
Journal of Theoretical and Applied Information Technology
28th February 2022. Vol.100. No 4

2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

971

DESIGN AND IMPLEMENTATION OF A 3-TASK
CONSTRUCT FOR MANAGING REDUNDANT FILES

EMMANUEL CHUKWUDI UKEKWE1, HYACINTH AGOZIE ENEH2
1,2DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF NIGERIA, NSUKKA

E-mail: 1emmanuel.ukekwe@unn.edu.ng, 2agozie.eneh@unn.edu.ng

ABSTRACT

The operating system ensures efficient memory and disk space management which contributes a lot to
computing speed. However, not all users have the technical expertise to make use of operating system tools
for disk space management. This paper therefore proposes and implements a 3-task user friendly construct
for managing redundant files which inadvertently occupy so much space in the computer disk and slow
down the system. Redundant files such as duplicate files, temporary files and dormant files which are often
taken for granted are detected. The construct employs the concept of hashing by making use of python
hashlib.SHA-1 to detect duplicate files while dormant files are identified using file attributes such as date of
creation and access date. The deduplication construct earmarks redundant files for deletion or compression
in order to free disk space. Algorithms for implementation of the constructs are presented. The construct
was implemented using python programming language. In order to test the efficacy of the construct in
detecting file duplicates, the New York Times Comments for March, 2018 dataset was extracted from
www.kaggle.com and used for that purpose. The simulation recorded an efficiency of 99%. The Construct
is designed to provide alternative user friendly disk management support tools for computer users other
than that provided by Operating systems.

Keywords: Deduplication, Duplicate, Redundant, Disk-Space, Compress, Hashing

1. INTRODUCTION

 Disk space is a much coveted computer
resource which determines to an extent the speed as
well as smooth operation of the computer system.
A major bottleneck of effective disk and storage
management is the accumulation of junk or
redundant files within the system. Redundant files
are files which are temporarily used by the
computer system in the course of its operation.
However, as soon as they serve their purpose, such
files become junk which ought to be removed.
Redundant/junk files include rarely used files,
duplicate files, temporary internet files, temporary
system files, cache files, thumbnails, cookies, log
files etc. Redundant/junk files take quite a chunk of
disk space and keeping them in the system is really
unnecessary. For instance, rarely used files remain
unused because the reason for tagging it such often
do not change. As a result, such files may indeed
remain unused. The concept “rarely used” in this
context therefore refers to a very long period of
time spanning across years. According to the author
in [1], as people age, they age into new and much
broader territory. As individuals evolve, their

computational needs advance both quantitatively
and qualitatively. Hence, a file created today will
serve today’s needs but will definitely need some
upgrading to fit into the needs of tomorrow. When
a file is updated, it becomes a new file, hence, it is
therefore unnecessary to encourage accumulation of
rarely used files in the system which continue to
occupy space. Such files are better compressed or
even deleted in order to free space.
 Similarly, keeping duplicate copies of files
is also unnecessary. A user may decide to update a
copy of a file whilst keeping the original. In such
situation, a new and different file is created and
may not be regarded as a duplicate of the former
because extra or different content has been added.
For this reason, keeping duplicate files in the same
computer system is irrelevant and not advisable.
Besides that, the constant use of the computer for
routine work attracts deposition of 1temporary files,
log files as well as cache files on the computer. It
can be argued that such temporary files are needed
by the computer especially to initiate an installation

1 Copyleaks “Duplicate File finder”, Copyleaks

Technologies, LTD https://copyleaks.com/duplicate-file-finder

Journal of Theoretical and Applied Information Technology
28th February 2022. Vol.100. No 4

2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

972

or to run a program, however, they occupy
unnecessary space which could be utilized
otherwise.

 Apart from the nuisance associated with
rarely used and duplicate files, traces of cache files,
log files, cookies and temp files also constitute
another major challenge in disk space management.
Each time a web page is visited, the browser stores
information about the page by caching it. Cookies
on the other hand are created based on request from
the web page. A cookie file is created and stored in
the computer for ease of use by requesting web
pages. Temporary files on the other hand could be a
tool in speeding up previously visited web pages as
agued by the author in [2]. However, these files
discretely continue to accumulate within the disk as
the user engage in downloads, internet activities and
routine use of the computer. According to the
authors in [3], temporary files are rampant with
applications such as Microsoft word and they are
used for tracking any changes made to the original
and also for recovery if the program crashes.
However, they also agree that dozens of temp files
can be created while working on Microsoft word
thus constituting a nuisance. The author in [4], on
the concept of workspace management, states that
temporary files ought not to be left in the system
forgotten. All these attest to the fact that temporary
files serve their purpose and ought to be disposed as
soon as their purpose expires.

 Each browser handles cookies, temporary
files and log files differently. These files could be
deleted by the user through rigorous processes as
enumerated in [5]. The process requires user’s
indebt knowledge and understanding of the browser
operations. In contemporary computer use, more
than one browser could exist in a computer, it
becomes a bit tasking for the user to get acquainted
with almost every browser in order to delete
temporary files and cookies. In addition, there is no
definite operating system command that explicitly
identifies rarely used files. Identifying duplicate
files through operating system command is
dependent on the user’s level of expertise as it is
not usually a direct command that will produce
desired result. It is therefore necessary to have an
intelligent construct that identifies and locates
temporary files, duplicate files as well as redundant
files within the computer disk. These files could
then be deleted or compressed for further use.
When files are compressed, they tend to occupy
lesser space.

There are several third party software applications
that detect duplicate files, delete them and free disk

space. The Duplicate File Finder developed by
Copyleaks Technologies, LTD is noteable for
having features such as finding and extracting
duplicates in database, reducing database storage
size, guaranteeing document security and lots more.
However, it does not make provision for temporary
files, cookies as well as log files within the system.

Similarly, the DuplicateFileDetective
application is prominent third party software for
extracting duplicates. Its other features include;
Move, Delete, Archive Dupes, schedule duplicate
search, link duplicate files, calculate file hashers
and more. However, the features of the software are
limited to handling duplicates and do not include
managing redundant files. Other third party
software for file finding duplicate include; Wise
Duplicate finder, DupInOut, CCcleaner, Disk drill,
Gemini, Hash MD5 check and others. Their
functions regretfully are limited to duplicate files
only.

In this work, we present a theoretical
deduplication construct as well as implementation
that assist the user in detecting and managing
redundant files in the system with the sole aim of
freeing and managing the limited disk space. The
work is organized in different sections. Section 2
presents a review of related literature while Section
3 presents the methodology and concepts employed
in the work. Section 4 presents the results of the
implemented construct while section 5 summarizes
the findings.

2. LITERATURE REVIEW

A major concept employed in the 3-task
construct is known as deduplication. Data
deduplication simply involves elimination of
redundant data especially duplicate data. The
process deletes extra copies of same data leaving
only the original copy to be stored. Duplicate byte
patterns are analysed and used to ensure that the
remaining single instance of the data is indeed the
original file. A deduplication approach known as
DARE (Deduplication-Aware Resemblance
Detection and Elimination scheme) was used to
eliminate redundancy in [6,7]. DARE combines
two techniques which are data deduplication and
delta compression to achieve high data reduction
efficiency. The delta compression refers to
techniques that store data as the difference between
successive samples or characters, rather than
directly storing the samples themselves. The
DARE technique makes provision for detection of
duplicate data as well as achieving data, but it does
not make provision for detection of dormant files

Journal of Theoretical and Applied Information Technology
28th February 2022. Vol.100. No 4

2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

973

which occupy disk space. Dormant files can be
argued to occupy more space than duplicate files
because they usually occur in numbers. In addition,
unlike the proposed 3-task construct, DARE
technique focuses on deduplication and
compression of data but not on the actual files
containing the data.

Another deduplication technique known as
the DupAdj (duplicate adjacency) approach was
used in [8]. This approach detects similar files by
exploiting duplicate-adjacency data of a
deduplication system. Again, the DupAdj technique
sole objective is to fish out duplicates and unlike
the proposed 3-task construct, the DupAdj focuses
on the data only.

A more definite approach which focuses
on file deduplication is seen in [6] which proposed
a new approach to data reduction and storage
management known as “Redundancy Elimination
within Large Collections of Files”. They argue that
the new scheme is cost effective and most
appropriate for large storage. However,
functionality of the approach is limited to only
duplicate files which does not proide a more
holistic solution to disk space management.

Other approaches exist which also focus
on the data content rather than the file content. The
authors in [9] evaluated three methods used to
discover identical portions of data with the aim of
eliminating them and reducing disk space. The
three methods evaluated include file content
hashing, fixed size blocking, Rabin fingerprints
strategy that delimits content-defined data chunks.
The authors in [7] also developed a cloud based
deduplication. They successfully used an AES
(Advanced Encryption Standard) encryption
algorithm to encrypt redundant files. Also, a
deduplication solution for eliminating redundant
files in resource constrained devices such as
smartphones and the Internet of Things (IoT)
devices is proposed in [10]. The developed solution
“SmartDedup” combines in-line and out-of-line
deduplication techniques by taking advantage of
their complementary strengths, and optimizes their
use for resource-constrained devices. Even so, their
solution does not provide measures to address
temporary files, cookies and log files.

Hashing algorithms have also been
employed in disk management of redundant files
[11],[12]. The author in [13] used an N-layer hash
table for matching and identifying file duplicates
and redundant files. Their work revealed that the N-
Layered algorithm could achieve a O(n) time
complexity and indeed an improvement in the
accuracy of identifying redundant file. However,

their research focused on only duplicate redundant
files with no emphasis to the ever replicating
temporary files which bedevils computer space .

Hash function was also used for
deduplication as seen in [14]. In their work,
Huffman code and hash function were combined to
remove duplicate files in mobile phones. Once
again, the functionality is limited to finding
duplicate files in phones. In [15], Huffman code
was also employed for image compression and disk
space management. Their findings show how
efficient the code can be in compressing image
files. However, the functionality was specifically
limited to image files.

In summary, most deduplication and
hashing technologies are employed to address
specific issues such as finding duplicates, and
compressing files.. However, the 3-task construct
which makes use of hashing algorithm provides the
functionality of deduplication, compression as well
as dormant file reduction. Unlike several other
findings, The 3-task construct focuses on computer
file content rather than on data content. The user
friendly construct also goes a step further in aiding
disk space management.

3. METHODOLOGY

This research employs a simulation
methodology to investigate as well as demonstrate
disk space management within the computer. The
investigation and implementation focuses on
finding duplicates a well as temporary files within
the system. Data on 2018 New York Times
comments were collected from Kaggle.com and
used for the simulation. Four relevant fields were
extracted from the heavy CSV (Comma separated
values) comment dataset. The extracted fields of
interest include; articleID, articleWordCount,
commentType and newsCategory. From the
extracted fields, a count of duplicate rows and
columns were computed and recorded as initial
count of duplicates using the excel COUNTIF
function. The count values were subsequently
compared with the results obtained after simulating
the construct. At the end, a total of 65,526 files
were obtained each one containing text extracted
from the different fields. In order to accommodate
the report in this paper, a random sample of 20,000
files accruing to 30% of the 65,000 distinct files
was chosen for the simulation. After recording the
initial duplicate count, a user defined excel function
was coded for the purpose of exporting and saving
the fields as separate CSV files each with distinct
file names. All the files were saved in one folder.
Some of these files were noted to be duplicates of

Journal of Theoretical and Applied Information Technology
28th February 2022. Vol.100. No 4

2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

974

others while some were just unique. Before
deploying the construct, the initial size occupied by
the folder (containing the 20,000 files) was also
recorded for comparison after the simulation.

3.1 Conceptual formulation

The major concepts and theory behind the
construct are presented in this section.

3.1.1 Redundant files

In this work, we define redundant files to
be files that occupy space in the disk which do not
in any way contribute to user’s overall expected
output. Redundant files are categorized as:

a. Duplicate files
 These are files that serve as a copy of an
original file. Such files are saved in the computer
disk with the intent of later use. Unfortunately they
are usually not used rather the original copy is
modified and improved on thereby leaving a
deprecated copy behind to occupy unnecessary
space.

b. Temporary files
 Temporary files are associated to word
documents and other text files. When a new
document file is created, a temporary file associated
with it is also created in order to keep track of
changes and recovery in case of a crash. In as much
as these files have a specific role to play, they are
temporary as the name implies and ought to be
done with as soon as their purpose is served.
Temporary files can be known to slow down
system operation especially when they accumulate
for so long. They can also be a source of infection
to the main files. Temporary files bear the file name
extension “.tmp”, and usually reside in a temporary
folder within the disk (“\AppData\Local\Temp”).
Clearing temporary files usually require some
expertise because the “temp” folder is usually
hidden. It basically requires the following steps:

i. Open the “Run” dialogue box by pressing
the Windows button + R

ii. Type %temp% in the box and click ok in
order to open the “Temporary” folder

iii. Press “Ctrl + A” to select every temporary
file

iv. Press “Delete” key to delete temporary
files

The process is tedious and does not guarantee
complete deletion of temporary files. In this paper,
the files classified as temporary files include .sqm
(Software Quality Metrics), .tmp and .log files.
Sqm files extensions are associated to some
applications that run on the Windows operating
system platform. A log file keeps track of user’s
activity as well as information about the system.

c. Dormant Files
 Dormant files are regarded as files that
have not been used for a very long time. Such files
exist in the computer without the knowledge of the
user. Sometimes the user might have forgotten the
existence of such files and may not really need
them again. They occupy space inadvertently. Such
files should therefore be deleted or zipped for
subsequent use. The concept of dormancy and its
duration is a controversial issue. The authors in [16]
define it as an inactive period of two or more
seasons. From economic perspective, it could be
seen as a period that hinders poverty alleviation and
human economic growth [17]. On the other hand,
financial institutions see it as a period of inactivity
on withdrawals, deposits or transfers that could
span up to two (2) years and above [18]. The
Central Bank of Nigeria in a communiqué stipulates
a period of six (6) years before an account could be
tagged dormant by Nigerian banks [19]. However,
computer usage is dynamic and user’s needs keep
evolving. Computer files are therefore seen as
transient objects that need to be constantly updated.
In this paper therefore, we define a dormant file as
a file that has not been accessed (updated) after two
(2) years.

3.2 File attribute recognition and extraction

Every file has peculiar features attributed to it.
File attributes include;

i. Name: A unique name for identification.
ii. Location: The source location path for the

file.
iii. Type: The file type and the associated file

extension.
iv. Size. Content size of the file.
v. Access control. Denotes if a file can be

read only or read and write mode.
vi. Time and date of creation: The date of

creation of file
vii. Time and date of last modification: The

last time/date the file was modified
The file attributes of creation and access will

be used in this work to categorize redundant files..

Journal of Theoretical and Applied Information Technology
28th February 2022. Vol.100. No 4

2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

975

3.3 The Python Hashlib.SHA1
Hashing is a data structure mechanism most

suitable for searching large datasets. In Hashing,
the time taken to perform a search is independent of
the total number of elements that exist. Hashing
also has an advantage for it completes a search with
constant time complexity O(1). In this work, the
python hashlib.SHA-1 will be used for developing
the construct. The SHA-1 algorithm is a known
cryptographic hash function which converts an
input to a 160-bit hash value known as a message
digest. The message digest is a hexadecimal
number of length 40 digits.SHA-1 algorithms have
been applied in data integrity [20, 21]. The python
hashlib hashing function generally works by taking
a variable length of bytes (input) and converting it
into a fixed length sequence of strings. In this
paper, the Hashlib.SHA-1 detects duplicate files by
taking a portion of a file (2048 bytes) and searching
through other files for similarities. If a file is
identified as unique (i.e no similarities) then such
file is stored in a set data structure. On the other
hand, if a similarity is found between files based on
the chunk taken, then such file is marked as
duplicate of the former.

3.3.1 The Find-duplicate construct

The find-duplicate construct makes use of
the hashlib.SHA-1 algorithm. It takes a path and a
file and finds duplicates. It has only one action
which is to delete identified duplicate file. The find-
duplicate construct have the following action path
as shown in Figure 1;

Figure 1: Action Path for identifying Duplicate Files

3.3.1.1 The implementation algorithm

The hash algorithm for implementing the
find-duplicate construct is presented as follows:

1. Start
2. Declare Variables
 2.1 Hash function: hashlib.SHA1
 2.2 set: to store unique data
 2.3 file path to check for duplicates
3. Read 2048 bytes from file in tone iteration
4. Scan and Read from file until reach EOF and

 EOP (End of File/Path)
5. Generate Hash Value using Hash function
6. if (Data is Unique)
6.1 store in set
 else
6.2 Data or File is duplicate
7. Display the Result for each iteration
8. END

The algorithm starts by declaring variables. The
variables include the hashlib.SHA-1 function which
is initialized before use, a set data structure which
will be used to store the files/data identified as
unique and the possible source path where
duplicates are sought. A chunk of data as much as
2048bytes is read off a file and used as a comparing
factor on all the other files within the path until an
End of file (EOF) is reached. As each file is
compared, a hash value is generated. For every
non-matching comparison, the hash key is stored in
the set data structure while for every matching
comparison, the file is listed as a duplicate.

3.3.2 The Find-temporary construct
The find-temporary construct takes a path and finds
temporary files. It has only one action which is to
delete identified temporary file. The find-temporary
construct have the following action path as shown
in Figure 2;

Figure 2: Action Path for identifying Temporary Files

3.3.2.1 The Implementation Algorithm
The implementation algorithm is presented

as follows:
1. Start
2. Declare Variables
 2.1 Initialize the temporary function
 2.2 Set the file source path to point to
“Documents\AppData\Local\Temp”
2. Call Zip function with source path
3. List temporary files (.temp, .log, .sqm)
4. Delete file
5. Else compress file(s)
6. End

The algorithm accepts a source path and searches
for temporary files. \it simply lists them afterwards
with an option to delete them.

Find
Temporary

Delete Source
Path

Find
Duplicate

Delete
Source
Path

File

Journal of Theoretical and Applied Information Technology
28th February 2022. Vol.100. No 4

2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

976

3.3.3 The Find-dormant construct
The find-dormant construct takes a path

and finds dormant files. It has two actions which
are to delete or to compress a dormant file for
future use. The find-dormant construct have the
following action path as shown in Figure 3

Figure3: Action Path for identifying Dormant Files

3.3.3.1 The Implementation Algorithm
The implementation algorithm for the find-dormant
construct is also presented as follows:
1. Start
2. Declare Variables
 2.1 Initialize the dormant function
 2.2 Set the file source path
2. Select file(s) in a loop
 2.1 Extract creation_date
 2.2 Extract access_date
3. Call dormant function with creation_date,
access_date
4. Loop again till EOF
4. Select option delete
5. Else select option compress
6. End

The algorithm also accepts a source path and loops
through files. The file dormancy is determined by
the difference between the date of creation and the
last access date. At the end, an option to either
delete or compress is provided.
3.3.4 The Compress-file construct

The compress-file construct takes a file
and compresses it. It has only one action which is to
compress selected file. The selected file can from
temporary files or from dormant files. The
compress-file construct have the following action
path as shown in Figure 4;

Figure 4: Action Path for identifying Dormant Files

3.3.4.1 The Implementation Algorithm
Similarly, the algorithm for compressing a

file is also presented. As follows:

1. Start
2. Declare Variables
 2.1 Initialize the Zip function
 2.2 Set the file source path
2. Select file(s)
3. Call Zip function with source path
4. Save Zip file in source path
5. Delete file
6. End

The compress file algorithm accepts file(s) and
compresses it as a zipped file and saves it in the
same folder it was picked.

3.4 Conceptual Framework for the construct

The conceptual framework for the
construct is shown in Figure 5.

Figure5: Conceptual framework of the construct

The framework shows a selection of file(s) and four
(4) subsequent actions to be performed on it. A file
can be compared for duplicates, tagged as
temporary or dormant file. A temporary or dormant
file can either be compressed or deleted while a
duplicate file can be deleted outrightly.

3.5 Implementation and Testing

The construct was implemented using
python programming language. Specifically, the
find-duplicate and the find-temporary constructs
were implemented as a standalone application by
making use of the Hashlib.SHA1 library. In order
to test the efficacy of the construct, a dataset on the
New York Times comments for March, 2018 from
Kaggle.com was used. The developed software was

Find
Dormant

Delete Source
Path

Compress

Compress
file

Select Dormant
File

Select Temporary
File

Files

Find Duplicate

Find
Dorm
ant

Find
Temp
orary

Compress File

 Delete
File

Save File

Journal of Theoretical and Applied Information Technology
28th February 2022. Vol.100. No 4

2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

977

deployed on a sample of 20,000 created files and
simulated for results.

Initially, the target folder contains 20,000
files extracted from the dataset. Some of the files’
contents are duplicates which also exist in other
files. Such files were identified and deleted.
Initially, before the software was deployed, the
target folder was seen to occupy a disk space of
78.1MB.

4. RESULTS

 After the simulation, the target folder was
found to contain 141 files without duplicates and
the size on disk was drastically reduced from
78.1MB to 564KB of disk space which amounts to
a significant 99.3% storage space recovery. The
number of duplicates found for each category was
also recorded (After) against the initial (Before)
value before the simulation. The summary of the
output is presented in Table 1.

Table 1: Output summary of the constuct

S/n Category Duplicate

per unit
Before After

1 Business 20,.,, 485 1 * 11 = 11 11
2 Washington 14,..,320 1 * 11 = 11 11
3 Editorial 255,.,448 1 * 5 = 5 5
4 Foreign 34, , 342 1 * 7 = 7 7
5 Games 81, ., 50 1 * 6 = 6 6
6 Culture 11, , … 1 1 * 8 = 8 9
7 Learning 19, .,,202 1* 7 = 7 7
8 Magazine 2, ….,7 1 * 2 = 2 2
9 Special Sect 22, …,7 1* 2 = 2 2
10 Weekend 207. .., 1 1 * 3 = 3 3
11 National 52, , 40 1 * 10 = 10 10
12 Travel 10 1 * 1 = 1 1
13 OpEd 28, ., , 43 1 * 29 = 29 29
14 Metro 9, …., 12 1 * 6 = 6 6
15 Arts & Leisure 119, 8 1 * 2 = 2 2
16 Styles 7, …,6 1 * 2 = 2 2
17 Dining 13,., 23 1 * 7 = 7 7
18 Well 163,.,94 1 * 3 = 3 3
19 Express 19 1 * 1 = 1 1
20 Climate 56, 146 1 * 2 = 2 2
21 Real Estate 2, …4 1 * 5 = 5 5
22 Upshot 188, 9 1 * 2 =2 2
23 Metropolitan 51 1 * 1 = 1 1
24 Sports 47 1 * 1 = 1 1
25 Insider 16 1 * 1 = 1 1
26 Sunday Bus. 10,.., 6 1 * 3 = 3 3
27 Photo 4 1 * 1 = 1 1
28 Science 121 1 * 1 = 1 1
 20,000

files
140 files 141

files

Table 1 shows the output from the implemented
construct. The different News categories were
extracted from the 20,000 files created from the
dataset. The corresponding group numbers for each
repeated category were also noted. The respective
total number of resulting files for each category
before applying the construct was also noted.
Subsequently after applying the construct, the total
number of resulting files for each category was
compared with the initial files in order to observe
any difference. It was observed that out of the 28
categories considered in the experiment, only the
culture category showed a difference in expected
output with a total of 8 distinct files before
implementation and a total of 9 distinct files after
implementation. The distinct category is
highlighted a shown in Table 1.

4.1 Discussion of findings

The results obtained after deploying the
software shows that the construct was able to detect
and remove duplicate files with 99% efficiency.
The 1% difference seen in row 6 of Table 1 could
be attributed to editing issues resulting to foreign
character in one of the files. The construct could
therefore be said to be fool proof in detecting
duplicate files. In addition, the 99.3% percentage
disk space recovery from 78.1MB to 564KB
demonstrates that the implemented construct is
highly efficient in detecting and removing duplicate
files within the system.

4.2 Screen shots from the developed

application

The following screen shots were obtained from the
application.

Figure 6: The 3-Task Construct Main Screen

Journal of Theoretical and Applied Information Technology
28th February 2022. Vol.100. No 4

2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

978

Figure 6 screen shot shows the main screen of the
implemented construct which allows the user to
choose any of the 3-implemented tasks.

Figure7: The Find Duplicate Screen

Figure 7 shows the implementation window of the
fin duplicate construct. The user can elect the
option of deleting after the duplicate files are
identified.

5. CONTRIBUTION TO KNOWLEDGE

The 3-task comprehensive construct (3 in 1) is
specifically designed to assist the computer user in
managing redundant files such as duplicate files,
dormant files and temporary files. Unlike other
contributions which seem to focus on duplicate
data, the 3-task construct focuses on files. The
construct employs the concept of hashing algorithm
which is implemented as a standalone application.
The user friendly environment provides a good
alternative to the use of operating system tools for
disk management which require rigourous steps.

6. CONCLUSION

The need for proper disk management
cannot be overemphasized. In this work, redundant
files such as temporary files, duplicate and dormant

files have been identified as redundant files.
Existing methods for managing such files were
reviewed and a theoretical construct that makes use
of Hash library for finding duplicate files was
introduced. Dormant files were also determined by
using file attributes while temporary files were also
identified. The implementation algorithms for each
action were also presented. Finally, the construct
was automated using python programming
language. The result from the automated construct
was also tested and was found to be highly efficient
in detecting duplicate files, as demonstrated by the
significant gain in disk space observed from the test
results of the simulation experiment.
 Therefore, the 3-task construct for
managing redundant files presents a significant
opportunity for efficient and effective management
of storage space.

REFRENCES:
[1] WHO , World report on Ageing and Health,

WHO Press, World Health Organization, 20
Geneva, Switzerland, 2015. Retrieved from:
https://apps.who.int/iris/bitstream/handle/10665
/186463/9789240694811_eng.pdf;jsessionid=9
DCF1CDAE67681687FD3877DC4EC7B73?se
quence=1

 [2] J. Sammons, Internet and e-mail in The Basics
of Digital Forensics: The Primer for Getting
Started in Digital Forensics, 2015. Elsevier Inc,
ISBN:978-0-12-801635-0.
DOI:https://doi.org/10.1016/B978-0-12-
801635-0.00008-5.

[3] L. Shinder, M. Cross, Acquiring Data,
Duplicating Data, and Recovering Deleted
Files, 2008, in Scene of the Cybercrime 2nd
Edition, Elsevier Inc. ISBN:978-1-59749-276-8.
DOI: https://doi.org/10.1016/B978-1-59749-
276-8.X0001-5

[4] J. E. Olson, The Archive Data Extraction
Component, 2009, in Database Archiving,.
Elsevier Inc, ISBN: 978-0-12-374720-4. DOI:
https://doi.org/10.1016/B978-0-12-374720-
4.X0001-5

 [5] T.Fair, M. Nordfelt, S. Ring, E. Cole,
Counterspy: Are You Being Watched? 2005,
in Cyber Spying. Elsevier Inc, ISBN:978-1-
931836-41-8. DOI:
https://doi.org/10.1016/B978-1-931836-41-
8.X5000-X.

[6] P. Kulkarn, F. Douglis, J.LaVoie, J. M. Tracey,
Redundancy Elimination Within Large
Collections of Files, 2004, in 2004 USENIX
Annual Technical Conferenc, Boston

Journal of Theoretical and Applied Information Technology
28th February 2022. Vol.100. No 4

2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

979

[7] R..S. Mahajan, R. Rajpurohit, An Efficient
Deduplication Approach to Maximally
Detectand Eliminate Data Redundancy in Cloud
Enviroment, 2017, International Journal of
Innovative Research in Computer, vol. V, no. 2,
p. 7.

[8] G. Priyanka, G.V. Reddy, K.B. Maruthiram ,
Reliable De-Duplication Approach to Detect
and Eliminate Data Redundancy and Finding
the Sweet Spot through Delta Compression,
2017, International Journal of Innovative
Research in Science, Engineering and
Technology, Vol. 6, Issue 8

[9] C. Policroniades, I. Pratt, Alternatives for
Detecting Redundancy in Storage Systems
Data, 2004, ATEC '04: Proceedings of the
annual conference on USENIX Annual
Technical Conference. Available at:
https://dl.acm.org/doi/10.5555/1247415.124742
1

[10] Q.Yang, R. Jin, M. Zhao, Smartdedup:
optimizing deduplication for resource-
constrained devices 2019. In {USENIX} Annual
Technical Conference ({USENIX}{ATC} 19)
(pp. 633-646).

[11] D.V.V.B, Jacobson, Storage management
system for concurrent generation and fair
allocation of disk space among competing
requests, 1995, USA Patent US5463776A.

[12] Y. Kano, System and method for managing disk
space in a thin-provisioned storage subsystem,
2006, USA Patent US7130960B1

[13] M. Siladitya, G. P. Jose, C. Soumick & B.
Priyanka, Duplicate File Analyzer using N-layer
Hash and Hash Table, 2017. International
Research Journal of Computer Science (IRJCS).
4. 24-30

[14] A. Asaad and A. A. Y. Alamri , A New Scheme
for Removing Duplicate Files from Smart
Mobile Devices: Images as a Case Study,
Department of Computer, Education College for
Pure Sciences, University of Basrah, 61004
Basrah, Iraq, CUESJ 2019, 3 (2): 5-13 . DOI:
10.24086/cuesj.v3n2y2019.pp5-13

[15] A. Nagarajan. and V. Devendran. An Enhanced
Approach in Huffman Coding Scheme,
International Journal of Advanced Research in
Computer Science and Software Engineering,
Volume 4, Issue 11, November 2014

[16] J.Walck, J.Baskin, C.Baskin, S.Hidayati,
Defining transient and persistent seed banks in
species with pronounced seasonal dormancy
and germination patterns, 2005. Seed Science
Research. 15. 189 - 196. 10.1079/SSR2005209.

[17] Grameen Foundation , Addressing Dormancy in
Savings Accounts: Insights from the Cashpor
BC Project, 2013, A Grameen Foundation India
Series. Available at:
https://grameenfoundation.org/documents/rr7hg
laed054z3cnrhon.pdf

[18] D. M. Schydlowsky, E.F. Matuk, Converting
Dormant Bank Accounts into a Dynamic Force
in Latin America, 2018, Discussion Paper Nº
IDB-DP- 5 96, Institutions for Development
Sector Connectivity, Markets, and Finance
Division, Inter-American Development bank.
Available at:
https://publications.iadb.org/publications/englis
h/document/Converting-Dormant-Bank-
Accounts-into-a-Dynamic-Force-in-Latin-
America.pdf

[19] CBN, Exposure Draft guidelines for the
management of Dormant Accounts by Banks in
Nigeria, 2015, Central Bank of Nigeria.
Available at :
https://www.cbn.gov.ng/out/2015/fprd/dormant
%20account%20guidelines.pdf

[20] R.Siddhartha, Advanced SHA-1 Algorithm
Ensuring Stronger Data Integrity, 2015.
International Journal of Computer Applications.
130. 25-27. 10.5120/ijca2015907056.
DOI:10.5120/ijca2015907056

 [21] J. Mohammed, Data Integrity Mechanism
Using Hashing Verification, 2014. International
Journal of Network Security.

