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ABSTRACT 
 

Concern about the health of people who traveled on board was raised in the COVID-19 outbreak on the 
Diamond Princess cruise ship. The ship narrow space offers an environment conducive to the virus spread. 
Close contact isolation remains one of the most important current measures to stop the rapid spread of the 
virus. Contacts can be identified efficiently by detecting smart devices nearby. The smartphone Bluetooth 
RSSI signal is significant data for positioning. The traditional indoor positioning algorithm cannot be directly 
applied in the mobile ship environment. It is necessary to study the indoor positioning algorithm which 
applies to the mobile ship environment. In this paper, we propose an in-ship localization algorithm, which 
can achieve indoor positioning without the fingerprint map, with an RMSE of 1.63 m. 

Keywords: Indoor Positioning, In-Ship Localization, Reference Point, Close Contact 
 
1. INTRODUCTION  
 

The Japanese government ordered the passengers 
and crew on the Diamond Princess to start a two-
week quarantine after a former passenger tested 
positive for COVID-19 [1]. The crew is one of the 
dominant groups that are more susceptible to 
outbreaks of this virus due to the cramped working 
environment [2]. The importation of viruses onboard 
is facilitated by regular and irregular contact with 
land-based populations. Living in confined spaces 
with limited air exchange promotes the spread of 
disease [3]. The safe running of any cruise ship 
typically necessitates the participation of multiple 
parties, including the ship management firm. The 
first stage for cruise firms is to identify any COVID-
19-related dangers to their ships, crew, passengers, 
and other people and put in place suitable 
precautions [4]. 

 
For sustainable management of ship personnel 

under epidemic conditions, it is necessary to know 
where they are on board. Indoor positioning 
technology can help ship management personnel 
check the real-time location distribution of the crew. 
Once they are in danger, then the technology can also 
locate the accident location in time, and they can be 
quickly rescued. 

 
In the mobile ship environment, existing 

positioning systems have significant application 
problems due to internal and external dynamic 

effects such as changes in sailing speed. The 
challenges are mainly due to arbitrary ship 
movements and the resulting complex effects on the 
indoor wireless signal. Such effects can cause 
constant changes in the fingerprint map, resulting in 
degradation of positioning accuracy. 

 
To address these challenges, in this paper, new 

indoor positioning algorithms are proposed for the 
first time. The traditional fingerprint map 
localization algorithm has offline and online phases. 
In the new indoor positioning algorithm, the offline 
phase is not needed and goes directly to the online 
phase. This method does not depend on the 
fingerprint map, which reduces the accuracy error 
caused by the change of the fingerprint map. 

 
2. PREVIOUS WORKS 

 
Cruise ships have contributed to the spread of 

COVID-19 around the world [5]. The most critical 
aspect of pandemic preparation is the timely 
detection of close contacts on board. The location of 
smartphones can identify close contacts. But the 
environment is difficult to predict. For example, 
unpredictable dynamic factors can cause changes in 
the fingerprint map [6-7]. Such unpredictable 
dynamic factors such as sailing speed, acceleration 
motion, turning motion, weather conditions, and so 
on. It is inefficient and impractical to analyze and 
model the effects of each factor. To adapt existing 
positioning methods in the mobile ship environment, 



Journal of Theoretical and Applied Information Technology 
31st March 2022. Vol.100. No 6 

© 2022 Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
1707 

 

the model parameters need to be explored under all 
possible navigational conditions, which is not only 
very time-consuming but also leads to costly system 
deployment [8].  

 
K-means clustering is a vector quantization 

method, originally from signal processing, that aims 
to divide n observations into k clusters, where each 
observation belongs to the cluster with the closest 
mean as clusters [9]. K-means is used as the 
extraction of representative RSSI values for 
comparing the localization accuracy between 
Average and Peak. 

 
The beacon is an IoT device for short-distance 

communications based on BLE (Bluetooth Low 
Energy). Its advantages are low power consumption, 
miniaturization, wide signal range, and low cost. 
Although BLE beacons have advantages, their 
performance is not sufficiently good in terms of 
indoor positioning accuracy when used in ships such 
as passenger ships [10]. Larger error ranges of the 
existing indoor positioning algorithms may cause a 
serious problem in narrow and complex areas inside 
passenger ships [11]. Therefore, it is necessary to 
develop a novel indoor positioning algorithm with 
beacons to use in ship environments. 

 
Most indoor positioning algorithms using 

infrastructure have two-phase processes: offline and 
online. For example, KNN (K-Nearest Neighbors) 
indoor positioning algorithm. In the offline phase, a 
fingerprint map is made with Peak or Average RSSI 
values gathered at RPs (Reference Points). In the 
online phase, a user position is estimated. The 
nearest K RPs are looked up in the fingerprint map 
using the Peak or Average RSSI values of beacon 
signals received by a user device. The Euclidean 
Distance among the K RPs is calculated to estimate 
the user position [12]. 

 
[13] proposes the key point algorithm to improve 

the KNN. The algorithm considers the nearest RP 
and the weighted centroid position of the beacons 
whose signals are received by the user device in the 
online phase. The distances between beacons and 
user devices are calculated. The strength values of 
the received signals and other information in signals 
are also used to get the distance. 

 
The traditional indoor positioning algorithm is a 

fingerprint map approach that provides stable 
positioning accuracy and low positioning error in a 
stationary building. However, in the case of ship 
navigation, the fingerprint map changes according to 
different dynamic factors. Once the changes occur, 
the fingerprint map needs to be remeasured. This 
approach in the mobile ship environment leads to 
low efficiency and high error. Therefore, this paper 
proposes a new algorithm that does not rely on the 
fingerprint map in the offline phase. The localization 
is performed directly in the online phase and high 
accuracy localization results can be obtained. The 
new indoor positioning is called an in-ship 
localization algorithm. 

 
The contribution of this paper is to change the 

traditional fingerprint map approach to localization, 
allowing high precision localization without relying 
on fingerprint map. 

 
3. PROPOSED IN-SHIP LOCALIZATION 

ALGORITHM 
 

Most indoor positioning algorithms using 
infrastructure are two-step processes: offline and 
online. In the offline phase, a fingerprint map of 
Peak or Average RSSI values gathered at RPs is 
made in advance. In the online stage, the nearest K 
RPs are looked up in the fingerprint map using the 
Peak or Average RSSI values of beacon signals 
received by a user device. The Euclidean Distance 
among the K RPs is calculated to estimate the user 
location. 

 
However, the KNN only considers the center of K 

nearest RPs as the user location. The accuracy of 
predicted position is not sufficient to apply to 
complicated indoor environments like ships yet. 

 
The key point algorithm considers the nearest RP 

and the weighted centroid position of the beacons 
whose signals are received by the user device in the 
online phase. The distances between beacons and 
user devices are calculated. The strength values of 
the received signals and other information in signals 
are also used to get the distance. 
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Figure 1: KNN Algorithm 

 

Figure 2: The Key Point Algorithm 

 

This paper proposes an algorithm to adapt to the 
complex environment of ships. Unlike KNN and 
Key Point algorithms, the proposed algorithm in this 
paper does not require the construction of a 
fingerprint map. 

 
The algorithm considers the nearest beacon whose 

signals are received by the user device in the online 
phase. The in-ship localization algorithm is based on 
the Peak value of RSSI to determine the distance 
between the two nearest beacons to the user. Since 
the position of the RP is known, the two RPs can be 
found if the two beacons are identified, and the user 
location can be estimated from the position of the 
nearest beacon and the position of the two RPs. 
However, considering that the user may be at the 
edge of the beacon coverage, then the RP closest to 
the beacon is estimated as the user location when the 
nearest beacon is known. The specific algorithm 
flow is shown in Figure 3. 

 
Since it is necessary to calculate the location 

relationship between beacons and RPs. In steps 1-2, 
the coordinates of beacons and RPs can be stored as 
arrays C and R. Because beacons have limited 
coverage and often produce large errors at the 
covered boundaries. This situation should be 
recognized by the algorithm. In step 3, the beacon 
IDs of boundaries should be stored as list B. In step 
4, the correspondence of the nearest RP to each 
beacon with arrays B and C are determined as 
dictionary D. The key of D is the beacon ID. The 
value of D is the RP ID. In step 5, the RSSI is 

received from the user device. In step 6, the Peak 
value of RSSI data in beacons is selected. This step 
can be described by the following equation: 

 
(1) 

, where N is the number of RSSI received. In step 
7, each beacon ID is sorted in descending order 
according to its Peak value. The sequence is called 
S. In step 8, the first-ranked beacon ID is b1. The 
second-ranked beacon ID is b2. In step 9, whether b1 
exists in list B. If it exists, step 10 is executed. 
Otherwise, step 11 is executed. In step 10, the 
corresponding nearest rp1 in dictionary D is found 
based on the beacon ID. The rp1 is estimated as the 
user location. This step can be described by the 
following equation: 

 
𝑈𝐿 = 𝑟𝑝1(𝑥, 𝑦)                         (2) 

 
, where UL is the user location estimated by the 

algorithm. x is the horizontal coordinate and y is the 
vertical coordinate. 

 
In step 11, the nearest rp2 of b2 in the dictionary 

is chosen. 
 
In step 12, the centroid of rp1 and rp2 is calculated 

as P1. In step 13, the coordinates of b1 in list C are 
called P2. In step 14, the centroid of P1 and P2 is 
estimated as the user location. Steps 11-14 can be 
described by the following equation: 
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𝑈𝐿 =
ೝ೛భ(ೣ,೤)శೝ೛మ(ೣ,೤)

మ
ା௕ଵ(௫,௬)

ଶ
               (3) 

 
 

 

Figure 3: In-Ship Localization Algorithm

Now, we show an example using Figure 4~8. The 
in-ship localization algorithm is running in a user 
device. The user device receives RSSI data from the 
beacons and identifies which beacon is the closest 
beacon to the user device based on the Peak value of 
each beacon RSSI data. Figure 4 shows that the user 
device is at the boundary of the beacon coverage. 
Usually, the signal reception decreases significantly 
when the user device is at the boundary of the beacon 
coverage. In the case of low reception, it is difficult 
to properly sequence the beacons. However, even in 
this case. For the nearest beacon, it is still possible to 
distinguish by the representative value of RSSI. To 
identify whether a user device is at the boundary or 
not, the nearest beacon ID is determined firstly, and 
the confirmed nearest beacon ID is compared with 
the boundary beacon ID that has been stored in 
advance. If the result is the same, then the user 
device is considered to be at the boundary. 

 
First, the beacon sends a packet to the surrounding 

devices every 100 ms. The application on the 

smartphone parses the packet and calculates the 
RSSI value. By sorting the RSSI values within one 
second, the RSSI with the largest value is selected as 
the representative RSSI value of the beacon. Thus, 
as shown in Figure 4. Each of the three beacons has 
its RSSI representative value. By comparing the 
RSSI values of each beacon, the RSSI value of 
beacon 3 is found to be the largest. Therefore, 
beacon 3 is identified as the closest beacon to the 
user device. 

 
Next, the next step is to identify the nearest RP to 

the user device. after the deployment planning of 
beacons and RPs is completed, each nearest RP 
affiliation to the beacon can be saved, and this 
affiliation will be stored in the form of a dictionary. 
The reason for this is that in the process of 
confirming the nearest RPs, there is no need to 
calculate the location relationship and compare the 
distance magnitude to obtain the result. 
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Figure 4: Processing Example of In-Ship Localization Algorithm (1)

Instead, the final result is obtained directly by 
querying the dictionary. This has the advantage of 
reducing the computational overhead and improving 
the efficiency of the algorithm operation. In the 
example of Figure 4, beacon 3 has been identified as 
the nearest beacon called b1, and according to the 
dictionary D, which has stored the affiliation 
between beacon and nearest RP, the ID of b1 is used 
as the key to query the corresponding value in the 
dictionary D. The final result of the query is that RP6 

is the nearest RP of beacon 3 called rp1, and also is 
the nearest RP to the user device. The rp1 is then 
estimated to be the user location in the case that the 
user device is at the boundary. The reason for not 
considering the location information of b1 into the 
estimation process at the boundary is that including 
the location data of a single b1 into the calculation 
process without other RPs as a reference may result 
in greater errors. 

 

Figure 5: Processing Example of In-Ship Localization Algorithm (2)

The same process as above, starting with the 
example in Figure 5. First, we obtain the RSSI values 
of the three beacons in one second. The beacon IDs 
of the three beacons are compared and sorted in 
descending order. By comparing the beacon IDs, we 

can confirm whether the user device is at the 
boundary or not. In the example of Figure 5, the user 
device is not at the boundary. The first beacon ID is 
b1 and the second beacon ID is b2. Beacon 2 is b1. 
Beacon 3 is b2. 
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Figure 6: Processing Example of In-Ship Localization Algorithm (3)

Next, find the rp1 and rp2 corresponding to b1 and 
b2 respectively. Since the affiliation dictionary of 
beacon and recent RPs is already known. Therefore, 
b1 and b2 are used as keys respectively to find the 
corresponding value in the dictionary. Figure 7 is an 
example, RP4 is rp1 and RP6 is rp2. Because of the 
increase in signal reception, the proximity 
information that can be used to distinguish beacons 
is also increased. Since the distance between 

beacons is about 2.5 m. If more than 3 beacons are 
considered, the maximum distance between beacons 
will be more than 5 m. The longer the distance of 
user devices from beacons, the lower the signal 
reception, and the uncertainty of information 
increases. This will not only bring a computational 
burden but also a loss of localization accuracy. 
Therefore, only two beacons are considered in the 
proposed algorithm. 

 

 

Figure 7: Processing Example of In-Ship Localization Algorithm (4) 
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Finally, the user location is estimated. Figure 8 is 
an example. The centroids of rp1 and rp2 are 
computed as P1. The b1 is P2. The centroids of P1 
and P2 are then estimated as user locations. 

 
It can be seen from the whole process that the 

algorithm is continuously reducing the range of 
possible user locations. The unimportant beacons are 
excluded first by the Peak value of RSSI. This not 
only reduces the computational overhead but also 
enables the reduction of some errors. At this step, the 
range of possible user locations is reduced. In the 
next step, the range is further narrowed down by the 
nearest RPs that come to be found in the dictionary 
D of known beacons and nearest RP affiliations. In 

traditional indoor localization algorithms, it is 
usually necessary to compare the RSSI in the online 
phase with the RSSI in the fingerprint map. The RPs 
with similarity within a certain range are found to 
estimate the user location. In the algorithm proposed 
in this thesis, this localization method is changed. 
The step of finding the RP is retained and the step of 
generating the fingerprint map is removed. The Peak 
value of RSSI is used to determine the proximity of 
the beacon to the user device to narrow down the 
range of possible user locations. The RP information 
is used to further narrow the range. Finally, the user 
location is estimated by the centroid between the RP 
and the beacon (Figure 8). 

 

 

Figure 8: Processing Example of In-Ship Localization Algorithm (5) 

 

4. PERFORMANCE EVALUATION 

 
The test environment is set up on the HANNARA 

ship that is a training ship of Korea Maritime and 
Ocean University. In Figure 9, the red dot symbols 
stand for the positions of beacons, and the green dot 
symbols mean the RPs that are precisely determined 
and measured in advance. The marks (1) ~ (25) are 
arbitrarily chosen user locations at which the 
algorithm in this paper is applied to estimate the user 
position. The space between beacons is 2.5 m, and 
the space between RPs is 2 m. 

 
The core of the in-ship localization algorithm is to 

find out the nearest beacon from the RSSI received 
from the user device. Therefore, it is necessary to 
find a representative value from the RSSI to 

determine which beacon is closest to the user device. 
To determine which RSSI representative value gives 
the best results, three different RSSI representatives 
are input into the algorithm, namely Average, K-
means, and Peak, with Root Mean Square Error 
(RMSE) as the error measure. The RMSE is used to 
measure the deviation between the true value and the 
predicted value. The RMSE is more sensitive to 
outliers. If there is a predicted value that differs 
significantly from the true value, then the RMSE will 
be large. Therefore, RMSE is a good measure of the 
performance of the ship’s indoor positioning 
algorithm. That is, the Euclidean Distance between 
each estimated position and the true position is 
calculated. Then these Euclidean Distances are 
summed up. Finally, by taking their average value 
and then opening the root, the accuracy of the indoor 
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positioning algorithm can be measured and thus a 
conclusion can be drawn. 

 
The estimated errors of the 25 user locations are 

shown in Figure 10. By comparison, the Average 
case has the largest error with an RMSE of 2.08 m. 

K-means is used to find out different classes by 
clustering, and then determine the class that contains 
the most RSSI data, and find the center of this class 
as the representative value of RSSI, which has the 
RMSE of 2.21 m. 

 
Figure 9: Experimental Environment in HANNARA ship 

 
The best result is the Peak case with an error of 

1.63 m. In general, the closer the user device is to the 
beacon, the stronger the RSSI. However, the 
complex environment of the ship can cause such a 
pattern to change. For example, the multi-path 
effect, which causes the RSSI strength to become 
stronger at distant places instead, is not in line with 
the normal rule. This also leads to errors in many 

indoor positioning algorithms, but such errors cannot 
be eliminated, only be continuously reduced. In the 
case of HANNARA, three different RSSI 
representations are compared in such a complex 
environment, and the Peak case is the one that 
minimizes the error. Therefore, the Peak value is 
used as the RSSI representative value in the in-ship 
localization algorithm. 
 

 
Figure 10: Errors of estimated user locations 

 
The algorithm proposed in this thesis mainly 

considers the example when the user device is at the 
boundary. In traditional indoor positioning 

algorithms, there is no focus on considering the huge 
errors that occur when the user device is at the 
boundary. Therefore, this section will present how 
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the proposed algorithm reduces the error from four 
examples of user devices at the boundary. 

 
1) The first case of estimating the user location 

(1) 
 

As the first case of our testing, Table 1 shows a 
comparison of the results of estimating the nearest 
beacon with different RSSI representative values at 
(1). 

 
 

Table 1: Comparison of the results of estimating the 
nearest beacon with different RSSI representative 

values at (1) 
 

     Average Kmeans Peak 

Correct  
Beacon 

10 

b1 10 10 10 

b2 1 1 1 

 
𝑈𝐿௔௩௘௥௔௚௘ = 𝑈𝐿௞௠௘௔௡௦ =  𝑈𝐿௣௘௔௞

=

𝑅𝑃1(𝑥, 𝑦) + 𝑅𝑃1(𝑥, 𝑦)
2

+ 𝑏𝑒𝑎𝑐𝑜𝑛 10(𝑥, 𝑦)

2
                  (4) 

 
From Table 1, the results of Average, K-means, 

and Peak estimates are consistent. As shown in 
Figure 9, beacon 10 is not in the boundary. Therefore, 
beacon 1 is estimated as b2 based on the 
representative RSSI value of the beacon. According 
to the proposed algorithm flow, the centroid of b1 
and b2 is calculated as P1, and then b1 is set as P2. 
Finally, the centroid of P1 and P2 is estimated as the 
user location. Here benefit from the advantages of 
beacon deployment. No matter beacon 10 or beacon 
1, the nearest RPs is RP1. 

 
2) The second case of estimating the user 

location (20) 
 
Table 2: Comparison of the results of estimating the 

nearest beacon with different RSSI representative 
values at (20) 

 

     Average Kmeans Peak 

Correct  
Beacon 

9 

b1 16 17 9 

b2 17 16  

 
𝑈𝐿௔௩௘௥௔௚௘

=

𝑅𝑃16(𝑥, 𝑦) + 𝑅𝑃19(𝑥, 𝑦)
2

+ 𝑏𝑒𝑎𝑐𝑜𝑛 16(𝑥, 𝑦)

2
                  (5) 

𝑈𝐿௞௠௘௔௡௦

=

𝑅𝑃17(𝑥, 𝑦) + 𝑅𝑃16(𝑥, 𝑦)
2

+ 𝑏𝑒𝑎𝑐𝑜𝑛 17(𝑥, 𝑦)

2
                  (6) 

𝑈𝐿௣௘௔௞ = 𝑅𝑃19(𝑥, 𝑦)                                                         (7)                            

 
From Table 2, the Average estimates beacon 16 to 

be b1. Because beacon 16 is not in the boundary. 
Therefore, Average estimates beacon 17 as b2. K-
means estimates beacon 17 as b1. Because beacon 17 
is not at the boundary. Therefore, K-means estimates 
beacon 16 as b2. According to the algorithm flow, the 
Average estimates RP16 as rp1 and RP19 as rp2. K-
means estimates RP19 as rp1 and RP16 as rp2. 
Regardless of Average or K-means, they both have 
the same P1. But the difference is that Average 
estimates beacon 16 as P2 and K-means estimates 
beacon 17 as P2. From Figure 9, we know that beacon 
17 is closer to the user location than beacon 16 (20). 
Therefore Average causes more error than K-means. 
Peak estimates beacon 9 as b1. Since beacon 9 is at 
the boundary. Therefore, the nearest RP19 to beacon 
9 is estimated as the user location. It can be seen from 
Figure 9 that RP19 is the closest to the user location 
(20). Therefore, from this example, it can be seen that 
Peak can bring more accuracy improvement 
compared to Average and K-means. 
 
3) The third case of estimating the user location 

(23) 
 
Table 3: Comparison of the results of estimating the
 nearest beacon with different RSSI representative v

alues at (23) 
 

     Average Kmeans Peak 

Correct  
Beacon 

19 

b1 6 6 19 

b2 21 19  

 
𝑈𝐿௔௩௘௥௔௚௘

=

𝑅𝑃6(𝑥, 𝑦) + 𝑅𝑃21(𝑥, 𝑦)
2

+ 𝑏𝑒𝑎𝑐𝑜𝑛 6(𝑥, 𝑦)

2
                  (8) 
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𝑈𝐿௞௠௘௔௡௦

=

𝑅𝑃6(𝑥, 𝑦) + 𝑅𝑃19(𝑥, 𝑦)
2

+ 𝑏𝑒𝑎𝑐𝑜𝑛 6(𝑥, 𝑦)

2
                  (9) 

𝑈𝐿௣௘௔௞

= 𝑅𝑃22(𝑥, 𝑦)                                                              (10) 
 

From Table 3, Average and K-means estimate 
beacon 6 as b1. The beacon 6 is not at the boundary. 
Therefore, Average estimates beacon 21 as b2. K-
means estimates beacon 19 as b2. From Figure 9, it 
can be seen that beacon 19 is closer to the user 
location than beacon 21 (23). Therefore, K-means 
introduces less error than Average. Peak estimates 
beacon 19 as b1. Because beacon 19 is at the 
boundary. Therefore, the nearest RP22 to beacon 19 
is estimated as the user location. From Figure 9, we 
know that RP22 is very close to the user location (23). 
From this example, it can be seen that the 
improvement in accuracy brought by the Peak is very 
obvious. 

 
4) The fourth case of estimating the user 

position (25) 
 
Table 4: Comparison of the results of estimating the 

nearest beacon with different RSSI representative 
values at (25) 

 

     Average Kmeans Peak 

Correct  
Beacon 

21 

b1 20 20 20 

b2 19 19 21 

 
𝑈𝐿௔௩௘௥௔௚௘ = 𝑈𝐿௞௠௘௔௡௦

=

𝑅𝑃20(𝑥, 𝑦) + 𝑅𝑃19(𝑥, 𝑦)
2

+ 𝑏𝑒𝑎𝑐𝑜𝑛 20(𝑥, 𝑦)

2
                  (11) 

𝑈𝐿௣௘௔௞

=

𝑅𝑃20(𝑥, 𝑦) + 𝑅𝑃21(𝑥, 𝑦)
2

+ 𝑏𝑒𝑎𝑐𝑜𝑛 21(𝑥, 𝑦)

2
                  (12) 

 
From Table 4, Average, K-means, and Peak 

estimate beacon 20 as b1. The beacon 20 is not at the 
boundary. Therefore, Average and K-means estimate 
beacon 19 as b2. 

 
In contrast, Peak estimates beacon 21 as b2. From 

Figure 9, we can see that beacon 21 is closer to the 
user location (25), which shows that Peak 
significantly improves the accuracy compared to 
Average and K-means. 

 
From the above four examples, Average, K-means, 

and Peak are analyzed separately. Therefore, in the 
proposed algorithm, the Peak of RSSI is used as a 
representative value to identify the nearest beacon. 

 
In this paper, the proposed algorithm is compared 

with two other indoor localization algorithms. They 
are KNN and Key Point algorithms. Both algorithms 
use a fingerprint map to find the nearest RP, but the 
Key Point algorithm takes into account the nearest 
beacon location and is used to estimate the user 
location with less error than KNN. The in-ship 
localization algorithm determines the nearest beacon 
to the user device based on the user RSSI and 
determines the nearest RP to the user device based 
on the known relationship between the beacon and 
the RP. By reducing the uncertainty error through 
known information, the in-ship localization 
algorithm shows better results in Figure 11. The 
RMSE of KNN, Key Point, and the In-Ship 
Localization algorithm are 2.04 m, 2.21 m, and 1.63 
m respectively. Among them, the in-ship localization 
algorithm has the highest accuracy and shows the 
best performance in complex ship environments. 
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Figure 11: Comparison of error results of different indoor positioning algorithms 

 
5. CONCLUSION 
 

There are complex signal reflection and scattering 
phenomena in the ship environment. the reflection 
and scattering of the signal can have a serious impact 
on the stability of the fingerprint map, which in turn 
leads to an increase in the localization accuracy error. 
In this paper, we propose an in-ship localization 
algorithm for the mobile ship environment, which 
can achieve high accuracy localization without 
comparing fingerprint map. Because of the impact of 
different RSSI representative values on the accuracy, 
it is necessary to find the RSSI representative value 
with the highest accuracy. The accuracy of the 
algorithm is compared with three different RSSI 
representative values, namely Average, K-means, 
and Peak. It is found that the Peak value has the 
highest accuracy. Therefore, the Peak value is used 
as the representative value of RSSI in this algorithm. 
In addition, this paper also compares two different 
indoor positioning algorithms, that is, KNN and Key 
Point. RMSE is the standard for measuring indoor 
positioning accuracy. Their RMSE is 2.04 m and 
1.79 m, respectively.  

 
The results show that the in-ship localization 

algorithm has the highest accuracy. This algorithm 
can achieve high accuracy localization without 
fingerprint map, and the RMSE is 1.63m, which 
meets the localization requirements in the mobile 
ship environment. 

 
The proposed method in this paper does not 

require the generation of a fingerprint map. In turn, 
it can reduce the deployment and maintenance cost 
of ship indoor positioning. It enables the ship’s 

indoor positioning system to be applied to different 
types of ships faster and more effectively. Improve 
the productivity and safety performance of ships. In 
the future, based on the ship’s indoor positioning, 
many applications can be extended around the ship's 
passengers, such as indoor navigation, escape route 
planning, etc. 
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