ISSN: 1992-8645

www.jatit.org

AN ARTIFICIAL INTELLIGENCE ENABLED FRAMEWORK WITH HYBRID FEATURE SELECTION METHOD FOR EFFICIENT EARLY DETECTION OF STROKE

ANITHA PATIL¹, Dr. SURESH KUMAR G²

Research Scholar¹. ,Pondicherry University Assistant Professor², Pondicherry University Email: anithapatil243@gmail.com¹, mgsureshkumar@gmail.com²

ABSTRACT

Healthcare is the domain which is indispensable for leveraging human health and also minimize mortality rate caused by different diseases. One such disease is brain stroke. Medically brain stroke is the condition that occurs due to poor blood flow to brain causing cell death and it is causing millions of deaths all over the world. According to WHO in 2019, stroke caused more than 6 million deaths across the globe. There are many machine learning methods used for stroke detection using data driven approach. However, their performance is deteriorated when the training data quality is mediocre. To overcome this problem, some feature selection methods came into existence. Those methods could improve performance of prediction models. Nevertheless, there is still need for leveraging prediction performance. In this paper, we proposed a hybrid feature selection method to enhance accuracy of prediction of stroke from the given benchmark dataset. Different prediction models are used along with the proposed hybrid feature selection methods are used along with the proposed hybrid feature selection methods when compared with the models without feature selection. Second, the stroke prediction models exhibited highest performance with the proposed hybrid feature selection model. Thus the proposed stroke detection framework can be used in Clinical Decision Support Systems (CDSSs).

Keywords – Stroke Detection, Feature Selection, Machine Learning, Hybrid Feature Selection

1. INTRODUCTION

According to WHO in 2019, the 7 out of top 10 diseases that caused more deaths were communicable diseases. They accounted to 44% while all top 10 diseases caused 80% of deaths.

Non communicable diseases on the other hand caused 74% of deaths globally. Particularly stroke caused more than 6 million deaths in 2019. This indicates that the death rate caused by stroke is alarming and needs substantial efforts to minimize the same. In the recent past machine learning (ML) has grown rapidly catering to the needs of various problems associated with different domains. ML can process massive amounts of data and thus for the contemporary era, for data analytics, ML has become very essential.Different machine learning techniques are widely used to solve classification problems in the real world. Out of them most widely used models that are used in the empirical study of this paper include Naïve Bayes, Logistic Regression, Random Forest, KNearest Neighbour and Decision Tree.

In this paper, each of the aforementioned models is observed with and without feature selection method. The feature selection methods that are existing such as Step Forward Feature Selection (SFFS), Step Backward Feature Selection (SBFS), Exhaustive Feature Selection (EFS) and Recursive Feature Selection (RFS) are used in the experiments. In addition to this, a hybrid feature selection method is proposed and used along with stroke prediction models. The experimental results revealed many useful insights. First, all brain stroke prediction models could perform well with feature selection methods when compared with the models without feature selection. Second, the stroke prediction models exhibited highest performance with the proposed hybrid feature selection model.Our contributions are as follows.

1. We proposed a brain stroke detection framework that is based on machine

www.jatit.org

E-ISSN: 1817-3195

learning models using data driven approach.

- 2. We proposed a feature selection method known as Hybrid Feature Selection (HFS) which leverages stroke detection performance of machine learning models.
- 3. A prototype is built using Python data science platform for evaluating the stroke prediction models with the proposed feature selection method. Empirical results revealed that the proposed feature selection method could improve prediction performance of machinelearning based stroke prediction models.

The remainder of the paper is structured as follows. Section 2 reviews literature on different existing stroke detection models. Section 3 presents the proposed AI enabled framework for stroke detection including the proposed hybrid feature selection algorithm. Section 4 presents experimental setup and methodology for performance evaluation. Section 5 presents results of stroke prediction models with and without feature selection algorithms. Section 6 concludes the paper and provides directions for future scope of the research.

3. PROPOSED STROKE DETECTION FRAMEWORK

We proposed a stroke detection framework using data driven approach. It takes benchmark dataset as input and performs prediction. Figure 1 shows modus operandi of the framework. It takes stroke dataset as input and divides that into 80% training and 20% testing data. The training data is subjected to the proposed hybrid feature selection method prior to detection of stroke in test samples. Without feature selection method, the stroke prediction models used in this paper such as Naïve Bayes, Logistic Regression, Random Forest, KNearest Neighbour and Decision Tree lead to mediocre performance.

Journal of Theoretical and Applied Information Technology <u>15th February 2022. Vol.100. No 3</u>

© 2022 Little Lion Scientific

ISSN: 1992-8645

www.jatit.org

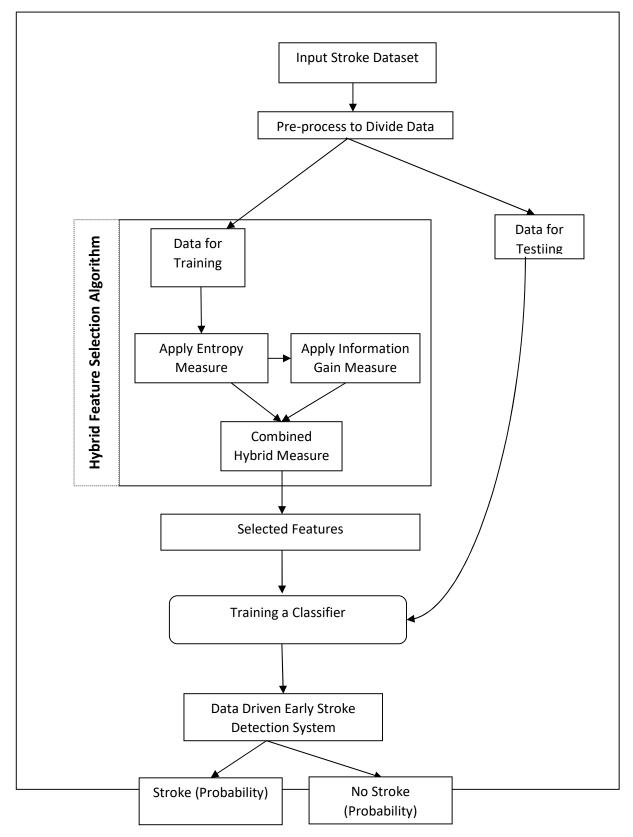


Figure 1: Proposed AI Enabled Framework For Stroke Detection

ISSN: 1992-8645	www.jatit.org	E-ISSN: 1817-3195

Once features are selected from available features, the selected features that can contribute to class label prediction can lead to enhanced performance. In other words, the stroke prediction models such as Naïve Bayes, Logistic Regression, Random Forest, KNearest Neighbour and Decision Tree perform better with feature selection models. The proposed hybrid feature selection method uses different metrics such as symmetric uncertainty, entropy and gain are used as in Eq. 1, Eq. 2, Eq. 3 and Eq. 4.

$$SU = \frac{2*Gain}{H(x) + H(y)}$$
(1)

SU is a hybrid metric that combines both gain and entropy measures. Both H(x) and H(y)denote computations required by entropy as in Eq. 2 and Eq. 3.

Algorithm: Brain Stroke Detection (BSD)							
Input: Dataset D, prediction models M							
Output: Predictions P							
1. Start							
2. Initialize training data vector T1							
3. Initialize testing data vector T2							
4. Initialize feature vector F							
5. T1←GetTrainingData(D)							
6. $T2 \leftarrow GetTestingData(D)$							
7. $F \leftarrow Run HFS algorithm (T1)$							
8. For each model in M							
9. $model \leftarrow FitTheModel(F)$							
10. For each instance s in T2							
11. Update P with the model							
12. End For							
13. End For							
14. Display P							
15. End							
Algorithm 1: Algorithm for Brain Stroke							

Algorithm 1:Algorithm for Brain Stroke Detection

As presented in Algorithm 1, it takes prediction models and dataset as input and produces prediction of brain stroke. In Step 7, the algorithm invokes another algorithm known as Hybrid Feature Selection (HFS) in order to select features. From Step 8 through Step 13, it trains different prediction models and they are used for disease predictions. In Step 14, it provides the prediction results.

3.3 Hybrid Feature Selection

A hybrid feature selection method is defined based on measures such as entropy and gain.

$$H(X) = - \sum_{x \in X} p(x) \log p(x)$$
(2)

H (Y) =
$$-\sum_{y \in Y} p(y) \log p(y)$$
(3)

Information gain =
$$H(y) - H(y/x)$$
 (4)

The information gain is computed as in Eq. 4 and the measures are used in the Algorithm 2.

3.1 BrainStrokeDetection Algorithm

An algorithm known as Breast Cancer Prediction and Drug Recommendation (BCD-DR) is defined and implemented. It takes dataset [21] as input and generates predictions and recommendations.

Algorit	hm: Hybrid Feature Selection							
Inputs:	Inputs: Dataset <i>D</i> , threshold th							
Output	Outputs: Features F							
1.	Initialize symmetric uncertainty vector							
	S							
2.	F←ExtractFeatures(D)							
3.	For each feature f in F							
4.	entropy←CompEntropy(F, f)							
5.								
6.								
7.	Update S							
8.	End For							
9.	F1=F							
10.	F←null							
11.	For each s in S							
12.	IF $s \ge th$ Then							
13.	f←GetFeature(F1)							
14.	Update F with f							
15.	End If							
16.	End For							
17.	Return F							

Algorithm 2: Hybrid Feature Selection

As presented in Algorithm 2, it dataset [51] as input and produces selected features. In the process for all features, it computes gain, entropy and symmetric uncertainty. Then based the hybrid metric known as symmetric uncertainty, it filters out selected features. When these features are used in the BSD algorithm, it results in quality enhancement and finally leading to efficient disease prediction.

ISSN: 1992-8645

www.jatit.org

E-ISSN: 1817-3195

4. PERFORMANCE EVALUATION

Most of the ML and deep learning papers used confusion matrix based metrics to know performance of their methods. In this paper also we used different metrics such as precision, recall, F1-score and accuracy derived from confusion matrix shown in Figure 2.

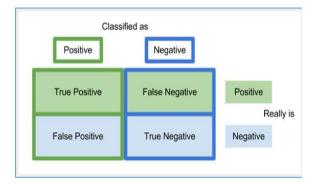


Figure 2: Confusion Matrix

Based on the confusion matrix presented in Figure 2, the confusion matrix shows the measures like true positive (TP), false positive (FP), false negative (FN) and true negative (TN). These are determined by comparing result of ML algorithm when compared with the ground truth. The derived metrics are shown in Table 1.

Metric	Formula	Valu e	Best Valu
		rang e	e
Precisio	ТР	[0; 1]	1
n (p)	$\overline{TP + FP}$		
Recall	ТР	[0; 1]	1
(r)	$\overline{TP + FN}$		
Accurac	TP + TN	[0; 1]	1
У	$\overline{TP + TN + FP + FN}$		
F1-	$\frac{2 \cdot (p \cdot r)}{(p \cdot r)}$	[0; 1]	1
Score	$2 + \overline{(p+r)}$		

Table 1: Performance Metrics Used For Evaluation

Precision refers to positive predictive value while the recall refers to true positive rate. F1-score is the harmonic mean of both precision and recall which is used to have a measure without showing imbalance while accuracy measure may show imbalance.

 Table 2: An Excerpt From Stroke Dataset

2	A	В	C	D	E	F	G	н	1	J.	К	L
1	id	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_type	avg_glucose_level	bmi	smoking_status	stroke
2	9046	Male	67	0	1	Yes	Private	Urban	228.69	36.6	formerly smoked	
3	51676	Female	61	0	0	Yes	Self-employed	Rural	202.21	N/A	never smoked	
4	31112	Male	80	0	1	Yes	Private	Rural	105.92	32.5	never smoked	
5	60182	Female	49		0	Yes	Private	Urban	171.23	34.4	smokes	
6	1665	Female	79	1	0	Yes	Self-employed	Rural	174.12	24	never smoked	
7	56669	Male	81	0	0	Yes	Private	Urban	186.21	29	formerly smoked	
8	53882	Male	74	1	1	Yes	Private	Rural	70.09	27.4	never smoked	
9	10434	Female	69	0	0	No	Private	Urban	94.39	22.8	never smoked	
10	27419	Female	59	0	0	Yes	Private	Rural	76.15	N/A	Unknown	
11		Female	78	0	0	Yes	Private	Urban	58.57	24.2	Unknown	
12	12109	Female	81	1	0	Yes	Private	Rural	80.43	29.7	never smoked	
13	12095	Female	61	0	1	Yes	Govt_Job	Rural	120.46	36.8	smokes	
14	12175	Female	54	0	0	Yes	Private	Urban	104.51	27.3	smokes	
15	8213	Male	78	0	1	Yes	Private	Urban	219.84	N/A	Unknown	
16	5317	Female	79	0	1	Yes	Private	Urban	214.09	28.2	never smoked	
17	58202	Female	50	1	0	Yes	Self-employed	Rural	167.41	30.9	never smoked	
18	56112	Male	64	0	1	Yes	Private	Urban	191.61	37.5	smokes	
19	34120	Male	75	1	0	Yes	Private	Urban	221.29	25.8	smokes	
20	27458	Female	60	0	0	No	Private	Urban	89.22	37.8	never smoked	
21	25226	Male	57	0	1	No	Govt_job	Urban	217.08	N/A	Unknown	
22	70630	Female	71	0	0	Yes	Govt job	Rural	193.94	22.4	smokes	

Table 2 shows an excerpt of dataset used for stroke prediction. It is collected from [51]. It has 12 attributes and 5110 instances reflecting patients' data.

5. EXPERIMENTAL RESULTS

An application built using Python data science platform is used to observe results of experiments. Five stroke detection models such as Naïve Bayes, Logistic Regression, Random Forest, KNearest Neighbour and Decision Tree are used along with three existing feature selection method and the proposed hybrid feature selection method. This section provides results of exploratory data analysis first followed by stroke detection performance evaluation.

5.1 Exploratory Data Analysis

Exploratory data analysis is made based on the dataset [51] considered for empirical study. This sub section provides different research related aspects found in the dataset.

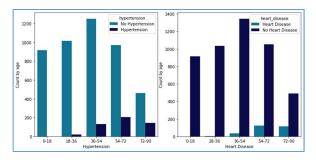


Figure 3: Age Wise Details Of Hypertension And Occurrence Of Heart Disease

As presented in Figure 3, it shows the count of patients suffered from hypertension and heart disease age wise. It thus provides age wise statistics on how many people are free from hypertension and heart disease.

© 2022 Little Lion Scientific

www.jatit.org

E-ISSN: 1817-3195

5.2 Performance Evaluation

Performance of stroke prediction models in presence and absence of feature selection methods is observed in terms of precision, recall, accuracy and F1-score.

Table 3: Performance Comparison In Terms Of
Precision

Stroke	Precision Performance (%)					
Detect	With	With	n Featı	ıre Sel	ection	l
ion	out	SF	SB	EF	RF	Hyb
Model	Featu	FS	FS	S	S	rid
	re					
	Selec					
	tion					
Naïve	79.11	82.	85.	83.	84.	91.4
Bayes		01	47	24	71	0
Logisti	80.19	85.	81.	86.	80.	89.7
с		47	59	15	99	1
Regres						
sion						
Rando	75.01	77.	76.	80.	76.	85.5
m		54	12	89	31	2
Forest						
KNear	78.12	82.	81.	79.	80.	84.3
est		79	45	10	11	5
Neigh						
bour						
Decisi	79.19	79.	84.	82.	86.	92.1
on		53	26	14	42	5
Tree						

As presented in Table 3, performance of stroke detection models is presented with and without feature selection in terms of precision.

Stroke	Recall Performance (%)						
Detect	With	With Feature Selection					
ion	out	SF	SB	EF	RF	Hyb	
Model	Featu	FS	FS	S	S	rid	
	re						
	Selec						
	tion						
Naïve	74.21	86.	76.	80.	75.	90.5	
Bayes		15	31	32	01	8	
Logisti	76.35	79.	80.	84.	76.	88.2	
с		54	14	35	56	2	
Regres							
sion							
Rando	78.14	79.	80.	84.	83.	91.8	
m		12	17	23	33	5	
Forest							
KNear	79.21	79.	80.	80.	81.	87.2	
est		36	36	39	22	1	

Neigh bour						
Decisi	76.34	71.	75.	78.	81.	92.4
on		25	32	58	36	5
Tree						

As presented in Table 4, performance of stroke detection models is presented with and without feature selection in terms of recall.

Table 5: Performance	Comparison	In Terms Of F1-
	Score	

Stroke	F1-Score Performance (%)						
Detect	With	With	With Feature Selection				
ion	out	SF	SB	EF	RF	Hyb	
Model	Featu	FS	FS	S	S	rid	
	re						
	Selec						
	tion						
Naïve	79.21	85.	76.	79.	71.	85.2	
Bayes		47	12	10	01	4	
Logisti	76.35	77.	79.	81.	75.	84.2	
с		88	54	25	57	7	
Regres							
sion							
Rando	78.14	80.	84.	78.	75.	87.2	
m		17	23	58	32	1	
Forest							
KNear	75.01	71.	80.	79.	80.	89.2	
est		25	17	54	36	5	
Neigh							
bour							
Decisi	80.19	79.	80.	83.	84.	90.5	
on		12	32	33	23	8	
Tree							

As presented in Table 5, performance of stroke detection models is presented with and without feature selection in terms of F1-score.

Table 6: Performance Comparison In Terms Of Accuracy

Stroke	Accuracy Performance (%)								
Detect	With	With Feature Selection							
ion	out	SF	SB	EF	RF	Hyb			
Model	Featu	FS	FS	S	S	rid			
	re								
	Selec								
	tion								
Naïve	81.91	85.	80.	79.	84.	88.5			
Bayes		28	99	75	01	5			
Logisti	84.01	84.	81.	81.	85.	90.1			
с		79	47	47	22	4			
Regres									
sion									
Rando	82.85	88.	89.	86.	89.	93.2			

Journal of Theoretical and Applied Information Technology

<u>15th February 2022. Vol.100. No 3</u> © 2022 Little Lion Scientific

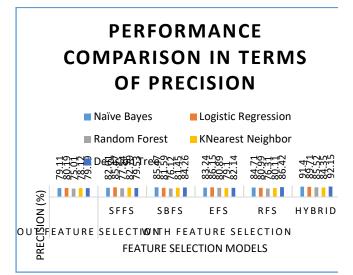
ISSN: 1992-8645

www.jatit.org

m		76	21	26	29	5
Forest						
KNear	77.80	94.	93.	65.	95. 26	100
est		19	72	75	26	
Neigh						
bour						
Decisi	77.92	77.	83.	77.	82.	100
on		92	43	80	85	
Tree						

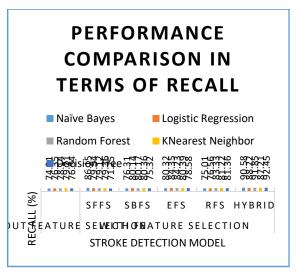
As presented in Table 6, performance of stroke detection models is presented with and without feature selection in terms of accuracy.

Figure 4:Performance Evaluation Of Stroke Detection Models In Terms Of Precision



As presented in Figure 4, stroke detection models with and without feature selection methods are evaluated in terms of precision. Feature selection models are provided in horizontal axis and vertical axis shows precision performance for different stroke prediction models. Without feature selection methods employed, the least precision is shown by Random Forest with 75.01% and highest precision is exhibited by decision tree with 79.19%. When SFFS is applied, the least performance is shown by RF with 77.54% recall and highest performance is shown by LR with 85.47%. When SBFS is applied, least performance is shown by RF with 76.12% precision and highest performance is shown by NB with 85.47%. When EFS is applied, least performance is shown by KNN with 79.1% recall and highest performance is shown by LR with 86.15%. When RFS is applied, least performance is shown by RF with 76.31% precision and highest performance is shown by DT with 86.42%. When hybrid feature selection is applied, least performance is shown by KNN with 84.35% precision and highest performance is shown by DT with 92.15%. From the results it is observed that the proposed hybrid feature selection method shows better performance over existing methods in terms of precision.

Figure 5: Performance Evaluation Of Stroke Detection Models In Terms Of Recall



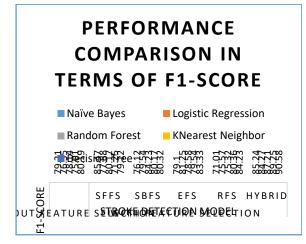
As presented in Figure 5, stroke detection models with and without feature selection methods are evaluated in terms of recall. Feature selection models are provided in horizontal axis and vertical axis shows recall performance for different stroke prediction models. Without feature selection methods employed, the least recall is shown by Random Forest with 74.21% and highest precision is exhibited by KNN with 79.21%. When SFFS is applied, the least performance is shown by DT with 71.25% recall and highest performance is shown by NB with 86.15%. When SBFS is applied, least performance is shown by DT with 75.32% recall and highest performance is shown by KNN with 80.36%. When EFS is applied, least performance is shown by DT with 78.58% recall and highest performance is shown by LR with 84.35%. When RFS is applied, least performance is shown by NB with 75.01% recall and highest performance is shown by RF with 83.33%. When hybrid feature selection is applied, least performance is shown by KNN with 87.21% recall and highest performance is shown by DT with 82.45%. From the results it is observed that the proposed hybrid feature selection method shows better performance over existing methods in terms of recall.

ISSN: 1992-8645

www.jatit.org

E-ISSN: 1817-3195

Figure 6: Performance Evaluation Of Stroke Detection Models In Terms Of F1-Score



As presented in Figure 6, stroke detection models with and without feature selection methods are evaluated in terms of F1-score. Feature selection models are provided in horizontal axis and vertical axis shows F1-score performance for different stroke prediction models. Without feature selection methods employed, the least F1-score is shown by KNN with 75.01% and highest precision is exhibited by DT with 80.19%. When SFFS is applied, the least performance is shown by KNN with 71.25% F1score and highest performance is shown by NB with 85.47%. When SBFS is applied, least performance is shown by NB with 76.12% F1score and highest performance is shown by RF with 84.23%. When EFS is applied, least performance is shown by RF with 78.58% F1score and highest performance is shown by DT with 83.33%. When RFS is applied, least performance is shown by NB with 71.01% F1score and highest performance is shown by DT with 84.23%. When hybrid feature selection is applied, least performance is shown by LR with 84.27% F1-score and highest performance is shown by DT with 90.58%. From the results it is observed that the proposed hybrid feature selection method shows better performance over existing methods in terms of F1-score.

Figure 7: Performance Evaluation Of Stroke Detection Models In Terms Of Accuracy

PERFORMANCE COMPARISON IN TERMS OF ACCURACY Naïve Bayes Logistic Regression Random Forest KNearest Neighbor Decision Tree 92588 92 92 92 92 92 92 C-121-1-1 8-600 10-0000 10-0000 4000 JRACY SFFS SBES EFS RFS HYBRID UT⊖FEATURE SELVEVOITHOINEATURE SELECTION STROKE DETECTION MODEL

As presented in Figure 7, stroke detection models with and without feature selection methods are evaluated in terms of accuracy. Feature selection models are provided in horizontal axis and vertical axis shows accuracy performance for different stroke prediction models. Without feature selection methods employed, the least accuracy is shown by KNN with 77.08% and highest precision is exhibited by LR with 84.01%. When SFFS is applied, the least performance is shown by DT with 77.92% accuracyand highest performance is shown by KNN with 94.19%. When SBFS is applied, least performance is shown by NB with 80.99% accuracyand highest performance is shown by KNN with 93.72%. When EFS is applied, least performance is shown by KNN with 65.75% accuracy and highest performance is shown by RF with 86.26%. When RFS is applied, least performance is shown by DT with 82.85% accuracyand highest performance is shown by KNN with 95.26%. When hybrid feature selection is applied, least performance is shown by NB with 88.55% accuracy and highest performance is shown by KNN and DT with 100%. From the results it is observed that the proposed hybrid feature selection method shows better performance over existing methods in terms of F1-score.

www.jatit.org

6. CONCLUSION AND FUTURE WORK

In this paper, we proposed a framework for early stroke detection. It is based on machine learning algorithms coupled with the proposed hybrid feature selection method. It is a data driven approach that is cheaper means of detecting stroke probability detection early. Different stroke prediction models such as Naïve Bayes, Logistic Regression, Random Forest, KNearest Neighbour and Decision Tree are used in the empirical study. Each model is observed with and without feature selection method. The feature selection methods that are existing such as Step Forward Feature Selection (SFFS), Step Backward Feature Selection (SBFS), Exhaustive Feature Selection (EFS) and Recursive Feature Selection (RFS) are used in the experiments. In addition to this, a hybrid feature selection method is proposed and used along with stroke prediction models. The experimental results revealed many useful insights. First, all brain stroke prediction models could perform well with feature selection methods when compared with the models without feature selection. Second, the stroke prediction models exhibited highest performance with the proposed hybrid feature selection model. In future we intend to explore ensemble of stroke prediction models for improved performance.

REFERENCES:

- Akkus, Z., Galimzianova, A., Hoogi, A., Rubin, D. L., & Erickson, B. J. (2017). Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions. Journal of Digital Imaging, 30(4), p449–459.
- [2] Alhussein, M., Muhammad, G., & Hossain, M. S. (2019). EEG Pathology Detection based on Deep Learning. IEEE Access, 7, p27781–27788.
- [3] Chilamkurthy, S., Ghosh, R., Tanamala, S., Biviji, M., Campeau, N. G., Venugopal, V. K., ... Warier, P. (2018). Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. The Lancet. P2388-2396.
- [4] Ker, J., Wang, L., Rao, J., & Lim, T. (2018). Deep Learning Applications in Medical Image Analysis. IEEE Access, 6, p9375–9389.

- [5] Gao, Z., Dang, W., Wang, X., Hong, X., Hou, L., Ma, K., &Perc, M. (2020). Complex networks and deep learning for EEG signal analysis. Cognitive Neurodynamics. P1-20.
- [6] Liu, Z., Cao, C., Ding, S., Liu, Z., Han, T., & Liu, S. (2018). Towards Clinical Diagnosis: Automated Stroke Lesion Segmentation on Multi-Spectral MR Image Using Convolutional Neural Network. IEEE Access, 6, p57006–57016.
- [7] Subudhi, A., Dash, M., &Sabut, S. (2019). Automated segmentation and classification of brain stroke using expectation-maximization and random forest classifier. Biocybernetics and Biomedical Engineering.40, p277-289.
- [8] Razzak, I., Imran, M., & Xu, G. (2018). Efficient Brain Tumor Segmentation with Multiscale Two-Pathway-Group Conventional Neural Networks. IEEE Journal of Biomedical and Health Informatics, 6(1, p1–10.
- [9] Urvish K. Patel, Arsalan Anwar, Sidra Saleem, Preeti Malik, BakhtiarRasul, Karan Patel, Robert Yao, Ashok Seshadri, Mohammed Yousufuddin, KogulavadananArumaithurai. (2019). Artifcial intelligence as an emerging technology in the current care of neurological disorders. Springer, p1-20.
- [10] Rao, R. P. (2019). Towards neural coprocessors for the brain: combining decoding and encoding in brain-computer interfaces. p1-20.
- [11] Gunawardena, K. A. N. N. P., Rajapakse, R. N., &Kodikara, N. D. (2017). Applying convolutional neural networks for predetection of alzheimer's disease from structural MRI data. 2017 24th International Conference on Mechatronics and Machine Vision in Practice (M2VIP). p1-7.
- [12] Duc, N. T., Ryu, S., Qureshi, M. N. I., Choi, M., Lee, K. H., & Lee, B. (2019). 3D-Deep Learning Based Automatic Diagnosis of Alzheimer's Disease with Joint MMSE Prediction Using Resting-State fMRI. Neuroinformatics. p1-16.
- [13] Zhang, Z., &Sejdić, E. (2019). Radiological images and machine learning: Trends, perspectives, and prospects. Computers in Biology and Medicine. p1-35.
- [14] MdRishad Ahmed, Yuan Zhang, Zhiquan Feng, Benny Lo, Omer T. Inan, and Hongen Liao. (2018). Neuroimaging and

ISSN: 1992-8645

www.jatit.org

Machine Learning for Dementia Diagnosis. IEEE, p1-16.

- [15] NilanjanDey, V. Rajinikanth, Fuqian Shi, João Manuel R. S. Tavares, LuminitaMoraru, K. Arvind Karthik, Hong Lin, K. Kamalanand, C. Emmanuel. (2019). Social-Group-Optimization based Tumor Evaluation Tool for Clinical Brain MRI of Flair/ Diffusion-Weighted Modality. Elsevier, p1-23.
- [16] Cheung, C. Y., Ikram, M. K., Chen, C., & Wong, T. Y. (2017). Imaging retina to study dementia and stroke. Progress in Retinal and Eye Research, 57, p89–107.
- [17] Rachmadi, M. F., Valdés-Hernández, M. del C., Agan, M. L. F., Di Perri, C., & Komura, T. (2018). Segmentation of white matter hyperintensities using convolutional neural networks with global spatial information in routine clinical brain MRI with none or mild vascular pathology. Computerized Medical Imaging and Graphics, p1-22.
- [18] Golkov, V., Dosovitskiy, A., Sperl, J. I., Menzel, M. I., Czisch, M., Samann, P., ... Cremers, D. (2016). q-Space Deep Learning: Twelve-Fold Shorter and Model-Free Diffusion MRI Scans. IEEE Transactions on Medical Imaging, p37-44.
- [19] Rondina, J. M., Filippone, M., Girolami, M., & Ward, N. S. (2016). Decoding poststroke motor function from structural brain imaging. NeuroImage: Clinical, 12, p372– 380.
- [20] SaptarshiSengupta, SanchitaBasak, PallabiSaikia, Sayak Paul, Vasilios Tsalavoutis, Frederick DitliacAtiah, Vadlamani Ravi and Richard Alan Peters .
 (2019). A Review of Deep Learning with Special Emphasis on Architectures, Applications and Recent Trends. IEEE, p1-29.
- [21] Dou, Q., Chen, H., Yu, L., Zhao, L., Qin, J., Wang, D., ... Heng, P.-A.
 (2016). Automatic Detection of Cerebral MicrobleedsFrom MR Images via 3D Convolutional Neural Networks. IEEE Transactions on Medical Imaging, 35(5), p1182–1195.
- [22] Alaverdyan, Z., Jung, J., Bouet, R., &Lartizien, C. (2019). Regularized siamese neural network for unsupervised outlier detection on brain multiparametric magnetic resonance imaging: application to epilepsy lesion screening. Medical Image Analysis, p1-34.

- [23] Guerrero, R., Qin, C., Oktay, O., Bowles, C., Chen, L., Joules, R., ... Rueckert, D. (2018). White matter hyperintensity and stroke lesion segmentation and differentiation using convolutional neural networks. NeuroImage: Clinical, 17, p918– 934.
- [24] Bernardo, D., Nariai, H., Hussain, S. A., Sankar, R., Salamon, N., Krueger, D. A., ... Wu, J. Y. (2018). Visual and semiautomatic non-invasive detection of interictal fast ripples: A potential biomarker of epilepsy in children with tuberous sclerosis complex. Clinical Neurophysiology, p1-29.
- [25] Guberina, N., Dietrich, U., Radbruch, A., Goebel, J., Deuschl, C., Ringelstein, A., ... Mönninghoff, C. (2018). Detection of early infarction signs with machine learningbased diagnosis by means of the Alberta Stroke Program Early CT score (ASPECTS) in the clinical routine. Neuroradiology, 60(9), p889–901.
- [26] Sharma, A. M., Gupta, A., Kumar, P. K., Rajan, J., Saba, L., Nobutaka, I., ... Suri, J. S. (2015). A Review on Carotid Ultrasound Atherosclerotic Tissue Characterization and Stroke Risk Stratification in Machine Learning Framework. Current Atherosclerosis Reports, p1-13.
- [27] Meyer, A., Zverinski, D., Pfahringer, B., Kempfert, J., Kuehne, T., Sündermann, S. H., ... Eickhoff, C. (2018). Machine learning for real-time prediction of complications in critical care: a retrospective study. The Lancet Respiratory Medicine. p1-10.
- [28] Kotsavasiloglou, C., Kostikis, N., Hristu-Varsakelis, D., &Arnaoutoglou, M. (2017). Machine learning-based classification of simple drawing movements in Parkinson's disease. Biomedical Signal Processing and Control, 31, p174-180.
- [29] Khaled Abd-Ellah, M., Ismail Awad, A., Khalaf, A. A. M., &Hamed, H. F. A. (2019). A Review on Brain Tumor Diagnosis from MRI Images: Practical Implications, Key Achievements, and Lessons Learned. Magnetic Resonance Imaging. 61, p300-318.
- [30] Khosla, M., Jamison, K., Ngo, G. H., Kuceyeski, A., &Sabuncu, M. R. (2019). Machine learning in resting-state

www.jatit.org

fMRI analysis. Magnetic Resonance Imaging. p1-7.

- [31] Newaz, A. I., Sikder, A. K., Rahman, M. A., &Uluagac, A. S. (2019). HealthGuard: A Machine Learning-Based Security Framework for Smart Healthcare Systems. 2019 Sixth International Conference on Social Networks Analysis, Management and Security (SNAMS). p1-8.
- [32] Colak, C., Karaman, E., &Turtay, M. G. (2015). Application of knowledge discovery process on the prediction of stroke. Computer Methods and Programs in Biomedicine, 119(3), p181–185.
- [33] Alhussein, M., Muhammad, G., & Hossain, M. S. (2019). EEG Pathology Detection based on Deep Learning. IEEE Access, 7, p27781–27781.
- [34] Almeida, J. S., RebouçasFilho, P. P., Carneiro, T., Wei, W., Damaševičius, R., Maskeliūnas, R., & de Albuquerque, V. H. C. (2019). Detecting Parkinson's Disease with Sustained Phonation and Speech Signals using Machine Learning Techniques. Pattern Recognition Letters. p1-8.
- [35] Talo, M., Baloglu, U. B., Yıldırım, Ö., &Rajendra Acharya, U. (2019). Application of deep transfer learning for automated brain abnormality classification using MR images. Cognitive Systems Research, p1-24.
- [36] Acharya, U. R., Fernandes, S. L., WeiKoh, J. E., Ciaccio, E. J., Fabell, M. K. M., Tanik, U. J., ... Yeong, C. H. (2019). Automated Detection of Alzheimer's Disease Using Brain MRI Images- A Study with Various Feature Extraction Techniques. Journal of Medical Systems, p1-14.
- [37] Yu, Y., Li, M., Liu, L., Li, Y., & Wang, J. (2019). Clinical big data and deep learning: Applications, challenges, and future outlooks. Big Data Mining and Analytics, 2(4), p288–305.
- [38] Chaolu Feng, Dazhe Zhao, and Min Huang. (2015). Segmentation of Stroke Lesions in Multi-spectral MR Images Using Bias Correction Embedded FCM and Three Phase Level Set. isles-challenge, p1-90.
- [39] XiaotongGu, Zehong Cao, AlirezaJolfaei, Peng Xu, Dongrui Wu, Tzyy-Ping Jung, and Chin-Teng Lin. (2021). EEG-based Brain-Computer Interfaces (BCIs): A Survey of Recent Studies on Signal

Sensing Technologies and Computational Intelligence Approaches and Their Applications. IEEE, p1-21.

- [40] Tournier, P.-H., Bonazzoli, M., Dolean, V., Rapetti, F., Hecht, F., Nataf, F., ... Pichot, C. (2017). Numerical Modeling and High-Speed Parallel Computing: New Perspectives on Tomographic Microwave Imaging for Brain Stroke Detection and Monitoring. IEEE Antennas and Propagation Magazine, p1-12.
- [41] Munteanu, C. R., Fernandez-Lozano, C., Mato Abad, V., Pita Fernández, S., Álvarez-Linera, J., Hernández-Tamames, J. A., &Pazos, A. (2015). Classification of mild cognitive impairment and Alzheimer's Disease with machine-learning techniques using 1H Magnetic Resonance Spectroscopy data. Expert Systems with Applications, p1-17.
- [42] Dehbandi, B., Barachant, A., Harary, D., Long, J. D., Tsagaris, K. Z., Bumanlag, S. J., ... Putrino, D. (2017). Using Data From the Microsoft Kinect 2 to Quantify Upper Limb Behavior: A Feasibility Study. IEEE Journal of Biomedical and Health Informatics, 21(5), 1386–1392. p1-7
- [43] Kamnitsas, K., Ferrante, E., Parisot, S., Ledig, C., Nori, A. V., Criminisi, A., ... Glocker, B. (2016). DeepMedic for Brain Tumor Segmentation. Lecture Notes in Computer Science, p1-12.
- [44] Liu, Z., Cao, C., Ding, S., Liu, Z., Han, T., & Liu, S. (2018). Towards Clinical Diagnosis: Automated Stroke Lesion Segmentation on Multi-Spectral MR Image Using Convolutional Neural Network. IEEE Access, 6, p57006-57016.
- [45] Tanaka, H., Adachi, H., Ukita, N., Ikeda, M., Kazui, H., Kudo, T., & Nakamura, S. (2017). Detecting Dementia Through Interactive Computer Avatars. IEEE Journal of Translational Engineering in Health and Medicine, 5, p1–11.
- [46] Razzak, I., Imran, M., & Xu, G. (2018). Efficient Brain Tumor Segmentation with Multiscale Two-Pathway-Group Conventional Neural Networks. IEEE Journal of Biomedical and Health Informatics, p1–10.
- [47] LaFreniere, D., Zulkernine, F., Barber, D., & Martin, K. (2016). Using machine learning to predict hypertension from a clinical dataset. 2016 IEEE Symposium

ISSN: 1992-8645

www.jatit.org

E-ISSN: 1817-3195

Series on Computational Intelligence (SSCI). p1-7.

- [48] Shayanfar, H. A., khodadadi, mah, Maghooli, K., &Mazinan, A. H. (2019). Fuzzy Cognitive Map Based Approach for Determining the Risk of Ischemic Stroke. IET Systems Biology. p3091-3103.
- [49] Chiang, H.-S., Chen, M.-Y., & Huang, Y.-J. (2019). Wavelet-based EEG Processing for Epilepsy Detection using Fuzzy Entropy and Associative Petri Net. IEEE Access, 7, p103255–103262.
- [50] Chowdhury, A., Raza, H., Meena, Y. K., Dutta, A., & Prasad, G. (2017). Online Covariate Shift Detection based Adaptive Brain-Computer Interface to Trigger Hand Exoskeleton Feedback for Neuro-Rehabilitation. IEEE Transactions on Cognitive and Developmental Systems, p1–11.
- [51] Stroke prediction dataset. Retrieved from <u>https://www.kaggle.com/fedesoriano/stroke</u> <u>-prediction-dataset</u>. Accessed on 10 Dec 2020.