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ABSTRACT 
 

Strengthening of Malaysian food security requires optimum utilisation of agricultural technology to 
sustainably increase productivity and yield. Digital nutrient monitoring enables more efficient and timely 
field estimation to complement existing conventional method. However, high UAV acquisition and 
computational costs can be overwhelming especially when periodical monitoring is involved. This study 
attempted to improve UAV feasibility by identifying the suitable spatial resolution (SR) to estimate Nitrogen 
(N) status in MD2 pineapple (Ananas comosus var. MD2) crop on mineral soil. Two field plots, respectively 
representing Alluvial and Red-Yellow Podzolic (RYP) soils, were built in Samarahan Campus Farm of 
Universiti Teknologi MARA Sarawak, Malaysia. This Randomised Complete Block Design (RCBD) based 
experiment was comprised of five treatments, ten replicates, and five different combinations of NPK fertiliser 
and MD2 pineapple leaf biochar application. N status of crop canopy was sampled using non-destructive and 
destructive methods; respectively involving DJI Phantom 4 Multispectral UAV, SPAD-502 Chlorophyll 
Meter, and D-leaf extraction. Scores of four vegetation indices (NRI, VARI, GCI and RECI) representing 
Predicted N, were regressed against Observed N of D-leaf Total N Content. SPAD Chlorophyll Meter 
provided Predicted Relative N status. This study compared the capability of SR between 0.47 and 4.01 cm to 
detect crop canopy and support Predicted-Observed N Status regression. Detection capability in this study 
corresponded with SR, yet not solely with canopy width. The highest resolutions of SR0.75 (Alluvial) and 
SR0.47 (RYP) were able to detect all sample crop canopies, and yield the highest Predicted-Observed N 
correlation based on NRI and VARI estimations. Detectability was largely influenced by canopy width, 
number of leaves, and crop symmetries. Lower SR estimations were affected by deteriorating pixel purity 
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and biased sample representation. Therefore, SR of below 1.0 cm is recommended for MD2 Pineapple crop 
N status estimation on mineral soil. 

Keywords: Spatial Resolution, Vegetation Index, N Status, MD2 Pineapple, UAV 
 
1. INTRODUCTION  
 

Malaysian Agriculture 4.0 agenda 
recognises agricultural technologies’ role in 
strengthening the nation’s food security through 
improvements of farming efficiency and agricultural 
output [1]. The combination of prevailing labour 
shortage and ageing Malaysian farmers [2] calls for 
larger adoption of technologies such as UAV, IoT, 
and geospatial to equip farmers with modern skills 
in practising sustainable agriculture [1]. Sarawak’s 
aspiration to become Malaysian food basket by 2030 
[3] is notably depending on technological R&D to 
promote digital agriculture and related innovations 
[4] to improve output and subsequently farmers’ 
socioeconomic status and state GDP. 
 

Pineapple cultivation in Malaysia is mainly 
associated with peat soil [5]. MD2 (Ananas comosus 
var. MD2), a newer variety is also cultivated on 
mineral soil, where yield produced is of higher 
quality and sweeter, therefore commanding a higher 
market value [6]. Its pleasant aroma, lower acidity 
content, and longer shelf life [7] has enabled MD2 to 
occupy 80% of global pineapple trade [8]. 
Significantly lesser nutrient leaching is reported on 
mineral soil-based cultivation than peat [9]. 
Therefore, local pineapple farmers should capitalise 
on digital agriculture on this premium variety. 
 

In an effort to boost local pineapple 
industry, this study firstly explored the nature and 
challenges of conventional crop monitoring and 
primary macronutrients roles in crop growth. An 
overview of agricultural remote sensing, potential of 
Unmanned Aircraft System (UAS) for pineapple 
crop monitoring, and challenges pertaining to Spatial 
Resolution (SR) effects on crop monitoring are 
highlighted next. Literature for remote sensing 
application in pineapple nutrient monitoring are still 
limited, therefore related studies on various crops are 
also included. 

 
Malaysian pineapple cultivation industry is 

dominated by smallholders in terms of number of 
growers (73%) and planted acreage (67%) [10]. 
Smallholders largely rely on conventional 
monitoring that is based on visual ground 
observations, a time-consuming practice that only 
captures a portion of field conditions [11] to produce 
estimations of agricultural acreage and yield [12]. 

The method lacks accuracy and effectiveness of 
timely decision-making, for example over 
fertilisation due to fertiliser application scheduling 
instead of basing on crop’s site and time-specific 
requirements. Less accurate estimation could affect 
food security at all levels, with impacts ranging from 
the lower-income household’s ability to meet their 
dietary needs to the nation’s population growth rate 
[13].  

 
Nitrogen (N) that is comprised of 

chlorophyll (chl), amino acids, proteins, alkaloids, 
and protoplasm, is the key nutrient in plant growth, 
physiology, and carbohydrate content [14]. Chl 
enables photosynthesis, the process of producing 
glucose that is essential for plant growth from 
sunlight, water, and carbon dioxide. The next two 
very significant nutrients are Phosphorus (P) and 
Potassium (K), respectively a limiting factor to plant 
growth [15] due to its energy transfer and storage 
role, and in maintaining osmotic balance, phloem 
transport, and photosynthesis [16]. As an indicator of 
plant growth, N status is an estimation of N 
requirement at a specific growth stage. 

 
Plant issue analysis (PTA), involving 

destructive sampling (permanent removal of a 
specific part of plant) is a conventional N status 
estimation method. PTA commonly employ either 
Dumas Combustion (DC) or Kjeldahl Digestion 
(KD) method to quantify N status in organic 
compound. Both methods involve laboratory 
analysis that is arduous, costly, and time-consuming, 
On the other hand, DC’s N gas analysis is less 
polluting, unlike KD’s ammonia gas analysis that 
requires usage of toxic reagents [17] 

 
 Spectroscopic sensing estimates N status 

from non-destructively acquired leaf or canopy 
samples [18]. Measured leaf reflectance and 
transmittance values represent leaf chl content [19] 
that is correlated with N status. Spectroscopic values 
are obtained either proximally or distally (remote 
sensing), respectively involving high or low 
proximity between leaf and camera. Proximal 
sampling utilises handheld spectrometer such as 
SPAD-502 Chlorophyll Meter and Greenseeker to 
measure chl reflectance [20],[21] to provide instant 
N estimation at a lower cost than PTA. For example, 
[22] identified SPAD value of below 38 as N 
fertiliser requirement on rice cultivation with 
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alternate wetting and drying irrigation. On the other 
hand, proximal spectroscopy is not feasible for large-
scale crop monitoring due to its field data sampling 
and data interpolation requirements [23],[24],[25]. 
Proximal sensing is therefore feasible in this study 
based on the number of sampling points. 

 
Earlier agricultural remote sensing relied on 

satellite imagery for crop classification applications 
[26] such as mapping of crop distribution and 
classification of land use/cover [27],[28]. 
Subsequent improvements in sensor technology and 
computational capacity have enabled monitoring at a 
larger scale, during unfavourable weather 
conditions, and on rough terrain; and yet restricted 
by low spatial resolution (SR) data [29],[30]. SR is 
the measure of the ground area imaged of the 
instantaneous field of view (IFOV) of the sensor 
[31]. Current platforms of Unmanned Aircraft 
System (UAS), manned aircraft, and Light Ranging 
and Radar (LiDAR) with significantly lower flight 
height [32] (H in Figure 1) capture imagery with 
lower Ground Sampling Distance value (GSD: the 
distance between two ground pixel centroids). A 
combination of GSD and UAS sensor exposure 
parameters determine SR [33], [34]. Based on the 
UAS parameter settings in sub-section 2.3, this study 
accepted the interchangeability of terms GSD and 
SR recommended by the photogrammetry software.  

 
 

 
 

 
 
 
 

Figure 1: GSD and related parameters 
Source: [33] 

 
Higher SR expands agricultural remote 

sensing applications onto field nutrient estimation, 
yield and biomass estimation, crop health 
assessment, weed management, soil monitoring, 
crop counting, and aerial spraying [35],[36]. 
According to [37], UAS-based monitoring could 

improve early detection of gummy stem blight 
disease in watermelon by 20%. UAS sprayer reduces 
herbicide dependency in corn field and beet field by 
up to 90% and 43%, respectively [38], overcomes 
the problems of terrain faced by ground sprayer [39], 
and minimise risks of chemical exposure among 
farmers [40]. In spite of these advantages, most 
farmers still rely on their own experiences with N 
management which exacerbated nitrate leaching loss 
[41]. Larger control over UAS mission planning 
improves imagery’s SR, hence the potential of 
remote field N nutrient estimation for crops with 
lesser height such as pineapple. 

 
Higher SR data magnifies object-based crop 

classification image analysis capability [42] through 
higher crop pixel discriminating accuracy from the 
background features. Determining suitable SR 
requires balancing potential inaccuracy generated in 
higher and lower resolution imagery. Complex and 
costlier data acquisition process and feature 
identification error due to pixel oversampling are 
associated with higher resolution classification 
[42],[43], while insufficient pixel purity in crop 
discriminating may occur in lower resolution [44]. 
[45] suggested lower SR for identification of major 
crop classes, and high SR for object-based 
classification. Spectroscopic N status estimation 
have been tested on many crops proximally for 
grapevine [17], paper birch [46], maize [47]; 
remotely for sugarcane [48] and potato [49], and a 
combination of proximal and remote sensing for 
maize [50]. This study is focused on high SR to 
discriminate pineapple canopy from background 
features and N status estimation. 

Vegetation index (VI), an indicator of plant 
vigour, is derived from leaf or canopy reflectance. 
Reflectance value is correlated to crop nutrient status 
[24], and different value is generated by respective 
spectral band. Red and Near Infrared (NIR) are most 
widely used bands in agricultural remote sensing. 
Low reflectance in Red imagery is due to high 
absorption of light by chlorophyll in leaf, and high 
reflectance of incidence radiation produces high NIR 
value [51]. For example, Normalized Difference 
Vegetation Index (NDVI) measures vegetation 
density, a vital input in plant biomass calculation, 
drought prediction, and many other applications 
[52]. In comparing predictive accuracy of nutrient 
status between Green NDVI (GNDVI) and NDVI of 
pineapple cultivated on utisol soil [53] found the 
former a better predictor for P, and the latter, 
Magnesium. [40] identified Normalized Pigment 
Chlorophyll Index (NPCI), Plant Senescence Index 
(PSRI) and Red-Edge Vegetation Index (RVSI) as 
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the most suitable VI to monitor K status based on 
proximal sampling of MD2 pineapple cultivated on 
peat soil. [41] high spatiotemporal resolution data to 
monitor in-field variety of crop N status.  

 
Existing digital nutrient mapping mainly 

rely on either visible or hyperspectral imagery. 
Visible range (RGB) sensors in digital camera are 
commonly utilised in agriculture [50] due to its 
affordability. Hyperspectral has the advantage of 
high spectral resolution (a measure of number and 
width of spectral band), at the expense of SR [51] 
and band redundancy [52]. On the other hand, 
multispectral imagery possesses lower spectral 
resolution than remote hyperspectral, yet able to 
capture is able to capture higher SR imagery [53], 
hence its potential to monitor N status of pineapple 
crop. Lower computing costs than hyperspectral due 
to cheaper sensor price, reduced computation time 
dan storage requirements from lower spectral 
resolution; and inclusion of NIR that is lacking in 
visible imagery highlighted the potential of 
multispectral UAV pineapple crop nutrient 
estimation.  

 
SR varies with crop morphology. Both 

conventional and hyperspectral imagery N status 
estimations proliferate the costs of computation. 
Therefore, identifying suitable SR is vital to promote 
UAV monitoring within Malaysian pineapple 
industry. This study attempted to identify the 
suitable SR to for UAV-based, MD2 pineapple N 
status monitoring of cultivation on mineral soil using 
visible and multispectral imagery. 

 
 

2. METHODOLOGY 

2.1 Study Area 
 
 The field experiment was carried out on 

Samarahan Campus Farm of Universiti Teknologi 
MARA, Sarawak Branch at 1.446359122558o  N and 
110.4519860226o  E. The farm is located in in 
Samarahan division, the second largest pineapple 
producing region [54] in the state of Sarawak, 
Malaysia (Figure 2).  
 

 
Figure 2: Study Area 

 
2.2 Field Experimental Plot 

In Sarawak, Alluvial soil and Red-Yellow 
Podzolic soil (RYP) of the mineral soil series have 
been identified as suitable for pineapple cultivation 
[55]. Samarahan division is mainly comprised of 
mineral soil and peat soil [55]. This study is focused 
on cultivation on Alluvial and RYP to boost MD2 
pineapple yield especially in Samarahan division as 
shown in the following Figure 3. 
 

  
(a) Alluvial soil (b) Red-Yellow Podzolic soil 

Figure 3: Experimental Plots 
 

Analysis of pre-treatment soil samples from 
both plots (Table 1) identified typical tropical 
region’s highly weathered soil characteristics of low 
pH and low nutrient content (except Available P).  

 
Table 1: Pre-Treatment Soil Chemical Properties 

Property Alluvial  Red-Yellow Podzolic  
pH 4.10 3.80 
CEC (cmol+kg-1) 10.21 3.21 
Total N (%) 0.20 0.13 
Exchangeable K 
(cmol+kg-1) 

0.13 0.08 

Available P (mgL-1) 7.50 7.25 
Mg (cmol+kg-1) 0.25 0.19 
Ca (cmol+kg-1) 0.37 2.16 
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This Randomised Complete Block Design 
(RCBD) based experimental design involved five 
treatments (Table 2) and ten replicates to avoid data 
bias [56]. With the exception of Absolute Control 
Treatment (T1), each remaining treatment was 
applied with a specific composition of NPK 
Fertiliser and MD2 pineapple leaf biochar. As shown 
in Figure 4, each replicate is represented by a 4.3 m 
x 0.6 m plant bed cultivated with five crops, and 
separated by mid drains to prevent water logging and 
minimise nutrient leaching. This study adopted 
planting distance of 0.9 m, instead of Malaysia 
Pineapple Industry Board’s (MPIB) recommended 
0.3 m for commercial cultivation [57] to minimise 
nutrient leaching. 

 
Table 2: Composition of Treatment 

Treatment 
 NPK Fertiliser:  

MD2 Pineapple Leaf Biochar 
(%) 

T1 (Absolute Control) 0 
T2 (Control) 100:0 
T3 75:25 
T4 50:50 
T5 25:75 

 

 
 

Figure 4: Field Experimental Layout 
 
2.3 Data Collection  

Estimations of N status in this study were 
derived at vegetative stage that recorded the highest 
nutrient uptake for most crops [58] to maximise leaf 
chlorophyll content, and therefore higher 
discrimination of crop canopy from background 
features. All data for each soil type were acquired on 
the same day to ensure comparability. Firstly, 

relative chl content per D-leaf was measured using 
SPAD-502 Chlorophyll Meter (Konica-Minolta, 
Japan) (Figure 5a). D-leaf as the most 
physiologically active and identifiable leaf [59], 
provides reliable nutrient status for pineapple [60]. 
Once calibrated, three measurements of N status 
were taken per leaf, and mean N status was 
subsequently derived. D-leaf was also measured for 
its width to provide reference measurement for 
subsequent geospatial analysis.  
 

 
(a) SPAD-502 Chlorophyll Meter 

 

 
(b) DJI Phantom 4 Multispectral 

 

 
(c) D-leaf samples 

 
Figure 5: Data Sampling Tools 

 
The first non-destructive sampling dataset 

was acquired using DJI Phantom 4 Multispectral 
(DJI P4M) (DJI Technology, Guangdong, China) 
UAS (Figure 5b). DJI P4M is equipped with six 
global shutter cameras with 1/2.9 CMOS sensors, 
mounted on a three-axis stabilised gimbal, and 
comprising of one RGB camera and five 
multispectral cameras: Blue (B, 450 ± 16 nm), Green 
(G, 560 ± 16 nm), Red (R, 650 ± 16 nm), Red Edge 
(RE, 730 ± 16 nm) and Near-Infrared (NIR, 840 ± 16 
nm). A comparison of potatoes N status values 
acquired using PTA tissue analysis, SPAD 
Chlorophyll Meter, and Quickbird satellite’s 
multispectral imagery by [61] ranked remote 
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multispectral data as the least significant. Low SR of 
between 0.6 to 2.4 m had likely influenced the rank. 
This study focuses on visible and multispectral 
imageries to estimate N status in crop canopy using 
the following vegetation indices (Table 3). 

 
Table 3: Vegetation Indices of Interest 

No Vegetation Index Spectral Band 

1 Nitrogen Reflectance Index 
(NRI) [(RG – RR) / (RG + RR)] 

Visible (Red,  
Green, Blue) 2 Visible Atmospherically 

Resistant Index (VARI) 
[(RG – RR) / (RG + RR + RB)] 

3 Green Chlorophyll Index (GCI) 
[(RNIR – 1) / (RG - 1)] 

Multispectral 
(Red, Red Edge, 
Near Infrared, 
Green, Blue) 4 Red Edge Chlorophyll Index 

(RECI) [RNIR / (RRE - 1)] 

 
DJI P4M aircraft operated on intelligent, 

positioning-mode (P-mode) that depend on Global 
Navigation Satellite Service (GNSS) and Vision 
System for stable data capture and is also equipped 
with spectral sunlight sensor to detect solar 
irradiance [62]. Data was captured at 2.0 second 
shutter interval, the lowest interval value supporting 
more than two monochrome cameras. While 
minimum Front Overlap Ratio and Side Overlap 
Ratio for flat agriculture fields are recommended at 
85% and 70%, respectively [63], 70:80 is the 
maximum ratio combination that can optimise flight 
speed at the lowest flight height undertaken by this 
study. This study utilised Pix4DMapper 
photogrammetry software (PIX4F, Lausanne, 
Switzerland) that auto calibrates the remaining UAS 
parameters in order to generate imageries at three 
different SR.  
 

This study firstly compared crop canopy 
detection capability among imageries captured at 
flight heights (H) of 10 m, 50 m and 70 m. 10 m is 
the lowest height supported by DJI P4M’s automatic 
mode data capture. Height of 50 m was identified 
from existing literature on UAV-based rice and 
winter wheat N monitoring, respectively by [64] and 
[65], based on their height similarity with pineapple 
at approximately 1.2 m. [66] adopted 70 m to 
identify individual plant species on arid and semi-
arid land vegetation in South-eastern Arizona, USA. 
While imagery with the highest SR is expected to 
produce the most reliable N estimation, this study 
also assessed the lower SR’s detection capability.  
 

All data collection missions were executed 
at around 2 pm when the optimal course angle of 
perpendicular to current azimuth can be identified by 

the aircraft. All plant beds were installed with plastic 
mulching sheet to, among others, eliminate weeds 
that can affect nutrient uptake in crops [67]. Manual 
weeding is carried out prior to data collection day to 
maximise pixel purity by eliminating potential 
background reflectance from weed leaves.  
 

Each experimental plot occupied a portion 
of previously cultivated sector of the farm. 
Significant land features have been either removed 
or altered prior to this study, hence the lack of 
ground control point candidates on both flat field 
plots. The study constricts area of interest to the 
immediate adjacent areas to field plot perimeter to 
reduce imagery data size and processing time.  
 

Once all missions were completed, all 
sample D-leaves were manually extracted from the 
plant (Figure 5c). All samples were oven-dried at 
70℃ for up to 72 hours until constant weight is 
achieved. Then samples were grounded, and sifted 
through 40-mesh prior to being stored in airtight 
container [68]. N status was quantified using Dumas 
Combustion method of PTA. Sample preparation 
works were carried out in the laboratory of Faculty 
of Plantation and Agrotechnology. UiTM Sarawak, 
prior to N analysis at Agriculture Research Centre of 
Department of Agriculture, Sarawak.  

 
 

3. RESULTS AND DISCUSSION 

[43] proposed a two-pronged technique of 
spatial measurement similarity and goodness-of-fit 
assessment to identify suitable SR for geospatial 
analysis. Detectability of crop canopies with various 
leaf widths were found to be largely corresponding 
with SR. This study also identified association 
between highest SR of below 1.0 cm and more 
reliable N status estimation for both Alluvial and 
RYP plots. 
 
3.1 UAV Imagery (Predicted N) 

A study by [69] identified the period 
between 0 and 10 Week After Treatment (WAT) of 
NPK and SRI fertilisers as the optimum period to 
monitor MD2 pineapple growth performance. In this 
study, all field data and D-leaf samples were 
collected on 7 WAT and 5 WAT of NPK fertiliser 
from alluvial and RYP plots respectively (Table 4). 
The non-uniform data collection timeline was 
attributed to the current monsoon transition phase 
effects [71]. 
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Table 4: Crop Timeline 
Plot Planting Fertiliser 

Application  
Data 

Collection 
Alluvial  18 May 

2020 
25 August 

2020 
7 Oct 2020 

Red-
Yellow 

Podzolic 

5 June 
2020 

3 September 
2020 

8 Oct 2020 

 
Three datasets were captured consecutively 

from each field plot (Table 5) to ensure uniformed 
atmospheric conditions during data collection 
missions.  
 

Table 5: Imagery Datasets 
Plot Flight Height 

(m) 
Spatial Resolution 

(cm) 
Alluvial  10 0.75 

50 2.91 
70 4.01 

Red-Yellow 
Podzolic 

10 0.47 
50 2.66 
70 3.40 

 
 
In total, 24 reflectance maps were derived 

from five single-band imageries shown in Figure 6 
to represent a VI per SR per plot. VI pixel values 
were computed using Pix4DMapper software 
(PIX4F S.A., Lausanne, Switzerland) based on the 
formula listed in Table 3. Each reflectance map was 
next resampled at SR 1.0 cm, the highest resolution 
supported by the software, in order to be compatible 
with ArcGIS 10.3 (ESRI Inc., USA) software for 
further analysis. 
 

  
Red Green 

  

  
Blue Red Edge 

  

  
Near Infrared NRI Reflectance Map 

 
Figure 6: Imageries and Example of Reflectance Map 

from Alluvial plot at Spatial Resolution 0.75 cm 
 

 
Centroid of each sample crop canopy was 

determined manually based on field observations 
and imagery characteristics (Figure 7). According to 
Castro, as cited in [59], D-leaf PTA is less performed 
due to its high N mobility in plants. D-leaf location 
varies among canopy, and is semi-visible from 
above since it is still not fully developed. Therefore, 
a buffer zone around canopy centroid is proposed as 
an impartial sector representation crop’s estimated N 
status. Buffer zone size is determined by D-leaf 
width value (Table 6) to ensure the inclusion of 
leaf’s reflectance in the estimation. Variation in 
width sizes was attributed to treatment’s NPK 
fertiliser-pineapple leaf biochar composition (Table 
2). A combination of zero fertiliser and low soil 
nutrient content (Table 1) in T1 has resulted in the 
smallest buffer zone for both plots. 

 
Predicted or estimated N per VI and per SR 

represented the mean of multiple leaves’ N at 
various stages of growth. D-leaf contains the highest 
N status value due to its most physiologically active 
nature [59], therefore predicted N should not exceed 
the corresponding observed N.  

 

 
 

Figure 7: Crop Centroid and Buffer Zone 
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Table 6: Treatment Properties  
Plot   Alluvial Red-Yellow Podzolic 

Treat- 
ment 

SPAD D-
Leaf 

Width 
(cm) 

Num 
of 

Leaf  

SPAD D-
Leaf 

Width 
(cm) 

Num 
of 

Leaf  

T1 65.24 4.27 32 70.48 3.34 29 
T2 92.40 5.06 34 79.25 4.18 31 
T3 78.23 5.52 32 84.50 3.71 32 
T4 102.09 5.52 34 100.52 4.57 29 
T5 79.26 5.38 33 78.98 3.92 29 

 
3.2 Plant Tissue Analysis (Observed N) 

D-leaf samples were measured for their 
width and Total N content, and the latter value 
recognised as observed N status. For each treatment, 
D-leaf width represented mean width of all samples 
(Table 6). Observed N status for each treatment is 
presented in Table 7 below. 

 
Table 7: D-Leaf Total N Content 

Treatment Alluvial (%) 
Red-Yellow 

Podzolic (%) 
T1 0.91 0.81 
T2 1.63 1.10 
T3 1.31 0.93 
T4 1.90 0.98 
T5 1.08 0.91 

 
3.3 Crop Canopy Detection Capability 

Theoretically, detection capability 
corresponds to the degree of SR, where higher SR 
(lower SR value) is able to detect more crop canopy. 
This study was also interested in the feasibility of 
lower SR capability due to its lesser monitoring 
costs. Detection capability per SR at both field plots 
for each VI are summarised as follows: 

 
Table 8: Canopy detection per plot per VI  

Treatment 
Spatial Resolution 

% Ave 
0.75 2.91 4.01 

1a √ √  67 89 
1b √ √ √ 100  
1c √ √ √ 100  
2a √   33 44 
2b √  √ 67  
2c √   33  
3a √ √  67 44 
3b √   33  
3c √   33  
4a √ √  67 56 
4b √   33  
4c √ √  67  
5a √ √  67 78 
5b √ √  67  
5c √ √ √ 100  
% 100 60 27   

(a) Alluvial Soil (GCI) 
 
 
 
 
 

 

Treatment 
Spatial Resolution 

% Ave 
0.75 2.91 4.01 

1a √ √  67 89 
1b √ √ √ 100  
1c √ √ √ 100  
2a √ √  33 67 
2b √ √ √ 67  
2c √   33  
3a √ √  67 44 
3b √   33  
3c √   33  
4a √ √  67 56 
4b √   33  
4c √ √  67  
5a √ √  67 78 
5b √ √  67  
5c √ √ √ 100  
% 100 73 27   

(b) Alluvial Soil (NRI, VARI and RECI) 

 
 

Treatment 
Spatial Resolution 

% Ave 
0.75 2.91 4.01 

1a √   33 33 
1b √   33  
1c √   33  
2a √   33 44 
2b √ √  33  
2c √ √  67  
3a √   67 44 
3b √   33  
3c √   33  
4a √   33 44 
4b √ √  67  
4c √   33  
5a √  √ 67 44 
5b √   33  
5c √   33  
% 100 20 7   

(c) Red-Yellow Podzolic Soil (All VIs) 

 
As shown in Table 8, canopy detection 

capability improved with SR across all plots and VI. 
Pixel purity decreases with SR because lower SR 
pixels may contain both canopy and background 
reflectance, where the latter is comprised of either 
soil or plastic mulching sheet reflectance, or both. 
Mis-discrimination occurs when pixel represents 
more background than canopy reflectance.  
 

Canopy detection capability also do not 
solely correspond with D-leaf width. Overall, higher 
detection recorded by alluvial plot is likely attributed 
by its wider canopy and also higher or equivalent 
number of leaf than corresponding RYP treatment 
(Table 6). On the other hand, Treatment 1 of alluvial 
plot has the narrowest D-leaf, and yet obtained the 
highest detection capability rate for all VIs across all 
SR, surpassing T3 and T4 with the widest D-leaf 
(5.52 cm). As canopy reflectance were captured in 
nadir imagery, T1 crop symmetry pattern and 
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atmospheric effects might have influenced their rate 
of detection. This study found crop canopy detection 
capability largely corresponding with SR. 
 
3.4 Regression of Predicted-Observed N Status 

The goodness-of-fit assessment of 
predicted-reference N status complements the 
reliability of previous canopy detection assessment. 
This study compared visible and multispectral 
ranges VIs capability to estimate predicted N status 
in MD2 crop canopy, and not attempting to identify 
the most suitable VI for N status estimation. 
Predicted-observed N status regressions per SR per 
VI are presented in the following Figure 8.  
 

 
(a) Alluvial (H = 10 m) 

 

 
(b) Alluvial (H = 50 m) 

 

 
(c) Alluvial (H = 70 m) 

 

 
(d) Red-Yellow Podzolic (H = 10 m) 

 

 
(e) Red-Yellow Podzolic (H = 50 m) 

 

 
(f) Red-Yellow Podzolic (H = 70 m) 

 
Figure 8: Regression of Predicted and Observed N Status 

 
A summary of R2 scores from Figure 8 

above are shown in the following Table 9: 
 

Table 9: R2 Score per Vegetation Index and per 
Spatial Resolution 

Plot Alluvial  Red-Yellow Podzolic 
SR  0.75 2.91 4.01 0.47 2.66 3.40 
NRIa 0.4744 0.3868 0.7643 0.4587 0.0014 - 
VARIa 0.1093 0.1745 0.0850 0.2260 0.0002 - 
GCIb 0.1388 0.0781 0.2273 0.6932 0.4443 - 
RECIb 0.1472 0.1636 0.2530 0.6938 0.5336 - 
a visible range vegetation index  
b multispectral range vegetation index  
SR = spatial resolution 

 
In spite of their high R2 scores, GCI and 

RECI recorded negative predicted N status across all 
SR (Figure 8), therefore both multispectral band VIs 
are excluded from further evaluation. Imageries with 
SR of up to approximately 4.0 cm and 0.5 cm were 
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able to estimate N status at alluvial and RYP plots 
respectively using NRI and VARI. Extremely low R2 
scores at SR2.66 on RYP plot was attributed to its 
biased data, based on 20% representation of sample 
canopy and 60% experimental treatment. Visible 
band VIs did not produce any regression trend: 
Predicted N fitted the regression line better with SR 
on RYP, and fluctuated on alluvial. While SR2.91 
represented an average of 67% of canopy samples on 
alluvial, deteriorating pixel purity have attributed to 
crop-background discriminant accuracy, more so on 
VARI with prediction improvement by 0.0652 from 
the highest SR. The lowest resolution of SR4.01 is a 
biased prediction due to its 27% canopy sample 
representation. No R2 score was recorded at RYP 
SR3.40 due to single canopy detection from the entire 
field plot. Therefore, imagery with the highest SR 
produced the more reliable estimation of MD2 crop 
canopy N status on both alluvial and RYP plots 
based on visible range VI assessments. 

 
According to Figure 9 below, regression of 

predicted relative N (SPAD value) and observed N 
(PTA) provided a more reliable estimation based. 
The comparison was made at single leaf level, 
therefore reiterating SPAD Chlorophyll Meter’s 
capability to produce proximal estimation of N 
status. 

 

 
 

Figure 9: Regression of Predicted Relative and 
Observed N Status 

 
4. CONCLUSION 

Imagery with SR of below 1.0 cm was able 
to detect all sample crop canopies, and therefore 
enabled complete MD2 pineapple crop monitoring 
on mineral soil under field condition. The same 
resolution also supported more reliable UAS-based  
N status estimation in MD2 crop canopy of all tested 
resolutions. NRI is deemed a feasible visible band 
VI to estimate N status in MD2 crop canopy. Further 
exploration is needed on multispectral imagery 
acquisition techniques to improve its potential in 
monitoring MD2 crop N status.  

 
Periodical monitoring proliferates the costs 

of data processing and storage requirement. Thus, 
identification of suitable SR value will support a 
more cost-effective N monitoring especially at 
medium and larger scale cultivation. Public agencies 
including MPIB can play more active role in 
providing technical assistance with UAS-based crop 
monitoring among smallholders through initiatives 
such as AgriCOP programme [70]. Smallholders can 
subsequently capitalise on e-satellite farm allocation 
to Farmers’ Organisation Authority in the national 
budget [10] to acquire the technology.  

 
Further investigation is needed to identify 

suitable VI to monitor N and other nutrient status of 
MD2 pineapple crop to promote cultivation of this 
premium food crop. While UAS is yet to emulate the 
accuracy of conventional monitoring method, the 
platform is able to assist with sufficient timely 
estimation of field parameters (such as nutrient 
status), an essential component of sustainable 
agriculture. 
 

Larger scale MD2 crop nutrient monitoring 
should also consider incorporation of deep learning 
techniques into high resolution imagery processing 
to assist with crop canopy and crop centroid 
detection at larger scale cultivation, as demonstrated 
by [11] in flowering pineapple crop counting.  
 

In future, higher SR from lower UAV flight 
height (less than 10 m) may be able to complement 
SR from proximal sensing, and covering a larger 
area of interest. Estimation of N status for crops with 
similar morphology with pineapple can be more 
correlated with Observed N, and therefore produce 
more reliable N status estimation. 

 
Future study can also explore the feasibility 

of remote monitoring K status, the primary 
macronutrient that is more significant at the later 
growth stage (reproductive) [7] as sufficient K is 
essential to produce optimum yield. To the best of 
our knowledge, only proximal sensing techniques 
has been tested for K on marginal soil [9]. 

 
For a more conclusive monitoring of MD2 

macronutrient status, future study should also be 
expanded to monitoring throughout the crop cycle. 
Therefore, nutrient status, and subsequent nutrient 
requirement can be identified at any stage of 
pineapple growth. 
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Local pineapple varities (Moris, Sarawak, 
Gandul, Maspinee, Josapine, Yankee, Moris 
Gajah,N36, MD2, View of Sunset, Madu Kaca, 
Keningau Diamond, Cobek) possess similar 
agronomic traits that include plant morphology, 
fertilisation technique, fertiliser requirement and 
crop cycle. The combination of trait similarity and 
uniformed Malaysian tropical climate is suggesting 
applicability of SR recommendation from this study 
in N status monitoring of local pineapple varieties. 
SR of below 1.0 cm is also applicable to hilly slope 
cultivation as UAV can be calibrated to fly on non-
flat land area of interest.  

 
The recommended SR of below 1.0 cm is 

also applicable to hilly slope cultivation as UAV can 
be calibrated to fly on non-flat land area of interest 
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