
Journal of Theoretical and Applied Information Technology
28th February 2022. Vol.100. No 4

2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1113

DETECTING COMMONALITY AND VARIABILITY IN
USE-CASE DIAGRAM VARIANTS

1RA'FAT AL-MSIE'DEEN, 2ANAS H. BLASI, 1HAMZEH EYAL SALMAN, 3SAQER S.
ALJA’AFREH, 4AHMAD ABADLEH, 5MOHAMMED A. ALSUWAIKET, 2AWNI HAMMOURI,
1ASMAA JAMEEL AL_NAWAISEH, 1WAFA TARAWNEH, 1SULEYMAN A. AL-SHOWARAH

1Department of Software Engineering, Faculty of IT, Mutah University, Mutah 61710, Karak, Jordan

2Department of Data Science, Faculty of IT, Mutah University, Mutah 61710, Karak, Jordan
3Department of Electrical Engineering, Faculty of Engineering, Mutah University, Karak, Jordan

4Department of Computer Science, Faculty of IT, Mutah University, Mutah 61710, Karak, Jordan

5Department of CS and Engineering Technology, Hafar Batin University, Hafar Batin, Saudi Arabia

E-mail: 1rafatalmsiedeen@mutah.edu.jo, 2ablasi1@mutah.edu.jo, 1hamzehmu@mutah.edu.jo, 3eng.saqer-
jaa@mutah.edu.jo, 4ahmad_a@mutah.edu.jo, 5malsuwaiket@uhb.edu.sa, 2hammouri@mutah.edu.jo,

1asma@mutah.edu.jo, 1wafa@mutah.edu.jo, 1showarah@mutah.edu.jo

ABSTRACT

The use-case diagram is a software artifact. Thus, as with any software artifact, the use-case diagrams change
across time through the software development life cycle. Therefore, several versions of the same diagram are
existed at distinct times. Thus, comparing all use-case diagram variants to detect common and variable use-
cases becomes one of the main challenges in the product line reengineering field. The contribution of this
paper is to suggest an automatic approach to compare a collection of use-case diagram variants and detect
both commonality and variability. In our work, every use-case represents a feature. The proposed approach
visualizes the detected features using formal concept analysis, where common and variable features are
introduced to software engineers. The proposed approach was applied on a mobile media case study to be
validated. The findings confirm the importance and the performance of the suggested approach as all common
and variable features were precisely detected via formal concept analysis and latent semantic indexing.

Keywords: Use-case Diagram Variants, Formal Concept Analysis, Latent Semantic Indexing, Commonality,
Variability.

1. INTRODUCTION

The challenge of comparing model or diagram
variants is well identified in Software Product Line
(SPL) reengineering [1], [2]. However, the main
issue is to analyze a collection of model or diagram
variants to detect commonality and variability [3]. In
our work, use-case diagram variants are typically
characterized by two sets of use-cases: the use-cases
that are shared by all use-case diagram variants,
represent the SPL’s commonalities, and the use-
cases that are shared by some but not all use-case
diagram variants, represent the SPL’s variability.
Feature Model (FM) is a hierarchical form depicting
commonalities and variabilities in SPL [4], [5].

Figure 1 illustrates an example of a FM describing
mobile media software variants.

Software variants frequently change from an
original product created for and effectively used by
the first client. Mobile media [6] is one of the several
examples of such product evolution [7]. Use-case
diagram variants usually share some common use-
cases, but they are also different from one to another
due to subsequent customization to meet particular
requirements of various clients [8].

Journal of Theoretical and Applied Information Technology
28th February 2022. Vol.100. No 4

2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1114

Figure 1: FM of mobile media variants (partial).

This paper is suggested an approach to detect
commonality and variability from use-case diagrams
for a group of software variants. The first step is to
define the FM of SPL to build. Our approach accepts
as inputs the use-case diagram variants. All use-cases
form the initial search space. We rely on Formal
Concept Analysis (or FCA for short) to decrease this
search space by distinguishing common and variable
use-cases, then separating the set of variable use-
cases into more reduced sub-groups. For the minimal
subgroups, we use Latent Semantic Indexing (LSI)

to find the similarity among use-case and their
description. Then, we use FCA again to identify
common and variable use-cases based on LSI results.

In this paper, we rely on FCA to obtain an ordered
set of concepts from a dataset (named a Formal
Context) created of objects expressed by attributes.
Information Retrieval (IR) [9] has been recognized
as useful in different fields like software
maintenance and evolution. In the proposed case,
LSI has been used to find the lexical similarity
among use-cases and their description [10], [11]. The
efficacy of IR techniques is determined using IR
metrics: precision, recall, and F-Measure [12], [13],
[14]. Use-case diagrams assist the modeling of
functional variability. Also, use-case diagrams can
be utilized to define common and variable behavioral
characteristics of software variants [15]. In this
study, we assume that each use-case represents a
functional feature, and we consider only the use-
cases without actors and use-case relationships (i.e.,
extend and include). Figure 2 displays an example of
a use-case diagram of the first release of mobile
media software [16]. The interested reader can get
extra information about FCA, LSI, and use-case
diagram in [17], [18], [19].

Figure 2: Use-case diagram of mobile media release 1.

Journal of Theoretical and Applied Information Technology
28th February 2022. Vol.100. No 4

2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1115

The proposed method is described in the rest of
this paper as follows. Section 2 introduces the mobile
media variants. Section 3 offers an overview of the
suggested method. Section 4 describes the detection
process of commonality and variability across use-
case diagram variants. Section 5 presents the
experimental results. Section 6 presents the related
work closest to our method. Finally, section 7 gives
the conclusion and perspectives.

2. MOBILE MEDIA VARIANTS

Mobile media is a software product variant
constructed to allow the end user of a mobile device
to execute several choices (e.g., playing music or
videos). The system has been constructed as variants
in eight various releases [6]. Each of these releases
combines some distinct features to the system. For
instance, release one implements the initial product
with only the functionality of seeing photos and
arranging them by albums. Release 2 and 3 include
error handling and the implementation of several
variable features (e.g., edit labels). Table 1 shows the
evolution across product variants of mobile media.

Table 1: Mobile media product variants.

Release Description

r1 Mobile media core

r2 Error handling included

r3
Sort media by frequency and edit caption
service added

r4 Set favourites photos added

r5
Added a service for copy media to another
album

r6 Added a service for sending media by SMS

r7 Added the service for playing media

r8
Added the service for playing media and capture
media

Our proposed approach takes use-case diagrams

of a set of variants and their use-case descriptions.
Each use-case is recognized by its name and
description. Use-case description is a natural
language description or explanation. This
information about the use-case represents field
knowledge that is typically available from variants
documentation [20], [21], [22].

In our work, use-case description comprises of a
small paragraph. Table 2 shows the different releases
of mobile media software variants with the use-cases
added in each release with its description.

Table 2: Use-cases of mobile media software variants.

Use-case Use-case description
Release 1

1
View album The client can view an album content

on the device memory

2
Add album The client can add an album to the

mobile media

3
Delete album The client can delete an album from

the mobile media

4
Add photo The client can add a photo in an

album presented on the device

5
Delete photo The client can delete photo from an

album in the device

6
View photo The client can view a photo on the

device storage

7
Provide label The client gives label for the photo

and album

8
Store data The information of a photo or an

album must be saved into the device
storage

9
Remove data The information of a photo or an

album are deleted from the device
storage

10
Retrieve data The information of a photo or an

album are retrieved from the device
storage

Release 2
* Core use-cases All use-cases in release 1

11
Count photo The device keeps count of number of

time a photo has been viewed

12
Edit photo
label

The client can edit the existing label
of photo and album

13
View sorted
photos

The device sorts the photos by highest
viewing frequency

Release 8
* Core use-cases All use-cases in release 1

14
Play video The client can play the video

available in device memory

15
Capture media The client can record a video or take

a photo using the device camera

Table 2 shows three releases (i.e., release 1, 2 and

8) of mobile media described by use-cases and their
description.

3. THE APPROACH OVERVIEW

In this section, we show our goal and core

assumptions. Then we introduce our use-case to
feature mapping model. Finally, we provide an
overview of the process of detecting commonality
and variability across use-case diagram variants.

3.1 Objective and Basic Assumptions

The main objective of our method is to extract FM
for a collection of use-case diagram variants based
on the use-cases and their descriptions. Thus,
detecting features is the first step towards FM
extracting. Common and variable features have been
detected from use-case diagrams for a set of product

Journal of Theoretical and Applied Information Technology
28th February 2022. Vol.100. No 4

2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1116

variants. Use-case diagram demonstrates the
interactions between the software customer or user
and the software processes. Thus, a use-case
represents a functional feature in this paper.

3.2 Use-case to Feature Mapping Model

The first criteria that allow us to decrease the
initial search space is the distinction among common
and variable use-cases. Variable use-cases appear in
some variants but not in all. We call these use-cases
variable use-cases. The other use-cases are
commons to all variants (i.e., common use-cases) (cf

Figure 3). Each variable feature is implemented by a
single use-case.

The second criteria which are utilized to decrease
the search space are the variable use-cases common
to two or more variants that must be grouped in one
cluster. We call the variable use-cases are common
to two or more variants or those that belong to only
one product Block of Variations (BV). Then BVs
constitute sub search-spaces corresponding to one or
many variable use-cases. We rely on this way to
decrease the initial search space for the variable use-
cases into disjoint clusters (cf Figure 3).

Figure 3: The initial search space for common and variable use-cases.

To distinguish between the variable use-cases that
appear in the same BV (cf Figure 4) we based
ourselves on the LSI technique. We rely on the use-
case description to detect variable use-case from

BVs. This is the third criteria that we used to identify
use-case that represent only one variable feature. We
call the closest variable use-case for the given
description an Atomic Blocks of Variations (ABV).

Journal of Theoretical and Applied Information Technology
28th February 2022. Vol.100. No 4

2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1117

So, each BV is made of a collection of ABVs (cf
Figure 3) or at least one ABV. Each ABV denotes a
single and unique feature.

For a collection of Product Variants (PVs),
common use-cases are the use-cases that appear in
all PVs. We call these common use-cases that appear
in all product variants common use-cases. All use-
cases that are common to all use-case diagram
variants are grouped as one cluster or group called
Common Block (CB). The CB is composed of several
Common Atomic Blocks (CABs). To detect the
common use-cases, we rely on CB as a search space
for this kind of use-cases. All common use-cases
which represent the common features appear in the

CB as common use-cases. Each CAB represents a
single common feature (cf Figure 3).

Figure 4 demonstrates an instance of a collection of
use-case diagram variants (three variants). In Figure
4, the CB is composing the common use-cases that
appear in all PVs. In this example, the CB is
composing two CABs (i.e., two common features).
We can also see the existing BVs, and their
composing ABVs (each BV contains at least one
ABV). Also, each BV consists of one or more
variable use-cases. However, this is an example to
present the key concepts which exist in the use-case
to feature mapping model.

Figure 4: An illustrative example: CB, CAB, BV, and ABV.

All concepts defined in the proposed approach for
detecting common and variable use-cases (resp.

features) are illustrated in the use-case to feature
mapping model given in Figure 5.

Journal of Theoretical and Applied Information Technology
28th February 2022. Vol.100. No 4

2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1118

Figure 5: Use-case to feature mapping model.

3.3 Detecting Commonality and Variability

The mapping model among use-cases and features
determines associations among these features and
related use-cases for a set of product variants. To
determine instances of this model, we rely on a
unique process based mainly on FCA and LSI. This
process takes as input use-cases and their
descriptions of a collection of variants. The main
steps of this process are:

 Detection of BVs and CB: FCA is used to detect
BVs and CB by reducing the use-cases search
space. The formal context is defined by the use-
case diagram variants which constitute the
objects of this context. While all use-cases are the
attributes of this context (cf Table 3).

 Exploring the Lattice of BVs: The goal of this
step is to define an order to search ABVs in the
collection of BVs obtained in the AOC-poset
resulting from the previous step.

 Calculate the similarity among use-cases and
their description: Once the CB and BVs are
identified, we depend on LSI to define the
similarity among use-cases and their description.

 Detection of atomic blocks: The detection of an
atomic block is based on the clustering of each
use-case with its description. The clustering is
based on the similarity measure computed among
a collection of use-cases and a collection of use-
case descriptions for the given block (CB/BVs).
This lexical similarity relationship is used as
input for the formal context, where the use-cases
consist of its columns, and use-cases descriptions
consist of its row.

Figure 6 shows the main steps for detecting
commonality and variability in use-case diagram
variants.

Journal of Theoretical and Applied Information Technology
28th February 2022. Vol.100. No 4

2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1119

Figure 6: The process of detecting commonality and variability across use-case diagram variants.

4. THE APPROACH STEP BY STEP

We present in this section, all details about
detecting commonality and variability across use-
case diagrams, where we explain the FCA role to
identify CB and BVs and how we use it again to
identify use-cases (i.e., features). Also, we describe
how we use LSI to find similarities between use-
cases and their description in a particular block (i.e.,
CB/BVs). All steps are detailed in the following.

4.1 Detection of BVs and CB Using FCA

The first phase of the suggested method is the
detection of the CB and BVs. The job of these blocks
is to be sub-search spaces for detecting common
(resp. variable) use-cases representing common
(resp. variable) features. CB and BVs are detected
using FCA. The formal context consists of objects
(i.e., use-case diagram variants) and attributes (i.e.,
use-cases). Table 3 shows an instance of formal

context. Based on the formal context we obtain an
AOC-poset [17]. Figure 7 shows an example of
AOC-poset [23]. The intent of every concept
demonstrates use-cases common to two or more use-
case diagram variants. The extent of each concept is
a group of use-case diagram variants that share these
use-cases.

Table 3: A formal context describing use-case diagram
variants of mobile media by their use-cases (partial).

V
ie

w
 A

lb
um

D
el

et
e

A
lb

um

A
dd

 A
lb

u
m

V
ie

w
 P

ho
to

D
el

et
e

P
ho

to

A
dd

 P
ho

to

St
or

e
D

at
a

R
et

ri
ev

e
D

at
a

P
ro

vi
de

 L
ab

el

re1 x x x x x x x x x
re2 x x x x x x x x x
re3 x x x x x x x x x
re4 x x x x x x x x x
re5 x x x x x x x x x

Journal of Theoretical and Applied Information Technology
28th February 2022. Vol.100. No 4

2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1120

re6 x x x x x x x x x
re7 x x x x x x x x x
re8 x x x x x x x x x

R

em
ov

e
D

at
a

E
rr

or
 H

an
dl

in
g

C
ou

nt
 P

ho
to

E
d

it
 L

ab
el

V
ie

w
 S

or
te

d
P

ho
to

s

V
ie

w
 F

av
ou

ri
te

s

Se
t

F
av

ou
ri

te
s

C
op

y
P

ho
to

…
…

…

re1 x
re2 x x
re3 x x x x x
re4 x x x x

re5 x x x
re6 x x
re7 x x x x x x x
re8 x x x x x x x x

As blocks or concepts of AOC-poset in Figure 7
are well-ordered, the intent of the highest concept (ᴛ)
in the AOC-poset represents use-cases common to
all use-case diagram variants. It's the CB. The
remaining concepts are BVs. The intent of each of
these concepts is a group of use-cases common to a
subset of use-case diagram variants but not all
variants. The extent of each concept is use-case
diagram variants have these use-cases in common.

Figure 7: AOC-poset of formal context in Table 3.

Journal of Theoretical and Applied Information Technology
28th February 2022. Vol.100. No 4

2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1121

4.2 Detection of Atomic Blocks (or features)

CB and BVs are sub-search spaces for common
and variable features respectively. Concepts that are
obtained in the AOC-poset were generated in the
previous step, and whose intents consist of BVs, are
ordered. Thus, to optimize the search process for the
ABVs in the obtained collection of BVs we explore
this AOC-poset starting from the most specific
spaces to the most general ones. Atomic blocks are
detected based on the computation of the similarity
value among the use-cases and their description in a
given BV. These similarity values are obtained by
applying LSI. Atomic blocks are generated by
clustering the use-cases based on the similarity
between these use-cases and their description using
FCA. The search strategy that we follow in this paper
starts from the bottom concepts to the top one, where
BV in the bottom contains fewer use-cases in its
intent compared to the next level. Atomic blocks are
groups of the most similar use-cases and their
descriptions created with FCA as described in the
following.

4.2.1 Exploring BVs to Detect ABVs

We need to optimize the search process for the
variable features. Optimization means that search is
gradually done from the smaller BV to the larger
ones. However, this means that compared to the
concepts of the AOC-poset, the search is performed
from the most specific concepts (i.e., ⊥) to the
general concept (i.e., ⊤). Thus, Thus, the order of
exploration of the AOC-poset is from the more
specific concepts to the more general concept. This
process aims to detect variable features from the
smallest search space. For CB, there is only one
block in the AOC-poset. Thus, no need for exploring
the AOC-poset for CB (i.e., top concept).

4.2.2 Measuring Similarity Between Use-cases
and their Description Based on LSI

Use-cases of BV or CB are respectively
representing variable and common features. We
detect use-case (i.e., feature) from BV (or CB) based
on the measurement of lexical similarity among use-
cases and their description from every block. This
lexical similarity measure has been determined by
using LSI. To calculate the similarity among use-
cases and their description in CB or BVs, the authors
proceed in 3 steps: 1) creating LSI corpus, 2) creating
term-document matrix and term-query matrix for
each BV/CB, and 3) creating cosine similarity matrix
as described in the following.

4.2.2.1 Creating LSI Corpus

To utilize LSI in our work, we must create a
corpus that denotes a set of documents and queries.
In our work, every use-case in the BV (resp. CB)
denotes a single document and its description
exemplify a query. All information in a document
and a query must be normalized to become
appropriate as input of LSI. All documents and
queries must be divided into terms and execute word-
stemming [24].

4.2.2.2 Creating Term-Document Matrix and
Term-Query Matrix for CB and BV

The term-document matrix in the LSI is described
by t x u matrix [25]. In our case t is the number of
terms utilized in a normalized document relating to a
use-case and u is the number of use-cases in CB (or
BV). In the same manner, a term-query matrix is
represented by t x d matrix where t is the number of
terms and d number of use-cases descriptions. In our
method, LSI utilizes use-case description as a query
to recover related use-case.

4.2.2.3 Creating Similarity Matrix

The similarity among use-cases and their
descriptions in BV or CB is defined by the cosine
similarity matrix. In similarity, matrix columns
denote use-cases vectors (i.e., documents) and rows
denote use-cases description vectors (i.e., queries).
The similarity is computed based on cosine
similarity [25]. In our method, we consider the best
utilized threshold for cosine similarity that equals
0.70 [25]. Thus, only the use-case name and use-case
description that have similarity value larger than or
equal to the threshold (i.e., >=70) are considered as
similar. Table 4 reveals the cosine similarity matrix
of Concept_0 (i.e., common block) in Figure 7.

Table 4: The similarity matrix of Concept_0 in Figure 7
(partial).

Use-case Add
album

Add
photo

Delete
album

…
Description
Add album des. 1 0.52 0.1
Add photo des. 0.55 0.99 -0.19
Delete album des. 0.1 -0.2 1
Delete photo des. -0.19 0.38 0.55 ...
Provide label des. -4.77 0 -4.77
Remove data des. -5.24 0 -5.24
Retrieve data des. -5.24 0 -5.24
Store data des. -5.24 0 -5.24
View album des. 0.18 -0.36 0.18
View photo des. -0.18 0.35 -0.18

4.2.3 Detecting Atomic Blocks Based on FCA

We use FCA to detect the atomic feature (i.e., use-
case) from each block (BVs and CB). We use block

Journal of Theoretical and Applied Information Technology
28th February 2022. Vol.100. No 4

2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1122

contents (i.e., use-cases) with additional information
(i.e., use-case descriptions) to detect features based
on the similarity between use-case name and use-
case description. This similarity is based on LSI. The
authors consider each use-case as a feature. A
Formal context consists of objects (i.e., use-case
descriptions) and attributes (i.e., use-cases). Table 5
displays the formal context achieved by converting
the similarity matrix (cf Table 4) relating to
Concept_0 from Figure 7 (i.e., CB).

Table 5: Formal context of Concept_0 (partial).

Use-case Add
album

Add
photo

Delete
album … Description

Add album des. x
Add photo des. x
Delete album des. x

Delete photo des. …
Provide label des. …
Remove data des. …
Retrieve data des. …
Store data des. …
View album des. …
View photo des. …

The binary relation that is used in this context is a

similarity among use-cases and their description
according to LSI, so we used similarity matrix (cf
Table 4) (i.e., LSI findings) as input for the FCA to
gather together the use-case and its description by
using the lexical similarity. The AOC-poset in Figure
8 shows ten CAB (i.e., 10 common features) detected
from CB (cf Concept_0 in Figure 7). Each CAB
represents one and only one common feature (i.e.,
mandatory feature).

Figure 8: AOC-poset shows ten CAB (i.e., common features) detected from CB (i.e., Concept_0 in Figure 7).

The result in Figure 8 is an AOC-poset to which
the extent of each concept represents a use-case
description. However, the intent of each concept is

the use-case name. The extents of these concepts are
use-case descriptions that are directly linking to its
intent based on the similarity link.

Journal of Theoretical and Applied Information Technology
28th February 2022. Vol.100. No 4

2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1123

Figure 9 shows the detected variable features (i.e.,
optional features) from Concept_3 (i.e., BV) in
Figure 7. Where both features are variable features
detected from the same BV.

Figure 9: AOC-poset shows two ABVs (i.e., variable
features) detected from Concept_3 (i.e., BV) in Figure 7.

5. EXPERIMENTATION

To justify our approach, we have experimented
with it on use-case diagram variants of mobile media
[6]. We used eight variants from mobile media.
Mobile media variants are well documented, and
their FM is available. However, this has allowed us
to compare our obtained results with the known
feature of these variants. In addition, mobile media
manipulates multimedia (i.e., photos, music, and
video) on mobile devices. Mobile media suffered
seven evolution scenarios (cf Section 2), which
produced eight releases of this family. The scenarios
contain several kinds of changes including common
and variable features [16]. Table 6 presents the
achieved results for use-case diagram variants of
mobile media. In this table, we gave names to atomic
blocks by using the use-case names.

Table 6: The detected commonality and variability from
use-case diagram variants of mobile media case study.

Feature name
Feature type

F-Meas. Comm. Vari.
1 View album X 100%
2 Add album X 100%
3 Delete album X 100%
4 Add photo X 100%
5 Delete photo X 100%
6 View photo X 100%
7 Provide label X 100%
8 Store data X 100%
9 Remove data X 100%

10 Retrieve data X 100%
11 Error handling X 100%
12 View sorted photos X 100%
13 Edit label X 100%
14 Count photo X 100%
15 Set favorites X 100%

16 View favorites X 100%
17 Copy photo X 100%
18 Send photo X 100%
19 Receive photo X 100%
20 Play music X 100%
21 Access media X 100%
22 Play video X 100%
23 Capture media X 100%

The results show that the F-Measure metric seems

to be high for all detected features (i.e., 100%). This
implies that all features are detected from use-case
diagram variants of mobile media. The F-Measure
metric shows the efficiency of our approach, where
it is based on precision and recall metrics. A high F-
Measure means an ideal approach.

We verify our method on the mobile media case
study. The method successfully presents to the
software engineer variability and commonality of
use-case diagrams in terms of features. This reveals
that it is a unique method and that it can be applied
to any kind of Unified Modeling Language (UML)
diagrams. Figure 10 displays the detected FM from
use-case diagram variants of mobile media. The
detected FM consists of optional and mandatory
features based on the obtained results.

Figure 10: FM of use-case diagram variants of mobile
media.

The case study that we used in this work is well-
documented. This study also provides the real
variability and commonality in terms of features.
Thus, we manually assessed the detected features
with those given in FM of the mobile media. The
assessment indicates that we get a complete
matching among commonality and variability

Journal of Theoretical and Applied Information Technology
28th February 2022. Vol.100. No 4

2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1124

detected by our method and those shown in the FM
of the mobile media.

The threat to the validity of our method is that
software designers may don't use the same
vocabularies to label use-cases across diagram
variants. This implies that lexical similarity maybe
not be reliable to detect common and variable use-
cases. Also, we assumed in this paper that every use-
case represents a functional feature without
considering other elements such as actors and
relations among use-cases.

6. RELATED WORK

In this section, we describe the closest studies,
which are relevant to the detection of commonality
and variability from software model or diagram
variants.

Rubin et al. [26] suggested an approach to
compare a collection of UML state charts to refactor
them as a SPL. The authors aim to combine input
variants into a general model and not at detecting
commonality and variability among software model
variants.

Martinez et al. [27] suggested an approach called
model variants comparison. Their approach
compares a collection of model variants and
extracted commonality and variability among them.
In their work, each extracted feature involves a
collection of atomic model components. However,
their approach visualizes the extracted features by
using a graphical depiction where common (resp.
variable) features are offered to software engineers.

Ziadi et al. [28] suggested an approach to
analyzing the code of software variants via the usage
of UML class diagrams to identify commonality and
variability among software variants. This approach
is not generic, and the authors do not provide a
visualization of commonality and variability. They
suggested a method for feature location in the code
of a collection of product variants. Their method
gathers all common features as a single common
feature under the title base feature without
distinguishing between the variable features that
exist in the same block. Our approach relies on the
use-case diagram variants to detect both common
and variable features. FCA is used to extract
commonalities and variabilities from use-case
diagram variants, and we differentiate among the
common and variable features by employing LSI and
FCA.

Al-Msie’deen et al. [29], [30] presented a method
to obtain commonality and variability from the code

of a collection of variants by using the FCA. Their
work visualizes the extracted commonality and
variability via the mined AOC-poset where
commonality (resp. variability) across software
variants source code is offered to software
developers. Al-Msie’deen and Blasi [31] detected
the evolution scenario across the code of two product
variants using FCA. Al-Msie’deen et al. [32]
presented a method to display the software
variability based on different software artifacts using
FCA.

Current approaches in the field of SPL
reengineering compare a collection of diagram
variants at the same time. The representation and
visualization of commonality and variability are not
considered because their key purpose involves
refactoring diagram variants to a SPL without
involving a software engineer in the process. We say
that the software engineer should take a role in the
analysis of the detected commonality and variability
information for SPL approval. In this work, we
suggest a method that lets comparing a collection of
use-case diagrams at the same time to detect
commonality and variability among them. Our
method offers a graphical visualization of the
comparison result using FCA.

7. CONCLUSION

In this paper, an approach has been proposed using
FCA and LSI for detecting commonality and
variability from use-case variants. The use-case
diagram variants comparison method was proposed
as a facilitator to detect and analyze commonality
and variability information in a collection of
diagrams. FCA is used to obtain the commonalities
and variabilities from a set of use-case diagram
variants. LSI is utilized with FCA to detect atomic
block that represents a unique feature from CB and
BVs by using the lexical similarity among the use-
cases and their description. We validated the
suggested approach on a mobile media case study. In
future work, the plan is to utilize the detected
common and variable features to construct FM [33],
[34], [35]. Also, the suggested approach can be
employed on an industrial scenario that deals with
large use-case diagram variants. Finally, we plan to
apply the word cloud technique [36], [37] to name
the detected blocks based on the words extracted
from atomic blocks.

Journal of Theoretical and Applied Information Technology
28th February 2022. Vol.100. No 4

2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1125

REFERENCES:

[1] P. Clements and L. M. Northrop, Software
product lines - practices and patterns, ser. SEI
series in software engineering. Addison-
Wesley, 2002.

[2] K. Pohl, G. Bockle, and F. van der Linden,
Software Product Line Engineering -
Foundations, Principles, and Techniques.
Springer, 2005.

[3] M. Svahnberg, J. van Gurp, and J. Bosch, “A
taxonomy of variability realization
techniques,” Softw. Pract. Exp., vol. 35, no. 8,
pp. 705–754, 2005.

[4] K. Czarnecki and M. Antkiewicz, “Mapping
features to models: a template approach based
on superimposed variants,” in GPCE’05.
Springer-Verlag, 2005, pp. 422–437.

[5] M. Acher, A. Cleve, P. Collet, P. Merle, L.
Duchien, and P. Lahire, “Extraction and
evolution of architectural variability models in
plugin-based systems,” Softw. Syst. Model.,
vol. 13, no. 4, pp. 1367–1394, 2014.

[6] L. P. Tizzei, M. Dias, C. M. F. Rubira, A.
Garcia, and J. Lee, “Components meet aspects:
Assessing design stability of a software product
line,” Inf. Softw. Technol., vol. 53, no. 2, pp.
121–136, Feb. 2011.

[7] R. Al-Msie’deen, A. H. Blasi, "The impact of
the object-oriented software evolution on
software metrics: the IRIS approach," Indian
Journal of Science and Technology, vol. 11, no.
8, pp. 1-8, 2018.

[8] Y. Xue, Z. Xing, and S. Jarzabek, “Feature
location in a collection of product variants,” in
Proceedings of the 19th Working Conference on
Reverse Engineering. IEEE, 2012, pp. 145–
154.

[9] D. A. Grossman and O. Frieder, Information
Retrieval – Algorithms and Heuristics, Second
Edition, ser. The Kluwer International Series
on Information Retrieval. Kluwer, 2004, vol.
15.

[10] R. Al-Msie’deen, A. Seriai, M. Huchard, C.
Urtado, and S. Vauttier, “Mining features from
the object-oriented source code of software
variants by combining lexical and structural
similarity,” in IRI. IEEE Computer Society,
2013, pp. 586–593.

[11] R. Al-Msie’deen, A. Seriai, M. Huchard, C.
Urtado, S. Vauttier, and H. E. Salman, “Mining
features from the object-oriented source code
of a collection of software variants using

formal concept analysis and latent semantic
indexing,” in SEKE, 2013, pp. 244–249.

[12] A. Marcus and J. Maletic, “Recovering
documentation-to-source-code traceability
links using latent semantic indexing,” in ICSE
’03. IEEE Computer Society, 2003, pp. 125–
135.

[13] G. Antoniol, G. Canfora, G. Casazza, A. De
Lucia, and E. Merlo, “Recovering traceability
links between code and documentation,” vol.
28, no. 10. Piscataway, NJ, USA: IEEE Press,
Oct. 2002, pp. 970–983.

[14] T. F. Bissyand, F. Thung, S. Wang, D. Lo, L.
Jiang, and L. Rveillre, “Empirical evaluation of
bug linking,” in CSMR. IEEE, 2013, pp. 89–
98.

[15] R. Al-Msie’deen, M. Huchard, A. Seriai, C.
Urtado, and S. Vauttier, “Automatic
documentation of [mined] feature
implementations from source code elements
and use-case diagrams with the REVPLINE
approach,” International Journal of SEKE, vol.
24, no. 10, pp. 1413–1438, 2014.

[16] J. M. Conejero, E. Figueiredo, A. Garcia, J. H.
Nunez, and E. Jurado, “On the relationship of
concern metrics and requirements
maintainability,” Inf. Softw. Technol., vol. 54,
no. 2, pp. 212–238, 2012.

[17] R. Al-Msie’deen, “Reverse engineering feature
models from software variants to build
software product lines: REVPLINE approach,”
Ph.D. dissertation, University of Montpellier,
France, 2014.

[18] M. Grechanik, K. S. McKinley, and D. E.
Perry, “Recovering and using use-case-
diagram-to-source-code traceability links,” in
Proceedings of the 6th joint meeting of the
European Software Engineering Conference
and the ACM SIGSOFT International
Symposium on Foundations of Software
Engineering. ACM, 2007, pp. 95–104.

[19] X. Dolques, M. Huchard, C. Nebut, and P.
Reitz, “Fixing generalization defects in UML
use case diagrams,” Fundam. Informaticae,
vol. 115, no. 4, pp. 327–356, 2012.

[20] R. AL-msie’deen, A. H. Blasi, M. A.
Alsuwaiket, "Constructing a software
requirements specification and design for
electronic IT news magazine system,"
International Journal of Advanced and Applied
Sciences, vol. 8, no. 11, pp. 104-118, 2021.

[21] R. AL-msie’deen, A. H. Blasi, "Supporting
software documentation with source code

Journal of Theoretical and Applied Information Technology
28th February 2022. Vol.100. No 4

2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1126

summarization," International Journal of
Advanced and Applied Sciences, vol. 6, no. 1,
pp. 59-67, 2019.

[22] R. Al-Msie’deen, "Visualizing object-oriented
software for understanding and
documentation," International Journal of
Computer Science and Information Security,
vol. 13, no. 5, pp. 18-27, 2015.

[23] A. Berry, M. Huchard, A. Napoli, and A.
Sigayret, “Hermes: an efficient algorithm for
building galois sub-hierarchies,” in
Proceedings of the Ninth International
Conference on Concept Lattices and Their
Applications. CEUR-WS.org, 2012, pp. 21–32.

[24] R. Al-Msie’deen, "SoftCloud: a tool for
visualizing software artifacts as tag clouds,"
Mu'tah Lil-Buhuth wad-Dirasat, Natural and
Applied Sciences Series, vol. 37, no. 2, pp. 1-
14, 2022.

[25] A. Marcus and J. Maletic, “Recovering
documentation-to-source-code traceability
links using latent semantic indexing,” in ICSE
’03. IEEE Computer Society, 2003, pp. 125–
135.

[26] J. Rubin, M. Chechik, "Combining related
products into product lines," In Fundamental
Approaches to Software Engineering. Springer,
2012, pp. 285–300.

[27] J. Martinez, T. Ziadi, J. Klein, and Y. L. Traon,
“Identifying and visualising commonality and
variability in model variants,” in
ECMFA@STAF 2014. Proceedings, ser.
Lecture Notes in Computer Science, J. Cabot
and J. Rubin, Eds., vol. 8569. Springer, 2014,
pp. 117–131.

[28] T. Ziadi, L. Frias, M. A. A. da Silva, and M.
Ziane, “Feature identification from the source
code of product variants,” in CSMR. IEEE,
2012, pp. 417–422.

[29] R. Al-Msie’deen, A. Seriai, M. Huchard, C.
Urtado, S. Vauttier, and H. E. Salman, “Feature
location in a collection of software product
variants using formal concept analysis,” in
ICSR. Lecture Notes in Computer Science.
Springer, 2013, pp. 302–307.

[30] R. Al-Msie’deen, A. Seriai, M. Huchard, C.
Urtado, and S. Vauttier, “Documenting the
mined feature implementations from the
object-oriented source code of a collection of
software product variants,” in SEKE.
Knowledge Systems Institute Graduate School,
2014, pp. 138–143.

[31] R. Al-Msie’deen and A. Blasi, “Software
evolution understanding: automatic extraction
of software identifiers map for object-oriented
software systems,” Journal of Communications
Software and Systems, vol. 17, no. 1, pp. 20–
28, 2021.

[32] R. AL-msie’deen, M. Huchard, A.-D. Seriai, C.
Urtado, S. Vauttier, and A. Al-Khlifat,
“Concept lattices: a representation space to
structure software variability,” in ICICS. IEEE,
2014, pp. 1–6.

[33] R. Al-Msie’deen, M. Huchard, A. Seriai, C.
Urtado, and S. Vauttier, “Reverse engineering
feature models from software configurations
using formal concept analysis,” in CLA. 2014,
pp. 95–106.

[34] R. Al-Msie’deen, A. Seriai, M. Huchard, C.
Urtado, S. Vauttier, and H. E. Salman, “A
methodology to recover feature models from
object-oriented source code,” VARY’2012:
VARiability for You, 2012.

[35] R. Al-Msie’deen, A. Seriai, M. Huchard, C.
Urtado, S. Vauttier, and H. E. Salman, “Feature
mining from a collection of software product
variants,” in Cinquièmes journées nationales
du GDR GPL, France, 2013.

[36] R. Al-Msie’deen, “Tag clouds for the object-
oriented source code visualization,”
Engineering, Technology & Applied Science
Research, vol. 9, no. 3, pp. 4243–4248, 2019.

[37] R. Al-Msie’deen, “Tag clouds for software
documents visualization,” International
Journal on Informatics Visualization, vol. 3,
no. 4, pp. 361–364, 2019.

