
texts. International Arab conference on
information technology, 1-6.

[7] Can Qu , Xuhui Zhang , Haihua
Chen and Lichen Zhang. (2021). Aspect-
oriented requirement analysis based on Formal
method, Journal of Phys.: Conf.
Ser. 1952 042027

[8] Chitchyan, R., Rashid, A., Rayson, P., &
Waters, R. (2007, March). Semantics-based
composition for aspect-oriented requirements
engineering. In Proceedings of the 6th
international conference on Aspect-oriented
software development (pp. 36-48). ACM.

[9] Chitchyan, R., Sampaio, A., Rashid, A., &
Rayson, P. (2006). A tool suite for aspect-
oriented requirements
engineering. Proceedings - International
Conference on Software Engineering, 19–25.

[10] Chitchyan, R., Rashid, A., Sawyer, P., Garcia,
A., Alarcon, M. P., Bakker, J., ... & Jackson,
A. (2015). Survey of aspect-oriented analysis
and design approaches.

[11] Clarke, S. (2004). Theme: an approach for
aspect-oriented analysis and design.

[12] Ferrari, A., Spagnolo, G. O., & Gnesi, S.
(2017, September). Pure: A dataset of public
requirements documents. In 2017 IEEE 25th
International Requirements Engineering
Conference (RE) (pp. 502-505). IEEE.

[13] Habash, N., Rambow, O., & Roth, R. (2009).
MADA+TOKAN: A Toolkit for Arabic
Tokenization, Diacritization, Morphological
Disambiguation, POS Tagging, Stemming
and Lemmatization. Proceedings of the
Second International Conference on Arabic
Language Resources and Tools, (41), 102–
109.

 [14] Hayes, Jane Huffman, Li, W., & Rahimi, M.
(2014). Weka meets TraceLab: Toward
convenient classification: Machine learning
for requirements engineering problems: A
position paper. 2014 IEEE 1st International
Workshop on Artificial Intelligence for
Requirements Engineering, AIRE 2014 -
Proceedings, 9–12.

[15] Hayes, J. H., Dekhtyar, A., & Osborne, J.
(2003). Improving requirements tracing via
information retrieval. Proceedings of the
IEEE International Conference on
Requirements Engineering, 2003-Janua, 138–
147.

Journal of Theoretical and Applied Information Technology
31st March 2022. Vol.100. No 6

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1874

[16] Huaming, L., Xuehui, B., Xiuyou, W.,
& Weilan, W. (2017). Automatic
classification of Thangka headdresses based
on convolutional depth neural
networks. ACM International Conference
Proceeding Series, 105–110.

[17] Ibrahim, M., & Ahmad, R. (2010). Class
diagram extraction from textual requirements
using natural language processing (NLP)
techniques. 2nd International Conference on
Computer Research and Development,
ICCRD 2010, 200–204.

[18] Kurdi, H. A. (2013). Review on Aspect
Oriented Programming, 4(9), 22–27.

[19] Khoja, S., & Garside, R. (1999).
Stemming arabic text. Lancaster, UK,
Computing Department, Lancaster
University.

[20] Moreira, A., Chitchyan, R., Araújo, J., &
Rashid, A. (Eds.). (2013). Aspect-oriented
requirements engineering. Berlin, Heidelberg,
Germany: Springer.

 [21] Moreira, A., Araújo, J., & Rashid, A. (2005,
June). A concern-oriented requirements
engineering model. In International
Conference on Advanced Information Systems
Engineering (pp. 293-308). Springer, Berlin,
Heidelberg.

[22] More, P., & Phalnikar, R. (2012). Generating
UML Diagrams from Natural Language
Specifications. International Journal of
Applied Information Systems (IJAIS), 1, 19-
23.

[23] Mylopoulos, J., Chung, L., & Yu, E. (1999).
From object-oriented to goal-oriented
requirements analysis, 42(1), 31–37.

[24] Nassar, I. N., & Khamayseh, F. T. (2015).
Constructing activity diagrams from Arabic
user requirements using Natural Language
Processing tool. 2015 6th International
Conference on Information and
Communication Systems, ICICS 2015,
(APRIL), 50–54.

[25] Parra, E., Dimou, C., Llorens, J., Moreno, V.,
& Fraga, A. (2015). A methodology for the
classification of quality of requirements using
machine learning techniques. Information and
Software Technology, 67, 180–195.

[26] Rashid, A., Moreira, A., & Araújo, J. (2003,
March). Modularization and composition of
aspectual requirements. In Proceedings of the
2nd international conference on Aspect-
oriented software development (pp. 11-20).

[27] Sampaio, A., Chitchyan, R., Rashid, A., &
Rayson, P. (2005). EA-Miner: A tool for
automating aspect-oriented requirements
identification. 20th IEEE/ACM International
Conference on Automated Software
Engineering, ASE 2005.

[28] Sampaio, Américo, Chitchyan, R., Rashid, A.,
& Rayson, P. (2005). EA-Miner: A tool for
automating aspect-oriented requirements
identification. 20th IEEE/ACM International
Conference on Automated Software
Engineering, ASE 2005, 352–355.

[29] Sawyer, P., Rayson, P., & Garside, R. (2002).
REVERE: support for requirements
synthesis from documents. Information
Systems Frontiers, 4(3), 343-353.

[30] Shah, U. S., Patel, S. J., & Jinwala, D. C.
(2016). Specification of non-functional
requirements: A hybrid approach. CEUR
Workshop Proceedings, 1564.

[31] Sutton, S. M. (2005). Aspect-Oriented
Software Development and Software Process,
177–
191. https://doi.org/10.1007/11608035_17.

[32] Laddad, R. (2003). Aspect-oriented
programming will improve quality. IEEE
software, 20(6), 90-91.

[33] Li, X., Jiang, H., Ren, Z., Li, G., & Zhang, J.
(2018). Deep Learning in Software
Engineering, 1–10. Retrieved from
http://arxiv.org/abs/1805.04825.

