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ABSTRACT 
 

This paper proposes an Agent-based Document Classification (AbDC) model that computerizes the 
systematic literature review (SLR) process by imitating what a researcher is supposed to perform during the 
literature review process manually. The AbDC model comprises three main components that perform the 
SLR. Firstly, the document classification algorithm analyses a full text of research articles and evaluates 
relevancy. Secondly, the multi-agent architecture accelerates the mining process and handles the performance 
issues. Finally, the web-based systematic review tool tests and validates the functionality of the proposed 
AbDC model. The first testing was conducted to assess the performance of the proposed AbDC. Result shows 
that the required processing time was reduced by 33.5% using four agents to achieve the mining process. 
Meanwhile, the second testing was performed to validate the mining process results. The text extraction 
method was run on 200 documents from various studies to conduct the review process. The parsing process 
yielded valid results with 98.5% accuracy. The testing results showed that the proposed AbDC model is 
significant in providing researchers and postgraduate students with new means to perform SLR. 
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1. INTRODUCTION  
 

The process of performing literature review 
consumes a considerable amount of time and effort 
from researchers and students. Such a process 
requires reading and understanding hundreds of 
studies and subsequently extracting and excluding 
relevant or irrelevant articles, respectively. In a 
remarkably advanced method, the current trend is the 
application of the systematic literature review (SLR) 
concept, which involves a sophisticated procedure to 
ensure valid, comprehensive and highly relevant 
outcomes. By contrast, finding information on the 
WWW was markedly enhanced when using search 
engines in the mid-1990s. However, the 
development of science and the spread of knowledge 
coincide with a growing number of publications, and 
the volume of online content continues to grow 
rapidly. The search engines for some submitted 
queries may retrieve documents of low relevancy to 
the queries. Additionally, the number of digital 
materials is tremendously increased. In May 2011, 
Google indexed an estimated 35 billion web pages, 
and the number has risen to 45 billion after two 

years. A large number of returned results by search 
engines for a submitted query requires reading and 
discovering the most relevant, thereby discarding 
more than half of what has been read. ‘Systematic 
review’ has become one of the top trends in the 
research community and has dramatically increased 
in the last few years. 

A primary objective of any systematic review is to 
minimise publication bias [1] by analysing all studies 
relevant to the review. Scells 2018 [2] identified 
systematic review (SR) as a type of literature review 
that appraises and synthesises the work of primary 
research studies [3] to answer one or more research 
questions. SLR is a rigorous approach for stand-
alone literature review; an SLR is when a stand-alone 
literature review is conducted using a systematic, 
rigorous standard [4]. Fink [5] introduced an SLR as 
a systematic, explicit, comprehensive and 
reproducible method for identifying, evaluating and 
synthesising the existing body of completed and 
recorded work produced by researchers, scholars and 
practitioners. The systematic review [6] focuses on a 
specific question to provide evidence to underpin a 
part of the research. The stand‐alone part of the study 
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should be performed before conducting further 
research [7]. This part requires searching through 
several particularised data sources using specific 

search terms. Table 1 summarises the systematic 
review challenges. 

Table 1. Systematic review challenges 

Technical 
knowledge 

The researchers might be unaware of systematic review methodology (i.e., performing a 
narrative review) [21]. 

Systematic review uses some advanced tools and applications to organise the data, and this kind 
of application is either expensive or difficult to use for non-technical users. 

Most of the available tools focus on organising the metadata [22] of the studies but do not offer 
advanced features to help researchers in inclusion/exclusion tasks. Thus, screening and 

evaluating processes on behalf of the researcher and providing reliable suggestions with an 
acceptable level of accuracy are necessary [19]. 

Using the available applications and tools requires a level of technical experience from the 
researcher to efficiently utilise these tools, which is not always available in non-technical 

researchers, such as the researchers in (human rights, geography, history, and human resources) 
[21]. 

Time 
consumption 

Conducting a systematic review is time consuming. The user must collect and organise the 
metadata of each study used in the research to generate statistical reports and charts from the 

data aggregation [22]. 

Screening the text of the study for inclusion and exclusion is a time-consuming task [22]. This 
task will take a considerably long amount of time and effort from the user regardless of whether 
the user screens the document fully or partially (Abstract and Title) and wants to follow the two-

step screening approach [23]. 

Search 
accuracy 

Some researchers might not follow the inclusion/exclusion criteria set when starting the research 
[19] 

Researchers lack a unique method (criteria) for exclusion/inclusion [21], which impacts the 
research accuracy. For example, suppose 20 studies are given to three researchers to include and 

exclude relevant and irrelevant studies. Thus, each researcher might return different results 
based on the criteria and the method they followed. The reliability of every survey is determined 

by defining whether the study's accuracy is ‘high’ or ‘low’. 
Some researchers might not use a two-step screening process (firstly reviewing Title/Abstract 

than the entire study) [22]. Two screening processes may need a long time; thus, many 
researchers conduct only one-step screening (title and abstract screening) [23]. 

 
The conduct SR process [14][15][17][18][19][20], 

a complete collection of keywords is formulated and 
utilised to query different databases, such as PubMed 
and Web of Science, to obtain all the relevant 
studies. Afterwards, the titles and abstracts of the 
studies should be reviewed individually and verified 
versus a kit established previously of acceptance 
criteria for inclusion and exclusion. The study should 
also pass the first elimination process. The entire text 
of the study is obtained and tested to decide its 
involvement or elimination from the review. An SR 
attempts to collate all experimental proof that meets 
pre-specified qualification rules to find the answer to 
a particular research inquiry. SR also utilises 
explicit, systematic techniques chosen to reduce 
bias, producing reliable conclusions to obtain 
outcomes and present judgements. Figure 1 shows 
the SR steps for conducting a systematic review [16]. 
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Figure 1. Steps to conduct an SR 

Many research studies attempted to use 
technologies to facilitate the systematic review 
process [8][9][10]. Text mining [11], which is one of 
these technologies, is used to conduct systematic 
reviews to reduce the screening workload by 
automatically eliminating irrelevant studies. Using 
text mining in the SR process, which is not yet fully 
proven, is considered promising. Although this 
method may be used with a high degree of 
confidence in many fields, additional developmental 
and evaluative work is needed in other disciplines. 
Using text mining to perform systematic reviews can 
save effort and time. However, a serious concern 
related to the efficiency of the process considering 
the performance, where text mining is regarded as a 
heavy process and costly considering processing and 
time [8]. One of the proposed solutions to tackle the 
performance issue of text mining is using the multi-
agent system (MAS) [33][34][35][36][37][38]. 
However, some research studies showed the 
significance of finding a way to overwhelm the 
performance issue when applying text mining 
algorithms [12][31][32][40].  

A MAS provides the advantages of computational 
efficiency, reliability, extensibility, maintainability, 
robustness, maintainability and responsiveness, 
flexibility and reusability [24]. Interaction between 
agents can be conducted through an agent 
communication language. The MAS has been 
applied for various applications [39] [40][41][42], 
including natural language processing [29] and data 
mining [25]. The MAS theory can typically be 
adapted for two main reasons [28]. Firstly, data are 
often intrinsically distributed over several sites. 
Collecting these data in a single processing node is 
inconvenient for the communication costs, feasible 
for privacy policies and even beneficial for real-time 
data streams. Secondly, the complexity of the task is 
often. Thus, the data must be partitioned to process 
each data subset independently and finally combine 
the partial results. Multi-agent systems [30] is a 
subfield of distributed artificial intelligence, which 
has experienced rapid growth because of its 
flexibility and intelligence to solve distributed 

problems [43][44][45][46][47]. According to [26], 
well-documented advantages of the MAS include 
decentralised control, robustness, simple 
extendibility, sharing of expertise and sharing of 
resources. Consequently, some of the benefits 
available when using multi-agent technology in large 
systems are presented as follows. 

 An increase in the speed and efficiency of the 
operation due to parallel computation and 
asynchronous operation [30] 

 Remarkable degradation of the system when one 
or more of the agents fail, thus increasing the 
reliability and robustness of the system [30] 

 Scalability and flexibility: Agents can be added 
as and when necessary [27]: 

 Reduced cost: Individual agents cost remarkably 
less than a centralised architecture [27] 

 Reusability: Agents have a modular structure and 
can be easily replaced in other systems or 
upgraded more quickly than a monolithic system 
[30] 

Several tools and systems have been developed to 
help perform the systematic review process by 
providing some features to assist researchers in one 
or multiple stages of the systematic review. 
However, most of these tools and systems, such as 
EndNote and Rayyan, focus on the meta-analysing 
part and organising the references. By contrast, only 
a few tools and systems focused on automating the 
screening stage to aid in taking inclusion/exclusion 
decisions versus a predefined punch of inclusion 
criteria; for example, but not limited to the EPPI-
Reviewer system [13], which provides features 
regarding metadata services (collecting, analysing, 
organising and reporting), as well as full-text 
screening service by using their text-mining 
algorithm. However, this service is unavailable for 
all users. They have a real performance problem due 
to the heaviness of the text mining process, 
considering the time needed to analyse the studies 
and the processing because it excessively consumes 
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the CPU memories. Thus, if many users are allowed 
to leverage this service, then the analysis results may 
not be provided within a reasonable time. Moreover, 
users employ massive resources to parse a vast 
volume of studies. The EPPI-Reviewer system has 
remarkable features. However, using this system is 
difficult, especially for those who do not have 
technical skills and are unfamiliar with using the 
software effectively (such as the researchers in 
Humanities, Law, Chemistry, History and other non-
technical domains). Finally, the text mining 
algorithm of the EPPI-Reviewer system [13] can be 
improved to give accurate results by considering 
additional factors for enhancing text mining, which 
mainly focuses on the terms of frequency factor to 
extract the keywords from the text. This paper 
proposes an AbDC model that executes a document 
classification algorithm through multiple agents 
simultaneously to analyse many documents to 
overcome the slowness issues caused by the 
heaviness of the classification process. The current 
study is directed to scientific publications with short 
study documents (less than 25 pages per document) 
and available in pdf format as English text (not 
images or handwritten). 

2. AGENT-BASED DOCUMENT 
CLASSIFICATION (ABDC) MODEL 

This section presents a combination of text mining 
in terms of document classification and data mining 
with a multi-agent system to extract the potential 
context of scientific publication from a particular 
scientific publication warehouse and thus define 
which publication is potentially relevant to a 
searcher’s need. The designed algorithm gives the 
user the ability to input the keywords besides 
assigning a threshold value for each one. The 
algorithm consists of three processes, detection 
process, preparation process, and mining process. 
The detection process includes the determination of 
document language and abstract, and keywords. The 
Preparation consists of the processes, split content to 
paragraphs, paragraph length determination; 
converting text to lower case; text typography factor, 
content tokenization, removing stop words. Finally, 
the mining includes the processes, regular 
expression; normalization; grouping, and computing 
frequency. The designed algorithm would be helpful 
in providing an alternative means of searching highly 
relevant content from large databases. 

The proposed model consists of five components: 
the interface, parsing process, storing process, 
notifying process, and Search process, as shown in 

Figure 2. The interface provides communication 
means between the user and the agents in the 
backend process. Besides, it provides an input tool 
for users’ search preferences. The second component 
is the parsing process that operates by a document 
classification algorithm. The third part is the storage 
process that manages by DB Agent. The fourth 
component is the notifying process executed by the 
personal agent and the monitor agent. The last 
component is the search process that is operated by 
pattern matching, where the user submits the search 
query to the engine through the interface to run the 
search process. 

2.1. The Parsing Process 
The processing flow of the AbDC model starts (1) 

by creating an independent repository for research by 
the user and feeding the system with the desired 
keywords from the user based on the topic. Figure 3 
describes the parsing process flow. The user should 
collect documents related to the topic and add them 
to specific storage in PDF format, which can be 
cloud storage or local storage. The user can also 
upload the documents as PDF through the interface, 
Web UI. (2) All uploaded documents flow to a queue 
and wait to be analyzed. Thus, the user will not get 
the result of analyzing his document immediately 
(not a real-time process) since the platform serves 
multiple users with variant keywords and topics. The 
Mining Agents Coach (MAC) plays organizer role of 
the parsing queue (PQ) and the mining agents, MAC 
dequeues the documents from the queue (3) and 
gives each document to agent individually on 
parallel to parse it, Parsing document can be 
achieved by applying the document classification 
algorithm on each document to extract the keywords 
and the terms along with the thresholds relevancy for 
each keyword in the document, MAC has the power 
to create and drop mining agents (MAs) based on the 
number of the documents in the queue, which 
improves the performance of the process by handling 
many documents at the same time, MAC should 
guarantee the Agents Coordination, means each one 
agent should work on one document at the same 
time, in order to avoid working on one document by 
multiple MA agents, and should guarantee the data 
integrity, means, each MA agent should deliver the 
output of the mining process on the assigned 
document before getting a new one, and the 
document would not be removed from the queue 
unless MAC gets a feedback from the MA on charge 
to process that document, hence, MAC can  pass a 
document from agent to another agent in case of 
failure one of the MA agents.
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Figure 2. Agent-based Document Classification model 

After the MA agent finishes parsing a document 
by extracting the keywords and the thresholds (4), it 
sends these results to the DB agent (5) and gives a 
heads-up to the MAC that the task is done, then 
MAC might assign a new document to that agent or 
drop it. 

2.2. The Storing Process 
Saving in a structured database is the final step 

after analyzing the document’s text, extracting 
keywords, and computing. The threshold for each 
keyword is storing by considering all the previous 
factors. These keywords and the threshold value in 
the queryable database are considered so the user can 
search through this database for the keywords 
without analyzing the document again. The 
document after the analysis would be available for 
the user to search and use. Storing the data in this 
way allows us to collect the rows individually or in 
aggregated shape. Hence, the user can obtain the data 
appropriately by organizing the data within a table or 
spreadsheet. The most benefit for storing the data in 
the relational database is requesting the documents 
containing one or many keywords in a specific 
threshold, ordering them by relevancy, and reverting 
the data to the user across a friendly graphical user 
interface. The aggregated format is very useful to 

present the data through charts and graphic lines. As 
shown in Figure 4, the DB agent collects the results 
(1) (keywords and thresholds) and the document id, 
and the repository id that the document belongs to 
from the MA agents. Then it matches (2) the 
extracted terms with the desired keywords added by 
the user upon creating the repository of the research 
by removing the non-required term from the results 
if the term is not matching any of desired keywords. 
The final step is storing (3) the needed terms along 
with the weight (threshold) in the relational database 
that we called Global knowledge Base (GKB). 

 

 
Figure 4. The storing process 
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Figure 5. Graph Database Document-Keyword 

The keywords and the documents can be saved in 
a Semi-structured database (Graph DB) as well, in 
the form of nodes, relations, and attributes. By 
saving the data, we can build a recommendation 
system by applying some machine learning 
algorithm to recommend other documents that can be 
similar to a document that the user found useful and 
relevant to the desired topic. Hence, the user can 
search for documents covering a specific topic by 
using documents instead of keywords. Therefore, if 
the user finds a document using few keywords and 
marks it as useful, the system can recommend other 
documents that can be similar to that document. 
Figure 5 shows an example of saving the data within 
Graph Database. It consists of many nodes with 
different types (Document or Keyword) and 
Properties (Value, Threshold, Id), and relationships 
(Contain). 

2.3. The Search Process 
The main aim of analyzing documents and 

extracting the keywords, and saving them inside the 
database is to make this data is quarriable. So the 
user can send his desired keywords along with the 
assigned thresholds to obtain the documents meeting 
the sent query and ordering the results by the 
similarity against the search query from highest to 
lowest. This section explains the process and the 
search algorithm to get the documents based on the 
similarity with a given query. Figure 6 shows the 
search process. It (1) starts by inserting desired 
keywords along with thresholds relevancy for each 
keyword. Then, the search agent (2) collects the 
input data and (3) starts searching inside the GKB 
database to (4) find the documents containing the 

desired keywords with threshold greater than or 
equal assigned thresholds by applying the designed 
search algorithm. Finally, the agent (5) returns the 
results to the User interface with the possibility of 
saving the search for this user to send him/her further 
results later once a new document is analyzed and 
meets his search conditions. In this case, the system 
creates an agent on behalf of the user to provide him 
with these extra results; the generated agent would 
stay alive for a specific period specified by the user. 

 
Figure 6. Search Process 
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To build the search algorithm, we rely on the 
Vector-Space algorithm and modify the top of the 
algorithm to fit our case (long documents) since the 
large articles are poorly represented using Vector-
Space because they have poor similarity rates. Let’s 
assume that the search engine received the search 
query from the user, consisting of multiple keywords 
and thresholds value for each keyword 

q =  ൫𝑞𝑘𝑤
௧, 𝑞𝑘𝑤ଵ

௧ଵ, 𝑞𝑘𝑤ଶ
௧ଶ,

𝑞𝑘𝑤ଷ
௧ଷ, … … … … , 𝑞𝑘𝑤ିଵ

௧()
൯                            (1) 

 

Where q is the query, qkw is a keyword within the 
query, thr is the keyword threshold, n is the number 
of keywords in the query.  

The Searching process steps to return the results 
for this query are as the following: 

 Counting the total number thresholds 𝑆𝑢𝑚
௧௦ of 

all keywords in the query q: 

𝑆𝑢𝑚
௧௦=∑ 𝑡ℎ𝑟

ିଵ
ୀ         (2) 

↓ 

  
𝑇𝑜𝑡𝑎𝑙𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠=(𝑡ℎ𝑟+𝑡ℎ𝑟ଵ+𝑡ℎ𝑟ଶ+𝑡ℎ𝑟ଷ+……
…..+𝑡ℎ𝑟ିଵ)                                  (3) 

 Retrieving TF(term of frequency) for each qkw for 
each document d from the relational database 
containing the analyzed documents (𝒕𝒇𝒒𝒌𝒘

𝒅 ) 

𝒕𝒇𝒒𝒌𝒘
𝒅 = 𝑡ℎ𝑒 𝒕𝒇 𝑜𝑓 𝑡ℎ𝑒 𝑘𝑒𝑦𝑤𝑜𝑟𝑑 𝒒𝒌𝒘  

𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝒅                                   (4) 

 Tokenize the keywords and apply the stemming 
algorithm used in the parsing document process to 
extract the stemmed keywords from the query q.  

 Calculating the relevancy REL of each document 
d against the query q (𝑅𝐸𝐿ௗ

 ) , which equals the 
sum of the relevancy of each query keyword qwk 
in the query (𝑅𝐸𝐿ௗ

௪): 

𝑅𝐸𝐿ௗ
௪

=  𝑡𝑓௪
ௗ  × (

௧

ௌ௨
ೝೞ)                               (5) 

ℎ𝑒𝑛𝑐𝑒 ↓ 

𝑅𝐸𝐿ௗ


= ∑ (𝑡𝑓௪

ௗ  × (
௧

ௌ௨
ೝೞ))ିଵ

ୀ =

 ∑ (𝑅𝐸𝐿ௗ
௪ିଵ

ୀ )                                                      (6) 

 The last step is ordering the documents by the 
relevance value (𝑅𝐸𝐿ௗ

 ) from the most descending 

2.4. The Notifying Process 
As shown in Figure 7, when a user searches for 

documents using particular keywords with specific 
thresholds relevancy, he/she can enable the option 
“Notify me” as well. This option means that the user 
can get more input parameters from the future 
documents uploaded by the user, which would be 
added to the storage or analyzed later. Hence, the 
system assigns the user’s requests/inputs to the 
personal agent in order to start finding relevant 
documents on behalf of the user and provide the user 
with new results from the future documents 
accordingly. The user should also specify the period 
of the monitoring, for example, for ten months. In 
this case, the Monitor Agent MOA for this request 
would still be active for ten months and keep 
providing the user with further results for this period. 

After inserting the inputs (keywords, thresholds 
relevancy, Monitoring Date), the MOA reads these 
inputs and search inside GKB and return the results 
to the user. This agent would save the search request 
inputs inside another database called Monitoring 
database containing request inputs as well as 
requester email and monitoring validity period. As 
shown in Figure 7, the parsing process mines 
documents, extracts (7) keywords and their 
thresholds relevancy, and store these results inside 
GKB. During submitting the results to GKB, MOA 
(6) reads the users requests from the monitoring 
database and (8) watches parsing process results. If 
any results meet any user request, the PA would save 
these results and (9) notify the requester later by 
email or a notification on the website that he/she has 
further results to his request. 

3. THE DOCUMENT CLASSIFICATION 
ALGORITHM 

This section presents the designed algorithm to 
identify relevant studies from large databases that 
include thousands of articles. The algorithm 
architecture consists of eleven stages, as shown in 
Table 2 and Figure 8: 
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Figure 7 Personal Agent (PA) and Monitor Agent (MOA) 

Table 2 Document Classification Algorithm Stages  

# Stage Summary Technique Applied 
1 Words and Fonts 

Extraction 
To extract the words and fonts from PDF 

documents 
iTextSharp library 

2 Language Identification To determine the document language to exclude 
non-English 

Google Translator API 

3 Identifying the abstract 
and keywords sections 

To Identify the words that appear in the abstract 
and keywords sections to give them higher weigh 

Open NLP 

4 Content Tokenization 
 

To split the text into many pieces such as words, 
phrases, symbols, keywords 

OpenNLP 

5 Converting text to lower 
case 

To convert all the words to the small letters 
only, to facilitate the comparison and gathering 

.Net Text library 

6 Text transformation 
(attributes generation) 

Creating entity or bag to each word holding 
information about the word (order, length, stem 

value ,stop word, font) 

Class (object-
oriented programming) 

7 First Filter - Removing 
stop words 

To eliminate the words that attributed as stop 
words from the words collection 

.Net Linq library 

8 Second Filter- Regular 
expression 

To eliminate the words that don’t meet a regular 
expression, we chose (length more than 3 letters 

and alphabets only) 

.Net Regular expression 
library 

9 Normalization To generate the stemmed value from the word Porter Stem algorithm 
10 Replacing keywords 

Options 
To Replace synonyms words with original 

words 
.Net Linq library 

11 Synthesizing based on 
the attributes 

To group the words by their attributes (order, 
Stem, Font) into lists and maps 

.Net Linq library 

12 Document Text 
Typography Factor 

 

To compute the value of TTF for each document 
and identify TTF benchmark 

TTF formulas 

13 Calculating keywords 
weight 

To calculate the weight of each keyword in the 
document based on (TF and TTF) factors 

Term Frequency 
 

14 Extracting expressions To extract expressions from the document, the 
expression contains 2 or 3 words 

.Net Collection library 
 

15 Storing outputs in a 
relational database 

To store the extracted expressions, keywords, 
fonts and weights into a relational database 

SQL Server DB 
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Figure 8 Document Classification Algorithm Stages 

Following, we elaborate on the major stages.  

3.1. Synthesizing based on Attributes 
In this phase, the list of word entities is created and 

ready to be pushed to the document entity. As 
mentioned before, there is a method in the document 
entity that offers this ability. The method of adding 
word entity to document entity goes through several 
stages: 

 Increase the count of WordsOfDocumecumt by 1. 

 Check the validity of the Word entity by calling 
IsValid() method, which returns “true” if the word 
isn’t a stop word and matches the Regular 
Expression (Regex), otherwise, the word will be 
invalid, and the method will returns “false”. 

 Add a reference to the Word entity to the 
WordsList collection within the document entity. 
If the word is valid, otherwise, it would be ignored, 
the words would be ordered by the position of the 
word in the document in the list. 

Add the word entity to the TermsMap dictionary 
within the Document entity. If a word is valid, 
otherwise, it would be ignored. Before adding a word 
entity to this dictionary (Map), the method checks if 
the map contains the word’s stemmed value in the 
keys. If yes, then the key would not be added because 
it already exists on the map. Still, a new Word entity 
would be added to the list of Word entities and linked 
to the key containing that stemmed word. Still, if the 
map does not contain the key, then a new key would 
be added to the map with the stemmed word, and a 

new Word entity would be added to the value and 
linked to the new key, as shown in Figure 9. 

 Add the FontSize to the FontCount map. The 
map's key is the font size, and the value is the count 
of the words following this font in the document. 
Therefore, when a new word entity is added, the 
algorithm will check if this word’s font size exists 
in the FontMap. If it exists, then the count of that 
font size would be increased by one. In case it 
doesn’t exist, the font size would be added to the 
FontSize map in the new key, and the count would 
be 1 in the value, as shown in Figure 10. After 
adding parsing all the words in documents and 
creating a word entity from each of them, and 
adding them to the document entity, the document 
entity is ready to call the AnalayzeDocument 
method to start doing the Factors thresholds. 

3.2 Text Typography Factor 
Text Typography Factor (TTF) of a document is 

considered to give the higher score, the words having 
bigger font sizes or in bold case, as shown in Figure 
11. 

Figure 12 presents a document consisting of 
several font sizes (12, 18, 24, 40). Some of the words 
are bold, so to determine TTF, a benchmark should 
be identified first to compare each font in the 
document. Therefore, we calculate FontBenchmark 
as following: 
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Figure 9. TermsMap 

 
 

 
Figure 10. FontCount map 

 
Figure 11. Font features 

BiggestCount = Document.FontCount.Max(Font 
=> Font.Count) 

FontBenchmark= 
Document.FontCount.Where(Font.Count == 
BiggestCount) 

 
The next step is identifying the value of 

BoldFactor for each font. BoldFactor is a numeric 
value that can be only one of two options: 

 BoldFactor of the font is 0: if the FontBenchmark 
is Bold, regardless of the font thickness, or the font 
is not Bold 

 BoldFactor of the font is 0.5: if the 
FontBenchmark is not Bold and the font is Bold 

 

The next step is calculating the TTF value for each 
font based on the FontBenchmark and the 
BoldFactor of the font. TTF calculation is done as 
the following  

FOR each Font in FontCount Map from Document 
Entity 

IF FontBenchmark is not Bold AND Font is Bold 

         Font.BoldFactor=0.5 

Else 

         Font.BoldFactor=0 

END IF 

 

IF Font.FontSize is smaller than or Equal 
FontBenchmark.FontSize 

               Font.TTF= 1 

Else 

               Font.TTF= Font.FontSize / 
FontBenchmark.FontSize 

END IF 

Font.TTF = Font.TTF + (Font.TTF * 
Font.BoldFactor) 

END LOOP   
 

3.3 Calculating Keywords Weight 

This section explains the calculation of the weight 
of each keyword in a document. However, before 
starting the weight calculation, we need to calculate 
some factors affecting the weight. The first factor is 
Term Frequency (TF); as mentioned in Chapter 2, TF 
is the number of times a word appears in the 
document (D), divided by the total number of words 
in that document which is 3645 words as per the 
previous section: 
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𝑇𝐹(௧) =  
ே௨  ௧௦ ௧ (௧) ௦   ௗ௨௧

்௧ ௨  ௧௦  ௧ ௗ௨௧
  (7)                      

↓ 

𝑇𝐹(௧) =  
଼

ଷସହ
= 0.0213                                          

In the Document entity, we organized all words in 
one map: TermsMap, so it is easy to know the count 
of each word in the document using this map. We 
have a beneficial property holding the count of the 
words in the document, which is WordsInDocument. 
The second factor is the Text Typography Factor 
TTF of each extracted keyword. In the previous 
section, we show how to calculate the TTF for each 
font available in the document. So the TTF of a 
keyword is the average TTF of the fonts that the 
keyword followed of the document. For example, 
keyword W appears n=78 times in the document (D) 
in three various fonts F1, F3, F5, where numbers of 
impressions per font are n1=2, n2=54, n3=22, 
respectively: 

 

𝑇𝑇𝐹(௪) = 
((்்ி(ಷభ) ∗ ଵ) ା ( ்்ி(ಷయ)∗ ଶ) ା( ்்ி(ಷఱ) ∗ ଷ))


   (8)       

↓ 

𝑇𝑇𝐹(௪) = 
((ଵ.ହ ∗ ଶ) ା ( ଵ∗ ହସ) ା( ଵ.ଵ଼ ∗ ଶଶ))

଼
 = 1.06             

 
Now, we can utilize both factors (TF and TTF) to 

calculate the weight of the keyword. The weight 
equals TF, multiplied TTF of keyword W in 
document (D): 

 
𝑊𝑒𝑖𝑔ℎ𝑡(௪)

 = 𝑇𝑇𝐹(௪) × 𝑇𝐹(௪)                        (9) 
↓ 

𝑊𝑒𝑖𝑔ℎ𝑡(௪)
 = 1.06 × 0.0213 = 0.022578  

We introduced a different approach to calculating 
the weight based on the highest number of the 
frequency among the keywords in the document 
instead of the number of the words in the entire 
document, so the term frequency factor formula 
would be slightly changed to be like this: 

𝑇𝐹𝐵𝑀𝑇𝐹(௧)
  = 

ே௨  ௧௦ ௧ (௧) ௦   ௗ௨௧()

ே௨  ௧ ௧ ௨௬   ௗ௨௧ ()
   (10) 

Where TFBMTF means Terms Frequency Based 
on Max Term Frequency. Thus, the new formula to 
calculate the weight of keyword w in document D 
based on max term frequency (Weigh_BMTF) is: 

𝑊𝑒𝑖𝑔ℎ_𝐵𝑀𝑇𝐹(௪)
 = 𝑇𝑇𝐹(௪)  × 𝑇𝐹𝐵𝑀𝑇𝐹 (௪)  (11) 

 
The last step is applying the previous formulas on 

all the extracted keywords from the document. For 
example, in TermsMap, we have all Word entities 

sharing the same stemming value grouped under one 
key: stemming, and the Word entity contains Font 
entity. Hence, we can run a loop on TermsMap’s 
keys and calculate the weight of each key by 
applying the formulas as following: 

 
FOR each StemWord w in TermsMap keys from 
Document Entity  
 
 TermsList= Document.TermsMap[w] 
     TTF(w) = TermsList.Average(term => 
FontsMap[term.Font].TTF) 
 TF(w)= TermsList.Count / 
Document.WordsInDocument 
      Weigh(w) = TTF(w) * TF(w) 
 
 MaxTermFrequancy = 
Document.TermsMap.Max(Value.Terms.Count); 
 TTFBMTF(w)= TermsList.Count / 
MaxTermFrequancy 
      Weigh_BMTF(w) = TTF(w) * TTFBMTF(w) 

 
END LOOP   
 

The main reason behind having two weights for 
each term (𝑊𝑒𝑖𝑔ℎ(௪), 𝑊𝑒𝑖𝑔ℎ_𝐵𝑀𝑇𝐹(௪))  because 
we use 𝑊𝑒𝑖𝑔ℎ_𝐵𝑀𝑇𝐹(௪) for searching using the 
keyword and threshold as input from the user, on the 
other hand, 𝑊𝑒𝑖𝑔ℎ(௪) It is important to order the 
retrieved documents by relevancy because the 
document’s length affects the relevancy factor, as 
mentioned before. Thus, the big document 
containing a lot of pages is considered less relevant 
to a topic comparing to a short document containing 
fewer pages and words, even though, 
𝑊𝑒𝑖𝑔ℎ_𝐵𝑀𝑇𝐹(௪) for some keywords are equal 
among both documents. For example, the keyword k 
has the biggest weight in document D1, which 
contains n number of words, and document D2, 
which contains n*5 words. Hence, both documents 
are very relevant to k. However, the document D1 is 
more relevant to k comparing to document D2: 

 
𝑊𝑒𝑖𝑔ℎ𝑡()

ଵ  = 𝑊𝑒𝑖𝑔ℎ_𝐵𝑀𝑇𝐹 ()
ଶ  = 1       (12) 

BUT 
𝑊𝑒𝑖𝑔ℎ𝑡()

ଵ  > 𝑊𝑒𝑖𝑔ℎ_𝐵𝑀𝑇𝐹 ()
ଶ                (13) 

 
3.4 Extracting Expressions (Multiple Words) 

The designed algorithm offers another feature that 
might be useful to the clients, which is extracting 
expressions from the document. The expression 
contains 2 or 3 keywords. 
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Figure 12. Extracting Expressions process 

As shown in Figure 13, we consume the words 
existing in the WordsList collection in the Document 
entity. WordsList contains all the words of the 
document in the stemmed case, ordered by the 
advent of the words in the main document. The 
algorithm creates an expression from every 2 and 3 
consecutive words and adds the expression to the 
Expressions Map, where the Expressions Map is a 
(key, value ) Map, it contains the expressions as keys 
and the appearance frequency of the expressions as a 
value, thus, after combining two or three consecutive 
words to create an expression, we check if this 
expression exists in the map, so if the expression is 
already added before, then we don’t add it again 
since the key in the map is unique, but we will 
increase the appearance frequency of that expression 
by 1. Otherwise, we add a new key containing the 
expression, and the appearance frequency equals one 
as the initial value. We mentioned the algorithm 
could be fed with a list of keywords and options or 
synonyms of the keywords to help the algorithm give 
more accurate results. In case a document contains 
one of the synonyms instead of the original 
keywords, the algorithm accepts the expressions as 
well, so the algorithm would replace the synonyms 
or the expression with the original expression during 
the expressions extraction process. This feature 
makes the algorithm more flexible and improves its 
accuracy. 

For example, the multi-agent system concept has 
another scientific expression which is Distributed 
systems, so the user can teach the algorithm to 
replace the expression “Distributed systems” with 
the “multi-agents system” expression if the first 
expression is found. Thus, the user doesn’t need to 
search for “multi-agent system” and “distributed 
systems” independently, where one of them can be 
set as an option to another before starting the parsing 
process. Later, users can search just by using the 
main expression. The algorithm stores the 
expressions and the expression’s options in the 

memory before starting the extraction process from 
the documents in the stemmed format. The algorithm 
checks if any extracted expression matches one of 
the expression’s options provided by the user, so it 
reverts the expression to the original expression in 
stemmed format, as shown in Figure 13. 

Figure 13 shown an example of matching and 
replacing expression. The expressions options map 
contains the expressions (W1 W2) and (W5 W1) as 
options to the main expression (K1 K2). Before 
adding the expressions to the extracted expressions 
map, we check if the extracted expression (W1 W2) 
is listed as an option to another expression, so we 
replace (W1 W2) and (W5 W1) with (K1 K2) and 
add (K1 K2 ) to the final map. 

4. IMPLEMENTATION OF THE 
SYSTEMATIC LITERATURE REVIEW 
MODULES 

In this section, we introduce the entire process we 
develop to mitigate the systematic review process, 
starting from the Web facade that used by the users 
to upload the documents to the system, feeding the 
system with the main keywords, inserting metadata 
for each document manually and using Google 
Scholar API, parsing the documents files and extract 
the keywords along with thresholds, providing a 
friendly user interface to find a document through the 
metadata, generating aggregation reports and charts 
based on the metadata fields, providing direct links 
to related works and versions of a document on 
Google Scholar, collecting the citation text from 
Google Scholar if applicable, presenting the outcome 
of the text-mining algorithm in a searchable form, in 
addition, ordering the documents by the relevancy to 
the keywords, and finally collecting the citations 
from all used documents in one text to copy it to the 
reference sections in the dissertation. Figure 14 
shows the used technologies to develop the proposed 
solution. 



Journal of Theoretical and Applied Information Technology 
15th February 2022. Vol.100. No 3 

© 2022 Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
768 

 

 
Figure 13. Matching and Replacing Expressions process 

The system also produces some aggregations 
reports based on the metadata of the documents in a 
repository in visual forms as charts; the system 
manipulates and groups the metadata of the added 
documents to the system repository and presents 
them through charts, these charts can be used while 
conducting a systematic literature review. 

Hence, this the researcher can focus on collecting 
articles with uncertain relevancy without spending 
time and effort on analysing and organizing the 
metadata and creating the aggregation reports 
manually, we will list the grouping reports provided 
by the system. 

 
Figure 14 The Used Technologies To Develop the Proposed Solution 

 Aggregation by issuing year: This chart groups the 
user provides the references of a particular 
repository by the year of issuing, against a list of 

ranges through the repository configuration, 
Figure 15 is an example of the grouping method 
against 5 ranges of years. 
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Figure 15 SLR Aggregation by issuing year 

 Aggregation by Country: This chart groups the 
references of a particular repository by the 

Country, Figure 16 is an example of the grouping 
method. 

 
Figure 16 SLR Aggregation by Country 

 Aggregation by Reference Type: This chart groups 
the references of a particular repository by the 

Reference Type, Figure 17 is an example of the 
grouping method. 

 
Figure 17 SLR Aggregation by Reference Type 

 Aggregation by number of citations: This chart 
groups the user provides the references of a 
particular repository by the number of citation 
according to Google Scholar as per the date of 
inserting each document in the database, against a 
list of ranges through the repository configuration, 
Figure 18 is an example of the grouping method 
against 9 ranges of years. 

5. TESTING AND VALIDATION 

This section runs the document classification 
algorithm to parse testing sample studies to extract 
the keywords and the thresholds from each study and 
the expressions. 
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Figure 18 SLR Aggregation by number of citations 

As mentioned earlier, the process of text mining, 
such as document classification, is considered a 
heavy process in terms of time and processing. 
However, we introduced the use of Multi-Agent as a 
proposal to improve the performance of the process 
and decrease the time. Hence, we run the algorithm 
through one and multiple agents in one machine and 
compare the time of the entire parsing process, 
starting from collecting the documents of studies 
from the user by the MAC (Multi-Agent Coach) until 
delivering the results of the parsing process to the 
DB agent. Then we run the algorithm in multiple 
machines (multi-nodes) simultaneously to see the 
positive impact of running the agents in multiple 
nodes on parallel in improving the parsing process's 
performance by decreasing the time of the operation.  

 

We use SQS service (Queue Service in the cloud) 
from Amazon Web Service (AWS) on the cloud to 
push all 20 documents to the queue so the agents can 
pull the tasks (documents) from that queue to 
guarantee that one document will not be parsed more 
than one time from multiple agents. 

Figure 19 shows the time consumed by each 
number of agents to parse the 20 documents in 
seconds, hence by comparing the times, we conclude 
that running the document classification algorithm 
through 4 agents in one machine decreases the total 
time of the process from 2283 seconds to 1523 
seconds, means improving the performance 
approximately by 33.5%. 

 

 

 
Figure 19 Performance Comparison - Running the algorithm by variant numbers of agents 

However, as shown in Figure 20, running the 
algorithm through 5 agents and more did not improve 
the performance. The process took the almost same 
time, consequently, by keeping increasing the 
number of agents does not cause better performance 
because when the agents run simultaneously in one 
machine, they fight for the same OS resources, which 
means that increasing the number of agents 

dramatically and not thoughtful might grind the 
operating system. 

We monitored the CPU of the machine during the 
parsing process and took screenshots from the CPU. 
As shown in Figure 21, we notice that increasing the 
number of agents working simultaneously causes 
increasing in consuming the machine’s CPU 
accordingly, impacting other processes on the 
machine or the OS itself. 
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Figure 20 CPU monitoring during the Parsing Process 

Many programming languages provide an 
encapsulated approach for managing the agents to 
facilitate creating the agents and avoid grinding the 
OS, so it creates the agents and assigns a task to 
them. Still, some jobs will execute simultaneously. 
The rest will queue up and wait their turn. We tested 
this approach, but that did not give any improvement 
compared with the 4 Agents since the agents were 
sharing the machine's resource. For example, if we 
have two documents (document 1, document 2) and 
run 1 agent to parse both of them, then run 2 agents 
to do the same, the single agent needed 23 sec to 

parse (document 1) and 33 sec to parse (document 2) 
but because the parsing both document using a single 
agent is done on the sequence, so the total time of the 
process is (23+33= 55 sec), now if we perform the 
same experiment using 2 agents to parse the same 
documents, document 1 needed 30 sec to get parsed, 
and document 2 needed 44 sec to get parsed, but 
because the agents parsed both documents on 
parallel, hence the entire process time was 44 sec as 
shown in Figure 16. 

 

 
Figure 21 Parsing two documents using single-agent and two agents 

 
We used the AWS EC2 service to issue three more 

instances of the same machine that we used in the 
previous section, run the four machines together to 
parse the testing sample (20 documents), and run 
four agents in each machine. Hence the number of 
agents is 12 agent as per this criteria. From Table 3, 
we notice that increasing the number of agents by 
using multi-agent within multiple machines on 
parallel can cause a massive improvement of the 
parsing process performance, where the time of the 
process decreased 1519 Sec to 350 Sec = 
05:Min:50Sec. 

While designing the document classification 
algorithm, we noticed that there the parsing process 
could not extract the text from some PDF files 
correctly, where three documents out of 200 (1.5%) 
of the documents gave invalid text since some of 
them might be built as images, not as a text. Hence, 
our parsing process can not extract any text from the 
images, where this process needs to use image 
processing algorithms and doing OCR, which is not 

available in the current parsing process. Hence, the 
parsing process gave valid results with 98.5%. Thus, 
we have 1.5% invalid results because of extracting 
the text from the PDF documents. 

6. CONCLUSION AND FUTURE WORK 

This study explored the use of AbDC in the 
systematic review process. The technology is 
implemented in screening the studies on behalf of the 
user to reduce the effort and time needed in the 
inclusion/exclusion stages in the systematic review 
process. Many document classification algorithms 
and factors affecting the text mining and document 
classification processes have been investigated. All 
the findings are combined. A new document 
classification algorithm is then concluded to help 
users exclude the irrelevant studies and order the 
relevant ones by the level of relevancy against 
desired topics. An agent-based model is proposed to 
accelerate the process and overwhelm the slowness 
of the document classification process. 
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Table 3 Parsing the testing sample using 4 Machines 

Machine The Parsed Documents Time of the Process 
Machine 1 Document_A.PDF 

Document_F.PDF 
Document_G.PDF 
Document_M.PDF 

290 Sec 

Machine 2 Document_B.PDF 
Document_L.PDF 
Document_O.PDF 

284 Sec 

Machine 3 Document_D.PDF 
Document_E.PDF 
Document_I.PDF 
Document_N.PDF 
Document_R.PDF 
Document_T.PDF 

320 Sec 

Machine 4 Document_C.PDF 
Document_H.PDF 
Document_J.PDF 
Document_K.PDF 
Document_P.PDF 
Document_Q.PDF 
Document_S.PDF 

350 Sec 

The use of software agents to measure the 
relevancy level and identify irrelevant studies from a 
set of studies is also demonstrated. The agent can 
calculate the weights of each study against desired 
topics and recommend the most relevant studies 
useful to the researcher. The algorithm is designed 
using a modern programming language as a backend 
engine to simulate the algorithm in actual studies. 
Moreover, a web-based systematic review tool is 
established to search amongst the extracted 
keywords to validate the designed document 
classification algorithm. Many features are provided 
to help the researchers in conducting the systematic 
review; these features include meta-data analysis, 
collection of meta-data and citation texts from a third 
party, creation of study repositories and study 
management and providing two types of searching 
within the repositories of studies (full-text and meta-
data search). The results of this study in mitigating 
the systematic review process using AbDC have 
shown considerable success concerning the research 
objectives.  

However, this study also shows some limitations 
and deficiencies. Nonetheless, these deficiencies do 
not compromise the significance of this research. 
The research scope is as follows: using document 
classification to reduce the required effort needed in 
the systematic review process overlays many 
discoveries that could be integrated into agents. This 
study also outlined some interesting areas that could 
be investigated in future work. Proposing a method 
to distinguish the Abstract and Keywords sections 

automatically from the studies can be useful to the 
parsing process, which can be run in two levels. The 
first round of screening involves only the Abstract 
and the Keywords sections, and the second round 
screens the entire study. The process can exclude the 
studies that do not show any kind of relevance in the 
first round of screening without going through the 
entire text for the first time because the abstract and 
keywords give an initial clue regarding the study. 
Thus, massive amounts of work and processing are 
saved, which, in turn, is reflected in the cost and the 
time. The proposed system serves many users 
working in various research and topics. Thus, the 
users upload the documents of the studies to the 
system along with the meta-data of the studies. The 
extracted keywords are saved in relational and graph 
databases. Therefore, a recommendation system can 
be built on top of the current system, where the 
researcher can flag a study as useful to his topic. 
Thus, the system can recommend some studies 
similar to the survey found useful based on the 
relations between the studies built in accordance 
with sharing some keywords in certain thresholds. 
This condition can be valuable to investigating 
documents based on the similarity to a submitted 
document because this issue is still under research. 
Efficient ways are still currently unavailable. 
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