
Journal of Theoretical and Applied Information Technology
15th February 2022. Vol.100. No 3

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

756

AN AGENT-BASED DOCUMENT CLASSIFICATION MODEL
TO IMPROVE THE EFFICIENCY OF THE AUTOMATED

SYSTEMATIC REVIEW PROCESS

MOUAYAD KHASHFEH1, MOAMIN A MAHMOUD2, MOHAMMED NAJAH MAHDI3

1College of Graduate Studies, Universiti Tenaga Nasional

2,3The Institute of Informatics and Computing in Energy (IICE), Universiti Tenaga Nasional, Malaysia

1mou2ayad@gmail.com, 2moamin@uniten.edu.my, 3najah.mahdi@uniten.edu.my

ABSTRACT

This paper proposes an Agent-based Document Classification (AbDC) model that computerizes the
systematic literature review (SLR) process by imitating what a researcher is supposed to perform during the
literature review process manually. The AbDC model comprises three main components that perform the
SLR. Firstly, the document classification algorithm analyses a full text of research articles and evaluates
relevancy. Secondly, the multi-agent architecture accelerates the mining process and handles the performance
issues. Finally, the web-based systematic review tool tests and validates the functionality of the proposed
AbDC model. The first testing was conducted to assess the performance of the proposed AbDC. Result shows
that the required processing time was reduced by 33.5% using four agents to achieve the mining process.
Meanwhile, the second testing was performed to validate the mining process results. The text extraction
method was run on 200 documents from various studies to conduct the review process. The parsing process
yielded valid results with 98.5% accuracy. The testing results showed that the proposed AbDC model is
significant in providing researchers and postgraduate students with new means to perform SLR.

Keywords: Document Classification, Systematic Literature Review, Multi-Agent System.

1. INTRODUCTION

The process of performing literature review
consumes a considerable amount of time and effort
from researchers and students. Such a process
requires reading and understanding hundreds of
studies and subsequently extracting and excluding
relevant or irrelevant articles, respectively. In a
remarkably advanced method, the current trend is the
application of the systematic literature review (SLR)
concept, which involves a sophisticated procedure to
ensure valid, comprehensive and highly relevant
outcomes. By contrast, finding information on the
WWW was markedly enhanced when using search
engines in the mid-1990s. However, the
development of science and the spread of knowledge
coincide with a growing number of publications, and
the volume of online content continues to grow
rapidly. The search engines for some submitted
queries may retrieve documents of low relevancy to
the queries. Additionally, the number of digital
materials is tremendously increased. In May 2011,
Google indexed an estimated 35 billion web pages,
and the number has risen to 45 billion after two

years. A large number of returned results by search
engines for a submitted query requires reading and
discovering the most relevant, thereby discarding
more than half of what has been read. ‘Systematic
review’ has become one of the top trends in the
research community and has dramatically increased
in the last few years.

A primary objective of any systematic review is to
minimise publication bias [1] by analysing all studies
relevant to the review. Scells 2018 [2] identified
systematic review (SR) as a type of literature review
that appraises and synthesises the work of primary
research studies [3] to answer one or more research
questions. SLR is a rigorous approach for stand-
alone literature review; an SLR is when a stand-alone
literature review is conducted using a systematic,
rigorous standard [4]. Fink [5] introduced an SLR as
a systematic, explicit, comprehensive and
reproducible method for identifying, evaluating and
synthesising the existing body of completed and
recorded work produced by researchers, scholars and
practitioners. The systematic review [6] focuses on a
specific question to provide evidence to underpin a
part of the research. The stand‐alone part of the study

Journal of Theoretical and Applied Information Technology
15th February 2022. Vol.100. No 3

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

757

should be performed before conducting further
research [7]. This part requires searching through
several particularised data sources using specific

search terms. Table 1 summarises the systematic
review challenges.

Table 1. Systematic review challenges

Technical
knowledge

The researchers might be unaware of systematic review methodology (i.e., performing a
narrative review) [21].

Systematic review uses some advanced tools and applications to organise the data, and this kind
of application is either expensive or difficult to use for non-technical users.

Most of the available tools focus on organising the metadata [22] of the studies but do not offer
advanced features to help researchers in inclusion/exclusion tasks. Thus, screening and

evaluating processes on behalf of the researcher and providing reliable suggestions with an
acceptable level of accuracy are necessary [19].

Using the available applications and tools requires a level of technical experience from the
researcher to efficiently utilise these tools, which is not always available in non-technical

researchers, such as the researchers in (human rights, geography, history, and human resources)
[21].

Time
consumption

Conducting a systematic review is time consuming. The user must collect and organise the
metadata of each study used in the research to generate statistical reports and charts from the

data aggregation [22].

Screening the text of the study for inclusion and exclusion is a time-consuming task [22]. This
task will take a considerably long amount of time and effort from the user regardless of whether
the user screens the document fully or partially (Abstract and Title) and wants to follow the two-

step screening approach [23].

Search
accuracy

Some researchers might not follow the inclusion/exclusion criteria set when starting the research
[19]

Researchers lack a unique method (criteria) for exclusion/inclusion [21], which impacts the
research accuracy. For example, suppose 20 studies are given to three researchers to include and

exclude relevant and irrelevant studies. Thus, each researcher might return different results
based on the criteria and the method they followed. The reliability of every survey is determined

by defining whether the study's accuracy is ‘high’ or ‘low’.
Some researchers might not use a two-step screening process (firstly reviewing Title/Abstract

than the entire study) [22]. Two screening processes may need a long time; thus, many
researchers conduct only one-step screening (title and abstract screening) [23].

The conduct SR process [14][15][17][18][19][20],

a complete collection of keywords is formulated and
utilised to query different databases, such as PubMed
and Web of Science, to obtain all the relevant
studies. Afterwards, the titles and abstracts of the
studies should be reviewed individually and verified
versus a kit established previously of acceptance
criteria for inclusion and exclusion. The study should
also pass the first elimination process. The entire text
of the study is obtained and tested to decide its
involvement or elimination from the review. An SR
attempts to collate all experimental proof that meets
pre-specified qualification rules to find the answer to
a particular research inquiry. SR also utilises
explicit, systematic techniques chosen to reduce
bias, producing reliable conclusions to obtain
outcomes and present judgements. Figure 1 shows
the SR steps for conducting a systematic review [16].

Journal of Theoretical and Applied Information Technology
15th February 2022. Vol.100. No 3

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

758

Figure 1. Steps to conduct an SR

Many research studies attempted to use
technologies to facilitate the systematic review
process [8][9][10]. Text mining [11], which is one of
these technologies, is used to conduct systematic
reviews to reduce the screening workload by
automatically eliminating irrelevant studies. Using
text mining in the SR process, which is not yet fully
proven, is considered promising. Although this
method may be used with a high degree of
confidence in many fields, additional developmental
and evaluative work is needed in other disciplines.
Using text mining to perform systematic reviews can
save effort and time. However, a serious concern
related to the efficiency of the process considering
the performance, where text mining is regarded as a
heavy process and costly considering processing and
time [8]. One of the proposed solutions to tackle the
performance issue of text mining is using the multi-
agent system (MAS) [33][34][35][36][37][38].
However, some research studies showed the
significance of finding a way to overwhelm the
performance issue when applying text mining
algorithms [12][31][32][40].

A MAS provides the advantages of computational
efficiency, reliability, extensibility, maintainability,
robustness, maintainability and responsiveness,
flexibility and reusability [24]. Interaction between
agents can be conducted through an agent
communication language. The MAS has been
applied for various applications [39] [40][41][42],
including natural language processing [29] and data
mining [25]. The MAS theory can typically be
adapted for two main reasons [28]. Firstly, data are
often intrinsically distributed over several sites.
Collecting these data in a single processing node is
inconvenient for the communication costs, feasible
for privacy policies and even beneficial for real-time
data streams. Secondly, the complexity of the task is
often. Thus, the data must be partitioned to process
each data subset independently and finally combine
the partial results. Multi-agent systems [30] is a
subfield of distributed artificial intelligence, which
has experienced rapid growth because of its
flexibility and intelligence to solve distributed

problems [43][44][45][46][47]. According to [26],
well-documented advantages of the MAS include
decentralised control, robustness, simple
extendibility, sharing of expertise and sharing of
resources. Consequently, some of the benefits
available when using multi-agent technology in large
systems are presented as follows.

 An increase in the speed and efficiency of the
operation due to parallel computation and
asynchronous operation [30]

 Remarkable degradation of the system when one
or more of the agents fail, thus increasing the
reliability and robustness of the system [30]

 Scalability and flexibility: Agents can be added
as and when necessary [27]:

 Reduced cost: Individual agents cost remarkably
less than a centralised architecture [27]

 Reusability: Agents have a modular structure and
can be easily replaced in other systems or
upgraded more quickly than a monolithic system
[30]

Several tools and systems have been developed to
help perform the systematic review process by
providing some features to assist researchers in one
or multiple stages of the systematic review.
However, most of these tools and systems, such as
EndNote and Rayyan, focus on the meta-analysing
part and organising the references. By contrast, only
a few tools and systems focused on automating the
screening stage to aid in taking inclusion/exclusion
decisions versus a predefined punch of inclusion
criteria; for example, but not limited to the EPPI-
Reviewer system [13], which provides features
regarding metadata services (collecting, analysing,
organising and reporting), as well as full-text
screening service by using their text-mining
algorithm. However, this service is unavailable for
all users. They have a real performance problem due
to the heaviness of the text mining process,
considering the time needed to analyse the studies
and the processing because it excessively consumes

Journal of Theoretical and Applied Information Technology
15th February 2022. Vol.100. No 3

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

759

the CPU memories. Thus, if many users are allowed
to leverage this service, then the analysis results may
not be provided within a reasonable time. Moreover,
users employ massive resources to parse a vast
volume of studies. The EPPI-Reviewer system has
remarkable features. However, using this system is
difficult, especially for those who do not have
technical skills and are unfamiliar with using the
software effectively (such as the researchers in
Humanities, Law, Chemistry, History and other non-
technical domains). Finally, the text mining
algorithm of the EPPI-Reviewer system [13] can be
improved to give accurate results by considering
additional factors for enhancing text mining, which
mainly focuses on the terms of frequency factor to
extract the keywords from the text. This paper
proposes an AbDC model that executes a document
classification algorithm through multiple agents
simultaneously to analyse many documents to
overcome the slowness issues caused by the
heaviness of the classification process. The current
study is directed to scientific publications with short
study documents (less than 25 pages per document)
and available in pdf format as English text (not
images or handwritten).

2. AGENT-BASED DOCUMENT
CLASSIFICATION (ABDC) MODEL

This section presents a combination of text mining
in terms of document classification and data mining
with a multi-agent system to extract the potential
context of scientific publication from a particular
scientific publication warehouse and thus define
which publication is potentially relevant to a
searcher’s need. The designed algorithm gives the
user the ability to input the keywords besides
assigning a threshold value for each one. The
algorithm consists of three processes, detection
process, preparation process, and mining process.
The detection process includes the determination of
document language and abstract, and keywords. The
Preparation consists of the processes, split content to
paragraphs, paragraph length determination;
converting text to lower case; text typography factor,
content tokenization, removing stop words. Finally,
the mining includes the processes, regular
expression; normalization; grouping, and computing
frequency. The designed algorithm would be helpful
in providing an alternative means of searching highly
relevant content from large databases.

The proposed model consists of five components:
the interface, parsing process, storing process,
notifying process, and Search process, as shown in

Figure 2. The interface provides communication
means between the user and the agents in the
backend process. Besides, it provides an input tool
for users’ search preferences. The second component
is the parsing process that operates by a document
classification algorithm. The third part is the storage
process that manages by DB Agent. The fourth
component is the notifying process executed by the
personal agent and the monitor agent. The last
component is the search process that is operated by
pattern matching, where the user submits the search
query to the engine through the interface to run the
search process.

2.1. The Parsing Process
The processing flow of the AbDC model starts (1)

by creating an independent repository for research by
the user and feeding the system with the desired
keywords from the user based on the topic. Figure 3
describes the parsing process flow. The user should
collect documents related to the topic and add them
to specific storage in PDF format, which can be
cloud storage or local storage. The user can also
upload the documents as PDF through the interface,
Web UI. (2) All uploaded documents flow to a queue
and wait to be analyzed. Thus, the user will not get
the result of analyzing his document immediately
(not a real-time process) since the platform serves
multiple users with variant keywords and topics. The
Mining Agents Coach (MAC) plays organizer role of
the parsing queue (PQ) and the mining agents, MAC
dequeues the documents from the queue (3) and
gives each document to agent individually on
parallel to parse it, Parsing document can be
achieved by applying the document classification
algorithm on each document to extract the keywords
and the terms along with the thresholds relevancy for
each keyword in the document, MAC has the power
to create and drop mining agents (MAs) based on the
number of the documents in the queue, which
improves the performance of the process by handling
many documents at the same time, MAC should
guarantee the Agents Coordination, means each one
agent should work on one document at the same
time, in order to avoid working on one document by
multiple MA agents, and should guarantee the data
integrity, means, each MA agent should deliver the
output of the mining process on the assigned
document before getting a new one, and the
document would not be removed from the queue
unless MAC gets a feedback from the MA on charge
to process that document, hence, MAC can pass a
document from agent to another agent in case of
failure one of the MA agents.

Journal of Theoretical and Applied Information Technology
15th February 2022. Vol.100. No 3

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

760

Figure 2. Agent-based Document Classification model

After the MA agent finishes parsing a document
by extracting the keywords and the thresholds (4), it
sends these results to the DB agent (5) and gives a
heads-up to the MAC that the task is done, then
MAC might assign a new document to that agent or
drop it.

2.2. The Storing Process
Saving in a structured database is the final step

after analyzing the document’s text, extracting
keywords, and computing. The threshold for each
keyword is storing by considering all the previous
factors. These keywords and the threshold value in
the queryable database are considered so the user can
search through this database for the keywords
without analyzing the document again. The
document after the analysis would be available for
the user to search and use. Storing the data in this
way allows us to collect the rows individually or in
aggregated shape. Hence, the user can obtain the data
appropriately by organizing the data within a table or
spreadsheet. The most benefit for storing the data in
the relational database is requesting the documents
containing one or many keywords in a specific
threshold, ordering them by relevancy, and reverting
the data to the user across a friendly graphical user
interface. The aggregated format is very useful to

present the data through charts and graphic lines. As
shown in Figure 4, the DB agent collects the results
(1) (keywords and thresholds) and the document id,
and the repository id that the document belongs to
from the MA agents. Then it matches (2) the
extracted terms with the desired keywords added by
the user upon creating the repository of the research
by removing the non-required term from the results
if the term is not matching any of desired keywords.
The final step is storing (3) the needed terms along
with the weight (threshold) in the relational database
that we called Global knowledge Base (GKB).

Figure 4. The storing process

Journal of Theoretical and Applied Information Technology
15th February 2022. Vol.100. No 3

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

761

Figure 5. Graph Database Document-Keyword

The keywords and the documents can be saved in
a Semi-structured database (Graph DB) as well, in
the form of nodes, relations, and attributes. By
saving the data, we can build a recommendation
system by applying some machine learning
algorithm to recommend other documents that can be
similar to a document that the user found useful and
relevant to the desired topic. Hence, the user can
search for documents covering a specific topic by
using documents instead of keywords. Therefore, if
the user finds a document using few keywords and
marks it as useful, the system can recommend other
documents that can be similar to that document.
Figure 5 shows an example of saving the data within
Graph Database. It consists of many nodes with
different types (Document or Keyword) and
Properties (Value, Threshold, Id), and relationships
(Contain).

2.3. The Search Process
The main aim of analyzing documents and

extracting the keywords, and saving them inside the
database is to make this data is quarriable. So the
user can send his desired keywords along with the
assigned thresholds to obtain the documents meeting
the sent query and ordering the results by the
similarity against the search query from highest to
lowest. This section explains the process and the
search algorithm to get the documents based on the
similarity with a given query. Figure 6 shows the
search process. It (1) starts by inserting desired
keywords along with thresholds relevancy for each
keyword. Then, the search agent (2) collects the
input data and (3) starts searching inside the GKB
database to (4) find the documents containing the

desired keywords with threshold greater than or
equal assigned thresholds by applying the designed
search algorithm. Finally, the agent (5) returns the
results to the User interface with the possibility of
saving the search for this user to send him/her further
results later once a new document is analyzed and
meets his search conditions. In this case, the system
creates an agent on behalf of the user to provide him
with these extra results; the generated agent would
stay alive for a specific period specified by the user.

Figure 6. Search Process

Journal of Theoretical and Applied Information Technology
15th February 2022. Vol.100. No 3

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

762

To build the search algorithm, we rely on the
Vector-Space algorithm and modify the top of the
algorithm to fit our case (long documents) since the
large articles are poorly represented using Vector-
Space because they have poor similarity rates. Let’s
assume that the search engine received the search
query from the user, consisting of multiple keywords
and thresholds value for each keyword

q = ൫𝑞𝑘𝑤
௧, 𝑞𝑘𝑤ଵ

௧ଵ, 𝑞𝑘𝑤ଶ
௧ଶ,

𝑞𝑘𝑤ଷ
௧ଷ, … … … … , 𝑞𝑘𝑤ିଵ

௧()
൯ (1)

Where q is the query, qkw is a keyword within the
query, thr is the keyword threshold, n is the number
of keywords in the query.

The Searching process steps to return the results
for this query are as the following:

 Counting the total number thresholds 𝑆𝑢𝑚
௧௦ of

all keywords in the query q:

𝑆𝑢𝑚
௧௦=∑ 𝑡ℎ𝑟

ିଵ
ୀ (2)

↓

𝑇𝑜𝑡𝑎𝑙𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠=(𝑡ℎ𝑟+𝑡ℎ𝑟ଵ+𝑡ℎ𝑟ଶ+𝑡ℎ𝑟ଷ+……
…..+𝑡ℎ𝑟ିଵ) (3)

 Retrieving TF(term of frequency) for each qkw for
each document d from the relational database
containing the analyzed documents (𝒕𝒇𝒒𝒌𝒘

𝒅)

𝒕𝒇𝒒𝒌𝒘
𝒅 = 𝑡ℎ𝑒 𝒕𝒇 𝑜𝑓 𝑡ℎ𝑒 𝑘𝑒𝑦𝑤𝑜𝑟𝑑 𝒒𝒌𝒘

𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝒅 (4)

 Tokenize the keywords and apply the stemming
algorithm used in the parsing document process to
extract the stemmed keywords from the query q.

 Calculating the relevancy REL of each document
d against the query q (𝑅𝐸𝐿ௗ

) , which equals the
sum of the relevancy of each query keyword qwk
in the query (𝑅𝐸𝐿ௗ

௪):

𝑅𝐸𝐿ௗ
௪

= 𝑡𝑓௪
ௗ × (

௧

ௌ௨
ೝೞ) (5)

ℎ𝑒𝑛𝑐𝑒 ↓

𝑅𝐸𝐿ௗ

= ∑ (𝑡𝑓௪

ௗ × (
௧

ௌ௨
ೝೞ))ିଵ

ୀ =

 ∑ (𝑅𝐸𝐿ௗ
௪ିଵ

ୀ) (6)

 The last step is ordering the documents by the
relevance value (𝑅𝐸𝐿ௗ

) from the most descending

2.4. The Notifying Process
As shown in Figure 7, when a user searches for

documents using particular keywords with specific
thresholds relevancy, he/she can enable the option
“Notify me” as well. This option means that the user
can get more input parameters from the future
documents uploaded by the user, which would be
added to the storage or analyzed later. Hence, the
system assigns the user’s requests/inputs to the
personal agent in order to start finding relevant
documents on behalf of the user and provide the user
with new results from the future documents
accordingly. The user should also specify the period
of the monitoring, for example, for ten months. In
this case, the Monitor Agent MOA for this request
would still be active for ten months and keep
providing the user with further results for this period.

After inserting the inputs (keywords, thresholds
relevancy, Monitoring Date), the MOA reads these
inputs and search inside GKB and return the results
to the user. This agent would save the search request
inputs inside another database called Monitoring
database containing request inputs as well as
requester email and monitoring validity period. As
shown in Figure 7, the parsing process mines
documents, extracts (7) keywords and their
thresholds relevancy, and store these results inside
GKB. During submitting the results to GKB, MOA
(6) reads the users requests from the monitoring
database and (8) watches parsing process results. If
any results meet any user request, the PA would save
these results and (9) notify the requester later by
email or a notification on the website that he/she has
further results to his request.

3. THE DOCUMENT CLASSIFICATION
ALGORITHM

This section presents the designed algorithm to
identify relevant studies from large databases that
include thousands of articles. The algorithm
architecture consists of eleven stages, as shown in
Table 2 and Figure 8:

Journal of Theoretical and Applied Information Technology
15th February 2022. Vol.100. No 3

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

763

Figure 7 Personal Agent (PA) and Monitor Agent (MOA)

Table 2 Document Classification Algorithm Stages

Stage Summary Technique Applied
1 Words and Fonts

Extraction
To extract the words and fonts from PDF

documents
iTextSharp library

2 Language Identification To determine the document language to exclude
non-English

Google Translator API

3 Identifying the abstract
and keywords sections

To Identify the words that appear in the abstract
and keywords sections to give them higher weigh

Open NLP

4 Content Tokenization

To split the text into many pieces such as words,
phrases, symbols, keywords

OpenNLP

5 Converting text to lower
case

To convert all the words to the small letters
only, to facilitate the comparison and gathering

.Net Text library

6 Text transformation
(attributes generation)

Creating entity or bag to each word holding
information about the word (order, length, stem

value ,stop word, font)

Class (object-
oriented programming)

7 First Filter - Removing
stop words

To eliminate the words that attributed as stop
words from the words collection

.Net Linq library

8 Second Filter- Regular
expression

To eliminate the words that don’t meet a regular
expression, we chose (length more than 3 letters

and alphabets only)

.Net Regular expression
library

9 Normalization To generate the stemmed value from the word Porter Stem algorithm
10 Replacing keywords

Options
To Replace synonyms words with original

words
.Net Linq library

11 Synthesizing based on
the attributes

To group the words by their attributes (order,
Stem, Font) into lists and maps

.Net Linq library

12 Document Text
Typography Factor

To compute the value of TTF for each document
and identify TTF benchmark

TTF formulas

13 Calculating keywords
weight

To calculate the weight of each keyword in the
document based on (TF and TTF) factors

Term Frequency

14 Extracting expressions To extract expressions from the document, the
expression contains 2 or 3 words

.Net Collection library

15 Storing outputs in a
relational database

To store the extracted expressions, keywords,
fonts and weights into a relational database

SQL Server DB

Journal of Theoretical and Applied Information Technology
15th February 2022. Vol.100. No 3

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

764

Figure 8 Document Classification Algorithm Stages

Following, we elaborate on the major stages.

3.1. Synthesizing based on Attributes
In this phase, the list of word entities is created and

ready to be pushed to the document entity. As
mentioned before, there is a method in the document
entity that offers this ability. The method of adding
word entity to document entity goes through several
stages:

 Increase the count of WordsOfDocumecumt by 1.

 Check the validity of the Word entity by calling
IsValid() method, which returns “true” if the word
isn’t a stop word and matches the Regular
Expression (Regex), otherwise, the word will be
invalid, and the method will returns “false”.

 Add a reference to the Word entity to the
WordsList collection within the document entity.
If the word is valid, otherwise, it would be ignored,
the words would be ordered by the position of the
word in the document in the list.

Add the word entity to the TermsMap dictionary
within the Document entity. If a word is valid,
otherwise, it would be ignored. Before adding a word
entity to this dictionary (Map), the method checks if
the map contains the word’s stemmed value in the
keys. If yes, then the key would not be added because
it already exists on the map. Still, a new Word entity
would be added to the list of Word entities and linked
to the key containing that stemmed word. Still, if the
map does not contain the key, then a new key would
be added to the map with the stemmed word, and a

new Word entity would be added to the value and
linked to the new key, as shown in Figure 9.

 Add the FontSize to the FontCount map. The
map's key is the font size, and the value is the count
of the words following this font in the document.
Therefore, when a new word entity is added, the
algorithm will check if this word’s font size exists
in the FontMap. If it exists, then the count of that
font size would be increased by one. In case it
doesn’t exist, the font size would be added to the
FontSize map in the new key, and the count would
be 1 in the value, as shown in Figure 10. After
adding parsing all the words in documents and
creating a word entity from each of them, and
adding them to the document entity, the document
entity is ready to call the AnalayzeDocument
method to start doing the Factors thresholds.

3.2 Text Typography Factor
Text Typography Factor (TTF) of a document is

considered to give the higher score, the words having
bigger font sizes or in bold case, as shown in Figure
11.

Figure 12 presents a document consisting of
several font sizes (12, 18, 24, 40). Some of the words
are bold, so to determine TTF, a benchmark should
be identified first to compare each font in the
document. Therefore, we calculate FontBenchmark
as following:

Journal of Theoretical and Applied Information Technology
15th February 2022. Vol.100. No 3

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

765

Figure 9. TermsMap

Figure 10. FontCount map

Figure 11. Font features

BiggestCount = Document.FontCount.Max(Font
=> Font.Count)

FontBenchmark=
Document.FontCount.Where(Font.Count ==
BiggestCount)

The next step is identifying the value of

BoldFactor for each font. BoldFactor is a numeric
value that can be only one of two options:

 BoldFactor of the font is 0: if the FontBenchmark
is Bold, regardless of the font thickness, or the font
is not Bold

 BoldFactor of the font is 0.5: if the
FontBenchmark is not Bold and the font is Bold

The next step is calculating the TTF value for each
font based on the FontBenchmark and the
BoldFactor of the font. TTF calculation is done as
the following

FOR each Font in FontCount Map from Document
Entity

IF FontBenchmark is not Bold AND Font is Bold

 Font.BoldFactor=0.5

Else

 Font.BoldFactor=0

END IF

IF Font.FontSize is smaller than or Equal
FontBenchmark.FontSize

 Font.TTF= 1

Else

 Font.TTF= Font.FontSize /
FontBenchmark.FontSize

END IF

Font.TTF = Font.TTF + (Font.TTF *
Font.BoldFactor)

END LOOP

3.3 Calculating Keywords Weight

This section explains the calculation of the weight
of each keyword in a document. However, before
starting the weight calculation, we need to calculate
some factors affecting the weight. The first factor is
Term Frequency (TF); as mentioned in Chapter 2, TF
is the number of times a word appears in the
document (D), divided by the total number of words
in that document which is 3645 words as per the
previous section:

Journal of Theoretical and Applied Information Technology
15th February 2022. Vol.100. No 3

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

766

𝑇𝐹(௧) =
ே௨ ௧௦ ௧ (௧) ௦ ௗ௨௧

்௧ ௨ ௧௦ ௧ ௗ௨௧
 (7)

↓

𝑇𝐹(௧) =
଼

ଷସହ
= 0.0213

In the Document entity, we organized all words in
one map: TermsMap, so it is easy to know the count
of each word in the document using this map. We
have a beneficial property holding the count of the
words in the document, which is WordsInDocument.
The second factor is the Text Typography Factor
TTF of each extracted keyword. In the previous
section, we show how to calculate the TTF for each
font available in the document. So the TTF of a
keyword is the average TTF of the fonts that the
keyword followed of the document. For example,
keyword W appears n=78 times in the document (D)
in three various fonts F1, F3, F5, where numbers of
impressions per font are n1=2, n2=54, n3=22,
respectively:

𝑇𝑇𝐹(௪) =
((்்ி(ಷభ) ∗ ଵ) ା (்்ி(ಷయ)∗ ଶ) ା(்்ி(ಷఱ) ∗ ଷ))

 (8)

↓

𝑇𝑇𝐹(௪) =
((ଵ.ହ ∗ ଶ) ା (ଵ∗ ହସ) ା(ଵ.ଵ଼ ∗ ଶଶ))

଼
 = 1.06

Now, we can utilize both factors (TF and TTF) to

calculate the weight of the keyword. The weight
equals TF, multiplied TTF of keyword W in
document (D):

𝑊𝑒𝑖𝑔ℎ𝑡(௪)

 = 𝑇𝑇𝐹(௪) × 𝑇𝐹(௪) (9)
↓

𝑊𝑒𝑖𝑔ℎ𝑡(௪)
 = 1.06 × 0.0213 = 0.022578

We introduced a different approach to calculating
the weight based on the highest number of the
frequency among the keywords in the document
instead of the number of the words in the entire
document, so the term frequency factor formula
would be slightly changed to be like this:

𝑇𝐹𝐵𝑀𝑇𝐹(௧)
 =

ே௨ ௧௦ ௧ (௧) ௦ ௗ௨௧()

ே௨ ௧ ௧ ௨௬ ௗ௨௧ ()
 (10)

Where TFBMTF means Terms Frequency Based
on Max Term Frequency. Thus, the new formula to
calculate the weight of keyword w in document D
based on max term frequency (Weigh_BMTF) is:

𝑊𝑒𝑖𝑔ℎ_𝐵𝑀𝑇𝐹(௪)
 = 𝑇𝑇𝐹(௪) × 𝑇𝐹𝐵𝑀𝑇𝐹 (௪) (11)

The last step is applying the previous formulas on

all the extracted keywords from the document. For
example, in TermsMap, we have all Word entities

sharing the same stemming value grouped under one
key: stemming, and the Word entity contains Font
entity. Hence, we can run a loop on TermsMap’s
keys and calculate the weight of each key by
applying the formulas as following:

FOR each StemWord w in TermsMap keys from
Document Entity

 TermsList= Document.TermsMap[w]
 TTF(w) = TermsList.Average(term =>
FontsMap[term.Font].TTF)
 TF(w)= TermsList.Count /
Document.WordsInDocument
 Weigh(w) = TTF(w) * TF(w)

 MaxTermFrequancy =
Document.TermsMap.Max(Value.Terms.Count);
 TTFBMTF(w)= TermsList.Count /
MaxTermFrequancy
 Weigh_BMTF(w) = TTF(w) * TTFBMTF(w)

END LOOP

The main reason behind having two weights for
each term (𝑊𝑒𝑖𝑔ℎ(௪), 𝑊𝑒𝑖𝑔ℎ_𝐵𝑀𝑇𝐹(௪)) because
we use 𝑊𝑒𝑖𝑔ℎ_𝐵𝑀𝑇𝐹(௪) for searching using the
keyword and threshold as input from the user, on the
other hand, 𝑊𝑒𝑖𝑔ℎ(௪) It is important to order the
retrieved documents by relevancy because the
document’s length affects the relevancy factor, as
mentioned before. Thus, the big document
containing a lot of pages is considered less relevant
to a topic comparing to a short document containing
fewer pages and words, even though,
𝑊𝑒𝑖𝑔ℎ_𝐵𝑀𝑇𝐹(௪) for some keywords are equal
among both documents. For example, the keyword k
has the biggest weight in document D1, which
contains n number of words, and document D2,
which contains n*5 words. Hence, both documents
are very relevant to k. However, the document D1 is
more relevant to k comparing to document D2:

𝑊𝑒𝑖𝑔ℎ𝑡()

ଵ = 𝑊𝑒𝑖𝑔ℎ_𝐵𝑀𝑇𝐹 ()
ଶ = 1 (12)

BUT
𝑊𝑒𝑖𝑔ℎ𝑡()

ଵ > 𝑊𝑒𝑖𝑔ℎ_𝐵𝑀𝑇𝐹 ()
ଶ (13)

3.4 Extracting Expressions (Multiple Words)

The designed algorithm offers another feature that
might be useful to the clients, which is extracting
expressions from the document. The expression
contains 2 or 3 keywords.

Journal of Theoretical and Applied Information Technology
15th February 2022. Vol.100. No 3

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

767

Figure 12. Extracting Expressions process

As shown in Figure 13, we consume the words
existing in the WordsList collection in the Document
entity. WordsList contains all the words of the
document in the stemmed case, ordered by the
advent of the words in the main document. The
algorithm creates an expression from every 2 and 3
consecutive words and adds the expression to the
Expressions Map, where the Expressions Map is a
(key, value) Map, it contains the expressions as keys
and the appearance frequency of the expressions as a
value, thus, after combining two or three consecutive
words to create an expression, we check if this
expression exists in the map, so if the expression is
already added before, then we don’t add it again
since the key in the map is unique, but we will
increase the appearance frequency of that expression
by 1. Otherwise, we add a new key containing the
expression, and the appearance frequency equals one
as the initial value. We mentioned the algorithm
could be fed with a list of keywords and options or
synonyms of the keywords to help the algorithm give
more accurate results. In case a document contains
one of the synonyms instead of the original
keywords, the algorithm accepts the expressions as
well, so the algorithm would replace the synonyms
or the expression with the original expression during
the expressions extraction process. This feature
makes the algorithm more flexible and improves its
accuracy.

For example, the multi-agent system concept has
another scientific expression which is Distributed
systems, so the user can teach the algorithm to
replace the expression “Distributed systems” with
the “multi-agents system” expression if the first
expression is found. Thus, the user doesn’t need to
search for “multi-agent system” and “distributed
systems” independently, where one of them can be
set as an option to another before starting the parsing
process. Later, users can search just by using the
main expression. The algorithm stores the
expressions and the expression’s options in the

memory before starting the extraction process from
the documents in the stemmed format. The algorithm
checks if any extracted expression matches one of
the expression’s options provided by the user, so it
reverts the expression to the original expression in
stemmed format, as shown in Figure 13.

Figure 13 shown an example of matching and
replacing expression. The expressions options map
contains the expressions (W1 W2) and (W5 W1) as
options to the main expression (K1 K2). Before
adding the expressions to the extracted expressions
map, we check if the extracted expression (W1 W2)
is listed as an option to another expression, so we
replace (W1 W2) and (W5 W1) with (K1 K2) and
add (K1 K2) to the final map.

4. IMPLEMENTATION OF THE
SYSTEMATIC LITERATURE REVIEW
MODULES

In this section, we introduce the entire process we
develop to mitigate the systematic review process,
starting from the Web facade that used by the users
to upload the documents to the system, feeding the
system with the main keywords, inserting metadata
for each document manually and using Google
Scholar API, parsing the documents files and extract
the keywords along with thresholds, providing a
friendly user interface to find a document through the
metadata, generating aggregation reports and charts
based on the metadata fields, providing direct links
to related works and versions of a document on
Google Scholar, collecting the citation text from
Google Scholar if applicable, presenting the outcome
of the text-mining algorithm in a searchable form, in
addition, ordering the documents by the relevancy to
the keywords, and finally collecting the citations
from all used documents in one text to copy it to the
reference sections in the dissertation. Figure 14
shows the used technologies to develop the proposed
solution.

Journal of Theoretical and Applied Information Technology
15th February 2022. Vol.100. No 3

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

768

Figure 13. Matching and Replacing Expressions process

The system also produces some aggregations
reports based on the metadata of the documents in a
repository in visual forms as charts; the system
manipulates and groups the metadata of the added
documents to the system repository and presents
them through charts, these charts can be used while
conducting a systematic literature review.

Hence, this the researcher can focus on collecting
articles with uncertain relevancy without spending
time and effort on analysing and organizing the
metadata and creating the aggregation reports
manually, we will list the grouping reports provided
by the system.

Figure 14 The Used Technologies To Develop the Proposed Solution

 Aggregation by issuing year: This chart groups the
user provides the references of a particular
repository by the year of issuing, against a list of

ranges through the repository configuration,
Figure 15 is an example of the grouping method
against 5 ranges of years.

Journal of Theoretical and Applied Information Technology
15th February 2022. Vol.100. No 3

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

769

Figure 15 SLR Aggregation by issuing year

 Aggregation by Country: This chart groups the
references of a particular repository by the

Country, Figure 16 is an example of the grouping
method.

Figure 16 SLR Aggregation by Country

 Aggregation by Reference Type: This chart groups
the references of a particular repository by the

Reference Type, Figure 17 is an example of the
grouping method.

Figure 17 SLR Aggregation by Reference Type

 Aggregation by number of citations: This chart
groups the user provides the references of a
particular repository by the number of citation
according to Google Scholar as per the date of
inserting each document in the database, against a
list of ranges through the repository configuration,
Figure 18 is an example of the grouping method
against 9 ranges of years.

5. TESTING AND VALIDATION

This section runs the document classification
algorithm to parse testing sample studies to extract
the keywords and the thresholds from each study and
the expressions.

Journal of Theoretical and Applied Information Technology
15th February 2022. Vol.100. No 3

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

770

Figure 18 SLR Aggregation by number of citations

As mentioned earlier, the process of text mining,
such as document classification, is considered a
heavy process in terms of time and processing.
However, we introduced the use of Multi-Agent as a
proposal to improve the performance of the process
and decrease the time. Hence, we run the algorithm
through one and multiple agents in one machine and
compare the time of the entire parsing process,
starting from collecting the documents of studies
from the user by the MAC (Multi-Agent Coach) until
delivering the results of the parsing process to the
DB agent. Then we run the algorithm in multiple
machines (multi-nodes) simultaneously to see the
positive impact of running the agents in multiple
nodes on parallel in improving the parsing process's
performance by decreasing the time of the operation.

We use SQS service (Queue Service in the cloud)
from Amazon Web Service (AWS) on the cloud to
push all 20 documents to the queue so the agents can
pull the tasks (documents) from that queue to
guarantee that one document will not be parsed more
than one time from multiple agents.

Figure 19 shows the time consumed by each
number of agents to parse the 20 documents in
seconds, hence by comparing the times, we conclude
that running the document classification algorithm
through 4 agents in one machine decreases the total
time of the process from 2283 seconds to 1523
seconds, means improving the performance
approximately by 33.5%.

Figure 19 Performance Comparison - Running the algorithm by variant numbers of agents

However, as shown in Figure 20, running the
algorithm through 5 agents and more did not improve
the performance. The process took the almost same
time, consequently, by keeping increasing the
number of agents does not cause better performance
because when the agents run simultaneously in one
machine, they fight for the same OS resources, which
means that increasing the number of agents

dramatically and not thoughtful might grind the
operating system.

We monitored the CPU of the machine during the
parsing process and took screenshots from the CPU.
As shown in Figure 21, we notice that increasing the
number of agents working simultaneously causes
increasing in consuming the machine’s CPU
accordingly, impacting other processes on the
machine or the OS itself.

Journal of Theoretical and Applied Information Technology
15th February 2022. Vol.100. No 3

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

771

Figure 20 CPU monitoring during the Parsing Process

Many programming languages provide an
encapsulated approach for managing the agents to
facilitate creating the agents and avoid grinding the
OS, so it creates the agents and assigns a task to
them. Still, some jobs will execute simultaneously.
The rest will queue up and wait their turn. We tested
this approach, but that did not give any improvement
compared with the 4 Agents since the agents were
sharing the machine's resource. For example, if we
have two documents (document 1, document 2) and
run 1 agent to parse both of them, then run 2 agents
to do the same, the single agent needed 23 sec to

parse (document 1) and 33 sec to parse (document 2)
but because the parsing both document using a single
agent is done on the sequence, so the total time of the
process is (23+33= 55 sec), now if we perform the
same experiment using 2 agents to parse the same
documents, document 1 needed 30 sec to get parsed,
and document 2 needed 44 sec to get parsed, but
because the agents parsed both documents on
parallel, hence the entire process time was 44 sec as
shown in Figure 16.

Figure 21 Parsing two documents using single-agent and two agents

We used the AWS EC2 service to issue three more

instances of the same machine that we used in the
previous section, run the four machines together to
parse the testing sample (20 documents), and run
four agents in each machine. Hence the number of
agents is 12 agent as per this criteria. From Table 3,
we notice that increasing the number of agents by
using multi-agent within multiple machines on
parallel can cause a massive improvement of the
parsing process performance, where the time of the
process decreased 1519 Sec to 350 Sec =
05:Min:50Sec.

While designing the document classification
algorithm, we noticed that there the parsing process
could not extract the text from some PDF files
correctly, where three documents out of 200 (1.5%)
of the documents gave invalid text since some of
them might be built as images, not as a text. Hence,
our parsing process can not extract any text from the
images, where this process needs to use image
processing algorithms and doing OCR, which is not

available in the current parsing process. Hence, the
parsing process gave valid results with 98.5%. Thus,
we have 1.5% invalid results because of extracting
the text from the PDF documents.

6. CONCLUSION AND FUTURE WORK

This study explored the use of AbDC in the
systematic review process. The technology is
implemented in screening the studies on behalf of the
user to reduce the effort and time needed in the
inclusion/exclusion stages in the systematic review
process. Many document classification algorithms
and factors affecting the text mining and document
classification processes have been investigated. All
the findings are combined. A new document
classification algorithm is then concluded to help
users exclude the irrelevant studies and order the
relevant ones by the level of relevancy against
desired topics. An agent-based model is proposed to
accelerate the process and overwhelm the slowness
of the document classification process.

Journal of Theoretical and Applied Information Technology
15th February 2022. Vol.100. No 3

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

772

Table 3 Parsing the testing sample using 4 Machines

Machine The Parsed Documents Time of the Process
Machine 1 Document_A.PDF

Document_F.PDF
Document_G.PDF
Document_M.PDF

290 Sec

Machine 2 Document_B.PDF
Document_L.PDF
Document_O.PDF

284 Sec

Machine 3 Document_D.PDF
Document_E.PDF
Document_I.PDF
Document_N.PDF
Document_R.PDF
Document_T.PDF

320 Sec

Machine 4 Document_C.PDF
Document_H.PDF
Document_J.PDF
Document_K.PDF
Document_P.PDF
Document_Q.PDF
Document_S.PDF

350 Sec

The use of software agents to measure the
relevancy level and identify irrelevant studies from a
set of studies is also demonstrated. The agent can
calculate the weights of each study against desired
topics and recommend the most relevant studies
useful to the researcher. The algorithm is designed
using a modern programming language as a backend
engine to simulate the algorithm in actual studies.
Moreover, a web-based systematic review tool is
established to search amongst the extracted
keywords to validate the designed document
classification algorithm. Many features are provided
to help the researchers in conducting the systematic
review; these features include meta-data analysis,
collection of meta-data and citation texts from a third
party, creation of study repositories and study
management and providing two types of searching
within the repositories of studies (full-text and meta-
data search). The results of this study in mitigating
the systematic review process using AbDC have
shown considerable success concerning the research
objectives.

However, this study also shows some limitations
and deficiencies. Nonetheless, these deficiencies do
not compromise the significance of this research.
The research scope is as follows: using document
classification to reduce the required effort needed in
the systematic review process overlays many
discoveries that could be integrated into agents. This
study also outlined some interesting areas that could
be investigated in future work. Proposing a method
to distinguish the Abstract and Keywords sections

automatically from the studies can be useful to the
parsing process, which can be run in two levels. The
first round of screening involves only the Abstract
and the Keywords sections, and the second round
screens the entire study. The process can exclude the
studies that do not show any kind of relevance in the
first round of screening without going through the
entire text for the first time because the abstract and
keywords give an initial clue regarding the study.
Thus, massive amounts of work and processing are
saved, which, in turn, is reflected in the cost and the
time. The proposed system serves many users
working in various research and topics. Thus, the
users upload the documents of the studies to the
system along with the meta-data of the studies. The
extracted keywords are saved in relational and graph
databases. Therefore, a recommendation system can
be built on top of the current system, where the
researcher can flag a study as useful to his topic.
Thus, the system can recommend some studies
similar to the survey found useful based on the
relations between the studies built in accordance
with sharing some keywords in certain thresholds.
This condition can be valuable to investigating
documents based on the similarity to a submitted
document because this issue is still under research.
Efficient ways are still currently unavailable.

ACKNOWLEDGMENT
This work is sponsored by Universiti Tenaga

Nasional (UNITEN) under the Bold Research Grant
Scheme No. J510050002.

Journal of Theoretical and Applied Information Technology
15th February 2022. Vol.100. No 3

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

773

REFERENCES:
[1] Kontonatsios, G., Brockmeier, A.J., Przybyła, P.,

McNaught, J., Mu, T., Goulermas, J.Y. and
Ananiadou, S., 2017. A semi-supervised
approach using label propagation to support
citation screening. Journal of biomedical
informatics, 72, pp.67-76.

[2] Scells, H. and Zuccon, G., 2018, January.
Generating Better Queries for Systematic
Reviews. In SIGIR (pp. 475-484).

[3] Greenhalgh, T., 1997. How to read a paper:
Papers that summarise other papers (systematic
reviews and meta-analyses). Bmj, 315(7109),
pp.672-675.

[4] Okoli, C. and Schabram, K., 2010. A guide to
conducting a systematic literature review of
information systems research.

[5] Fink, A., 2005. Conducting research literature
reviews: From the internet to paper. Sage.

[6] Rychetnik, L. and Frommer, M., 2002. A schema
for evaluating evidence on public health
interventions: version 4. National Public Health
Partnership (Australia).

[7] Bero, L.A., Grilli, R., Grimshaw, J.M., Harvey,
E., Oxman, A.D. and Thomson, M.A., 1998.
Closing the gap between research and practice:
an overview of systematic reviews of
interventions to promote the implementation of
research findings. Bmj, 317(7156), pp.465-468.

[8] Cohen, A.M., 2008. Optimizing feature
representation for automated systematic review
work prioritization. In AMIA annual symposium
proceedings (Vol. 2008, p. 121). American
Medical Informatics Association.

[9] Cohen, A.M., Hersh, W.R., Peterson, K. and
Yen, P.Y., 2006. Reducing workload in
systematic review preparation using automated
citation classification. Journal of the American
Medical Informatics Association, 13(2), pp.206-
219.

[10] Matwin, S., Kouznetsov, A., Inkpen, D., Frunza,
O. and O'blenis, P., 2010. A new algorithm for
reducing the workload of experts in performing
systematic reviews. Journal of the American
Medical Informatics Association, 17(4), pp.446-
453.

[11] O’Mara-Eves, A., Thomas, J., McNaught, J.,
Miwa, M. and Ananiadou, S., 2015. Using text
mining for study identification in systematic
reviews: a systematic review of current
approaches. Systematic reviews, 4(1), p.5.

[12] Han, J., Pei, J. and Kamber, M., 2011. Data
mining: concepts and techniques. Elsevier.

[13] Feng, L., Chiam, Y.K. and Lo, S.K., 2017,
December. Text-mining techniques and tools for
systematic literature reviews: A systematic
literature review. In 2017 24th Asia-Pacific
Software Engineering Conference (APSEC) (pp.
41-50). IEEE.

[14] Cook, D.J., Mulrow, C.D. and Haynes, R.B.,
1997. Systematic reviews: synthesis of best
evidence for clinical decisions. Annals of
internal medicine, 126(5), pp.376-380.

[15] Liberati, A., Altman, D.G., Tetzlaff, J., Mulrow,
C., Gtzsche, P.C., Ioannidis, J.P., Clarke, M.,
Devereaux, P.J., Kleijnen, J. and Moher, D.,
2009. The PRISMA statement for reporting
systematic reviews and meta-analyses of studies
that evaluate health care interventions:
explanation and elaboration. PLoS medicine,
6(7), p.e1000100.

[16] Crawford, C. C., Boyd, C. C., & Jonas, W. B.
(2015). Systematic reviews in practice.
Alexandria, VA: Samueli Institute.

[17] Machi, L.A. and McEvoy, B.T., 2016. The
literature review: Six steps to success. Corwin
Press.

[18] Umnedu. 2019. CONDUCTING A
SYSTEMATIC REVIEW. Health Sciences
Libraries. [Online]. [30 July 2019]. Available
from:
https://hsl.lib.umn.edu/biomed/help/systematic-
review

[19] Budgen, D. and Brereton, P., 2006, May.
Performing systematic literature reviews in
software engineering. In Proceedings of the 28th
international conference on Software
engineering (pp. 1051-1052). ACM.

[20] Khan, K., Kunz, R., Kleijnen, J. and Antes, G.,
2011. Systematic reviews to support evidence-
based medicine. Crc Press.

[21] macgill, M.A.R.K.U.S. (2019, 25 February
2019). What is a systematic review in research.
[Weblog]. Retrieved 30 July 2019, from
https://www.medicalnewstoday.com/articles/28
1283.php

[22] Nicholson, J., McCrillis, A. and Williams, J.D.,
2017. Collaboration challenges in systematic
reviews: a survey of health sciences librarians.
Journal of the Medical Library Association:
JMLA, 105(4), p.385.

[23] Mallett, R., Hagen-Zanker, J., Slater, R. and
Duvendack, M., 2012. The benefits and
challenges of using systematic reviews in
international development research. Journal of
development effectiveness, 4(3), pp.445-455.

Journal of Theoretical and Applied Information Technology
15th February 2022. Vol.100. No 3

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

774

[24] Subramainan, L., Mahmoud, M.A., Ahmad,
M.S. and Yusoff, M.Z.M., 2016. An Emotion-
based Model for Improving Students’
Engagement using Agent-based Social
Simulator. International Journal on Advanced
Science, Engineering and Information
Technology, 6(6), pp.952-958.

[25] Zhang, W.R. and Zhang, L., 2004. A multi-agent
data warehousing (MADWH) and multi-agent
data mining (MADM) approach to brain
modeling and neurofuzzy control. Information
Sciences, 167(1-4), pp.109-127.

[26] Wooldridge, M., 2009. An introduction to multi-
agent systems. John Wiley & Sons.

[27] Vlassis, N., 2007. A concise introduction to
multi-agent systems and distributed artificial
intelligence. Synthesis Lectures on Artificial
Intelligence and Machine Learning, 1(1), pp.1-
71.

[28] Di Fatta, G. and Fortino, G., 2007, March. A
customizable multi-agent system for distributed
data mining. In Proceedings of the 2007 ACM
symposium on Applied computing (pp. 42-47).
ACM.

[29] Sycara, K.P., 1998. Multi-agent systems. AI
magazine, 19(2), pp.79-79.

[30] Balaji, P.G. and Srinivasan, D., 2010. An
introduction to multi-agent systems. In
Innovations in multi-agent systems and
applications-1 (pp. 1-27). Springer, Berlin,
Heidelberg.

[31] Maseleno, A., Tang, A. Y. C., Mahmoud, M. A.,
Othman, M., Saputra, S., & Muslihudin, M.
(2017). Fuzzy AHP method to determine
headache types based on symptoms.

[32] Mahmoud, M. A., & Ahmad, M. S. (2016,
August). A prototype for context identification
of scientific papers via agent-based text mining.
In 2016 2nd International Symposium on Agent,
Multi-Agent Systems and Robotics
(ISAMSR) (pp. 40-44). IEEE.

[33] Mahmoud, M. A., Ahmad, M. S., Ahmad, A.,
Yusoff, M. Z. M., & Mustapha, A. (2011, July).
Norms detection and assimilation in multi-agent
systems: a conceptual approach. In Knowledge
Technology Week (pp. 226-233). Springer,
Berlin, Heidelberg.

[34] Subramainan, L., Yusoff, M. Z. M., &
Mahmoud, M. A. (2015, August). A
classification of emotions study in software
agent and robotics applications research. In 2015
International Symposium on Agents, Multi-
Agent Systems and Robotics (ISAMSR) (pp. 41-
46). IEEE.

[35] Subramainan, L., Mahmoud, M. A., Ahmad, M.
S., & Yusoff, M. Z. M. (2016). An Emotion-
based Model for Improving Students’
Engagement using Agent-based Social
Simulator. International Journal on Advanced
Science, Engineering and Information
Technology, 6(6), 952-958.

[36] Mahmoud, M., Ahmad, M. S., Mostafa, S., &
Subramainan, L. (2020). How new individuals
behave in a heterogeneous community: a
computational approach to norm assimilation
using agent-based systems. Journal of Systems
Science and Complexity, 33(4), 849-881.

[37] Gurunathan, M., & Mahmoud, M. A. (2020). A
review and development methodology of a
lightweight security model for IoT-based smart
devices. International Journal of Advanced
Computer Science and Applications, 2, 125-134.

[38] Mahmoud, M. A., & Grace, J. (2019). A generic
evaluation framework of smart manufacturing
systems. Procedia Computer Science, 161, 1292-
1299.

[39] Mahmoud, M. A., Ahmad, M. S., & Mostafa, S.
A. (2019). Norm-based behavior regulating
technique for multi-agent in complex adaptive
systems. IEEE Access, 7, 126662-126678.

[40] Mahmoud, M. A., Ahmad, M. S., Yusoff, M. Z.
M., & Mostafa, S. A. (2018, February). A
regulative norms mining algorithm for complex
adaptive system. In International Conference on
Soft Computing and Data Mining (pp. 213-224).
Springer, Cham.

[41] Subramainan, L., Mahmoud, M. A., Ahmad, M.
S., & Yusoff, M. Z. M. (2017, June). A
simulator’s specifications for studying students’
engagement in a classroom. In International
Symposium on Distributed Computing and
Artificial Intelligence (pp. 206-214). Springer,
Cham.

[42] Mahmoud, M. A., Ahmad, M. S., Yusoff, M. Z.
M., & Mustapha, A. (2014, December). Norms
assimilation in heterogeneous agent community.
In International Conference on Principles and
Practice of Multi-Agent Systems (pp. 311-318).
Springer, Cham.

[43] Mostafa, S. A., Ahmad, M. S., Ahmad, A.,
Annamalai, M., & Mustapha, A. (2014). A
dynamic measurement of agent autonomy in the
layered adjustable autonomy model. In Recent
developments in computational collective
intelligence (pp. 25-35). Springer, Cham.

[44] Mostafa, S. A., Darman, R., Khaleefah, S. H.,
Mustapha, A., Abdullah, N., & Hafit, H. (2018,
June). A general framework for formulating

Journal of Theoretical and Applied Information Technology
15th February 2022. Vol.100. No 3

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

775

adjustable autonomy of multi-agent systems by
fuzzy logic. In KES International Symposium on
Agent and Multi-Agent Systems: Technologies
and Applications (pp. 23-33). Springer, Cham.

[45] Mostafa, S. A., Ahmad, M. S., Ahmad, A.,
Annamalai, M., & Gunasekaran, S. S. (2016,
August). A Flexible Human-Agent Interaction
model for supervised autonomous systems.
In 2016 2nd International Symposium on Agent,
Multi-Agent Systems and Robotics
(ISAMSR) (pp. 106-111). IEEE.

[46] Mostafa, S. A., Ahmad, M. S., Annamalai, M.,
Ahmad, A., & Gunasekaran, S. S. (2015).
Formulating dynamic agents’ operational state
via situation awareness assessment. In Advances
in Intelligent Informatics (pp. 545-556).
Springer, Cham.

[47] Mostafa, S. A., Ahmad, M. S., Ahmad, A., &
Annamalai, M. (2013, December). Formulating
situation awareness for multi-agent systems.
In 2013 International Conference on Advanced
Computer Science Applications and
Technologies (pp. 48-53). IEEE.

Journal of Theoretical and Applied Information Technology
15th February 2022. Vol.100. No 3

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

776

