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ABSTRACT  

 
In this paper we study a family of non-binary product codes (nb-PC) constructed from the family of low 
density parity check (LDPC) codes known as Euclidean geometry (EG) codes. A coding/decoding scheme 
of these non-binary product codes (nb-PC) is presented where the turbo decoder is based on a soft input soft 
output (SISO) decoder suitable for non- binary one-step majority-logic decodable (OSMLD) codes, which is 
described in details in this work. We study the effect of iterations on the performance of our (PC) decoder, 
and exhibit the symbol and block error rates of some constructed codes transmitted over Additive Gaussian 
Noise (AWGN) channel. The obtained results are satisfying. 
Keywords– Non-Binary, Product Codes, Turbo Decoding, One-Step Majority-Logic Decodable (OSMLD) 

Codes, Low Density Parity Check (LDPC) Codes. 
 
1. INTRODUCTION 
 
Shannon showed in [1] that random codes with long 
block length are more likely to approach the channel 
capacity. Unfortunately, increasing the code length 
results in an increase of the decoding complexity. 
One approach for designing long and powerful codes 
from short length component codes, is to use a coding 
technique called product coding. This coding 
technique was invented in 1954 by Elias in [2] and it 
consists on combining two or more codes to generate 
a code with longer block size. 

This work is a study of the non-binary Product 
Codes, Their Construction and Decoding. This 
method is not well documented for the non-binary 
case [3], but it results in a variety of algebraically 
constructed large codes with known parameters, 
which is a strong point in code construction. Many 
constructed methods of LDPC codes focus on 
constructing the parity check matrix, and the code 
associated with it would be the null space of this 
matrix, which doesn’t give a clue about the 
dimension or the minimum distance of the code, 
which make the coding process challenging. 
Therefore our approach of constructing large codes 
with known parameters is a strong asset. 

Since the introduction of turbo codes by Berrou [4] 
for convolutionnal codes over two decades ago, there 
has been much interest in the conception of design of 
soft-input soft-output (SISO) decoding algorithms. 

Soon after, turbo decoding was applied to block 
codes by Pyndiah [5] and others. The decoding of a 
product code can be assimilated to a turbo decoder of 
serial concatenated block codes. However, for 
concatenated schemes with block component codes, 
the computational complexity of trellis-based SISO 
decoding algorithms is often high. This has led to the 
research for new SISO decoding algorithms with low 
complexity and high performance, e.g., [5–7]. These 
algorithms calculate extrinsic information using 
classical decoders such as the Chase algorithm in [5], 
ordered statistics decoding algorithm in [7] and the 
Hartmann/Rudolph algorithm in [6]. In this 
perspective Belkasmi et al. [10] presented a new 
iterative decoding algorithm based on a SISO 
extension form of the Massey algorithm [9]. Svirid 
[11] also used the Threshold algorithm in iterative 
decoding but for convolutional codes. Belkasmi’s 
iterative decoding process follows that given by 
Pyndiah in [5]. However, instead of using an 
extension of the Chase algorithm on BCH codes, he 
applied an extension of Massey’s algorithm on one 
step majority logic decodable (OSMLD) codes. 
Another known work is attributed to Lucas et al. [6], 
who introduced an iterative decoding algorithm for 
several families of codes including OSMLD codes 
but they used an approximation of 
Hartmann/Rudolph algorithm [12]. 

On the other hand, product codes can be 
constructed as binary codes or as non-binary ones. 
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Binary product codes can be constructed by using 
binary component codes, for example by using 
BoseChaudhuri-Hocquenghem (BCH) codes or 
Difference Set Cyclic (DSC) codes as their 
component codes. In the same logic, non-binary 
product codes can be constructed by combining non-
binary codes with each other, for example Reed-
Solomon (RS) codes or non-binary finite geometry 
codes like Euclidean and Projective geometry codes. 
Unfortunately non-binary turbo decoding is not well 
investigated. 

Since, constructing a code without presenting its 
decoding is incomplete, and because a major issue of 
the decoding algorithms of non-binary LDPC codes 
is that they are very complex and are unsuitable for 
practical implementation, our contributions are to 
propose an iterative decoding scheme for non-binary 
product codes that involves non-binary Euclidean 
Geometry codes as component codes, and a non-
binary version of the Iterative Threshold Decoder of 
Belkasmi et. al as elementary soft-input soft-output 
decoder which is based on Majority Logic Decoding 
(MLGD). 

The rest of the paper is organized as follows; 
Section II is dedicated to the presentation of non-
binary one-step majority-logic decodable (OSMLD) 
codes and the description of the majority-logic 
decoding (MLGD) algorithm. In Section III, Soft-
input Softoutput (SISO) decoding algorithm is 
detailed along with its iterative version, which is the 
first time this decoder is presented. Section IV is for 
product code construction and iterative turbo decoder 
is presented. The simulation results are exhibited in 
Section V. Finally Section VI concludes the paper. 
 
2. BINARY AND NON-BINARY ERROR 

CORRECTING CODES 
 
Error correcting codes are used to reduce the errors 
in a received sequence of symbols that was 
transmitted through a noisy channel. In the non-
binary codes, the transmitted symbols belong to a 
Galois Field. In this section we describe the Galois 
field elements, how we can obtain them, and why 
each symbol in a Galois field has a binary 
representation. Then we will present cyclic OSMLD 
codes, and how EG codes are a good choice. 
 
2.1 Non-Binary Cyclic EG OSMLD LDPC 

Codes 
The elements of a non-binary code can either belong 
to a finite ring of integers, or to a finite Galois field, 
in this study we investigate only the latter family. 

Galois Fields are just regular fields that contain a 
finite number of elements, denoted q which is a 
power of a prime. Such Galois Fields are denoted GF 
(q). Then elements of GF (q) can be derived from its 
primitive element α, which is the root of the primitive 
polynomial characterizing the field GF (q). Let α be 
the primitive element of a GF (q), where q = 2m and 
m is a positive integer. Then 

GF , and 
each element αs has a binary representation on m bits, 
with s = 0,1,...,q−1. Therefore αs ∈ GF (q) means αs = 
(as,0,as,1,...,as,m−1) is its binary representation. 
 
2.2 1st Contribution : Non-Binary Extrinsic 

MLGD 
Consider a non-binary (n,k) cyclic codeC with parity 
check matrix H, and symbols belonging to GF (q). 
The row space of H is an (n−k,n) cyclic code, de- 

⊥ 
noted by C or Cd, which is the dual code of C, or also 
called the null space of C. For any vector u ∈ C 

⊥ −∞ in and w ∈ C , the inner product 
of u and w is α GF (q), that is, 
 u.w = u1w1+u2w2+···+unwn = 0 (1) 

In fact, an n-tuple u is a code-word in C means that 
⊥ for any vector 

w of the dual code C , u·w = 0. The equality (1) is 
called a parity check equation. It is clear that there are 
2n−k such parity check equations. 

Suppose that z is a hard received vector. For any 
⊥ vector w in the dual 

code C , we can form the following linear sum of the 
received symbols: 

A znwn).w−n 1 
(2) 

which is called the parity check sum or simply 
check sum. This parity check A must be equal to zero 
if the received vector z is a code-word in C, however, 
if z is not a code-word, then A may not be equal to 
zero. 

A received symbol zj is said to be checked by the 
check sum A if the coefficient wj is non-zero. 

We can also estimate the received symbol zn 

checked by a check sum B, by calculating the 
following sum: 

B 

 
There are some codes that can be decoded by 

taking a majority logic vote from a set of check 
equations orthogonal on each data symbol. When the 
code is cyclic, we need just one set of J equations 
orthogonal on the last symbol, then we cycle the data 
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symbols so that the orthogonality becomes on the 
(n−1)th position, and so on until estimating all the n 
data symbols. The first Majority Logic Decoding 
algorithm was devised by Reed in 1954 [4] for Reed-
Muller codes. 

Table 1 shows some examples of non-binary cyclic 
OSMLD codes. In this table we use the abbreviations 
EG for Euclidean Geometry codes, PG for Projective 
Geometry codes and RS for Reed-Solomon codes. 
These codes can serve to construct a product code as 
we will discuss in later sections. 
 

Table 1: Set Of Non-Binary Cyclic OSMLD Codes. 

code GF (q) n k R J dmin 

PG GF (8) 7 3 0.42 3 4 

EG GF (16) 15 7 0.46 4 5 

EG GF (4) 15 7 0.46 4 5 

PG GF (64) 21 11 0.52 5 6 

EG GF (8) 63 37 0.58 8 9 

RS GF 
(256) 

255 239 0.93  17 

EG GF (16) 255 175 0.68 16 17 

RS GF 
(256) 

255 153 0.6  103 

EG GF 
(256) 

255 175 0.68 16 17 

RS GF 
(256) 

255 223 0.87  33 

 
In the following, we show that certain properly 

formed check sums can be used for estimating the 
received symbols in zj. 

Suppose that there exist J vectors in the dual code 
⊥ 

C , 
w1 = (w1,1,w1,2,...,w1,n) 
w2 = (w2,1,w2,2,...,w2,n) 

... 
wJ = (wJ,1,wJ,2,...,wJ,n) 

 
which have the following properties: 
1. The nth component of each vector is ” 6= 

α−∞, 0”, that is , w1,n = w2,n = ... = wJ,n 6= 0. 

2. For i 6= n, there is at most one vector whose 

ithcomponent is ” 6= 0”; for example, if w1,i 6= 0, then 

w2,i = w3,i = ··· = wJ,i = 0. 

These J vectors are said to be orthogonal on the nth 

symbol position. We call them orthogonal vectors or 
orthogonal equations. 

Now let us form J check sums from this orthogonal 
vector using (3). We can form the relationship 
between these J vectors and the received symbols in 
the following manner: 

 
Therefore, we see that the symbol zn is checked by 

all the check sums above. Because of the second 
property of the J orthogonal vectors, any received 
symbol other than zn is checked by at most one check 
sum. These J check sums are said to be orthogonal 
on the symbol zn and they are crucial for the Majority 
Logic (MLG) based decoding algorithms. In fact, this 
structural property is crucial to deliver extrinsic 
information about the symbol zn. 

Let dmin be the minimum distance of the code. 
Clearly, the threshold decoding is more effective for 
codes when it is equal to or close to the error 
correcting capability t = (dmin −1)/2 of the code; in 
other words, J should be equal to or close to dmin −1. 
For the cyclic Euclidean geometry codes dmin = J + 1, 
thus this family of codes are best suited for MLGD 
algorithms, and the bigger the set of equations is, the 
more extrinsic information it will gather, therefore 
the more powerful the decoding performance will be. 

Algorithm 1 describes the non-binary Majority 
Logic Decoding Algorithm nb-MLGD. 

 
The performance of this decoder is displayed in the 

Figure 1 for the nb-EG(255,175,17) over GF(16). 
 

Algorithm 1 nb-MLGD 
Input: Received signal y 
Output: Non-binary Decoded sequence z 

1: take the hard decision vector z from y 
2: for j = (1 : n) do 

3: for i = (0 : J) do 
4: Bi 
5: end for 
6: zn is the Majority of the Bi 
7: operate a cyclic shift to the vector z 

8: end for 
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Figure 1: Uncoded BPSK vs nb-MLGD for nb-

EG(255,175,17) over GF(16). 

 
We observe from Figure 1 that by using the nb 

MLGD, in late SNR we have nearly 2dB of coding 
gain compared to the uncoded BPSK modulation. In 
the next section, we present the straightforward 
amelioration of this decoder, which involves the 
information delivered by the channel. 
 
3. FROM SIHO TO SISO DECODER FOR 

NONBINARY CODES 
 
Reed’s algorithm was improved by Massay, who put 
the first unified formulation of the MLGD named 
Threshold Decoding (TD) [9]. In his original work he 
considered two different variations of the decoding 
algorithm. Consider here the method which involves 
the computations of the Bi equations instead of the Ai 

equations. Since the Bi’s are obtained from the Ai’s 
by removing the symbol on which the equations are 
orthogonal, the information delivered by the Bi’s will 
be extrinsic to that symbol. 
 
3.1 Non-Binary SIHO Threshold Decoder 
In this section, we will describe the steps of the 
Threshold Decoder for non-binary codes. 

Now suppose that a code-word x in C is 
transmitted. Let y = (y1,y2,...,yn) be the real received 
vector, we can compute the reliability of the received 
symbols being symbols from GF (q) as follows: 

We can compute llr’s with (4) to work only with 
positive values. 

P(xj = αs|yj) 

 llrj  (4) 
Therefore we compute 2s values of llrj (αs) for each 

received symbol yj being αs ∈ GF (q). 

Let z = (z1,z2,...,zn) be the hard decision vector, 
computed from the channel reliability: 

zj = arg max llrs,j (5) 
αs∈GF(q)0≤s≤q−1 

Let the magnitude of the reliability of the hard 
decision symbol be the maximum value : 

 rj llrj (αs) (6) 

Let N , be the set of indices of 
non-zero coefficients of wi involved in the parity 

 
check sum Bi. Therefore, the weighting coefficient of 
the ith equation can be computed in (7): 

 Wi  (7) 
Let W0 be: 

 W0 = rj (8) 
Let Xs,j be the extrinsic reliability of the jth received 

symbol being αs. X is initialized to zero, then it is 
computed as follows: 
 XBi,j = XBi,j +Wi (9) 

Then we add the reliability of the symbol zj on 
which the orthogonality holds as follows: 
 Xzj,j = Xzj,j +rj (10) 

Then the final reliability of the decoder is 
calculated from the channel reliability and the 
extrinsic information computed throuth the 
orthogonal weighted equations as in (10) 
 LLR = llr+X (11) 

zj = arg max LLRs,j (12) 
αs∈GF(q)0≤s≤q−1 

The hard vector z is then cycled n times to compute 
LLR for every position j. 

Algorithm 2 Describes The Non-Binary Threshold 
Decoding. 

 
Algorithm 2 nb-TD 
Input: Received signal y 
Output: Non-binary Decoded sequence z for j 

= (1 : n) do 
2: for s = (0 : q−1) do 

Calculate llrj (αs) from (4) 
4: rj from (5) zj 

from (6) 
6: end for end for 
8: for j = (n : 1) do for 

i = (0 : J) do 
10: compute Bi 

compute Wi from (7) and (8) 
12: end for 

compute Xj from (9) and (10) 14: 
compute LLRj from (11) 

Calculate the hard decision zj of LLRj from 
(12) 

16: end for 
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To summarize, the non-binary Threshold 
Decoding algorithm is the logical extension of the 
Majority Logic Decoding algorithm. It enhances the 
performance of this latter by taking into 
consideration the channel output before computing 
the orthogonal equations, which assigns weights to 
each one of these equations, and this leads to more 
accurate results. In the next section we will present 
for the iterative version of this threshold decoder, 
which will represent the non-binary version of the 
binary ITD devised by Belkassmi et-al in [10]. In 
Figure 2 we notice the coding gain obtained by the 
nb-TD vs the nb-MLGD. 

 

 
Figure 2: nb-TD vs nb-MLGD for EG codes over GF(16). 
 
3.2 Non-Binary SISO Iterative Threshold 

Decoder 
In [6], Lucas et al. proposed the first iterative 
decoding algorithm for OSMLD codes. His 
algorithm computes the extrinsic information using a 
weighted version of the Hartmann/Rudolph 
algorithm [12]. In [6], Lucas new algorithm showed 
that OSMLD codes can perform better than their 
LDPC counterparts, for moderate code lengths 
(between 200-1000). In [5], Pyndiah proposed an 
iterative decoding scheme that updates only the 
extrinsic information over the iterations, while 
keeping the same channel reliabilities of the received 
symbols during each iteration. This principle was 
also used by Belkasmi et al. in [10], where they have 
modified Pyndiah’s algorithm by associating with 
each decision a reliability that is weighted by a fixed 
parameter λ2, and which will be exploited during the 
iterations. 

LLR(t+1) = λ1llr(t)+λ2X(t) (13) then 

compute the most likely hard decision by this 

equation (14): 
 

To jump from soft output to iterative, we just need 
to reinject the extrinsic information generated by the 
decoder in an iteration as a-priori information for 
the decoder in the next iteration. 

Algorithm 3 describes our proposition of the 
nonbinary Iterative Threshold Decoding. 
Performance of the non-binary Iterative Threshold 
decoding algorithm is displayed in the Figure 3 in 
terms of symbol error rate, for the code 

EG(255,175,17) over GF . Clearly, the nb-ITD 
outperforms the other algorithms, where a coding  
gain of 1.5dB is achieved compared to the non-binary 
Threshold Decoding algorithm. 
 

Algorithm 3 nb-iTD 
Input: Received signal y 
Output: Binary Decoded sequence z for j 

= (1 : n) do 
for s = (0 : q−1) do 

3: Calculate llrj (αs) from (4) rj from 
(5) zj from (6) 

6: end for end for 
for j = (n : 1) do 

9: for i = (0 : J) do compute Bi compute 
Wi from (7) and (8) 

12: end for 
compute Xi from (10) and (11) compute the 

overall reliability LLRj from (13) 
15: Calculate the hard decision zj of LLRj from 

(14) operate a cyclic shift to the vectors z and 
r 

end for 

 
 

 
Figure 3: nb-SISO vs nb-SIHO vs nb-HIHO. 

 
4. TURBO DECODING OF NON-BINARY 

PRODUCT CODES 
 
The decoding of product codes consists of 
successively decoding lines and columns of a 
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received matrix, using an elementary soft decoder. 
Among the first authors that used this principle of  

 
decoding lines and columns of a matrix, we find 
Berrou [4] and Robertson [8] for convolutionnal 
codes. Also Pyndiah [5] and Lucas [6] used the same 
principal to decode block codes. Hagenaur [13] 
presented in his work a log likelihood algebra that 
allows to determine the extrinsic information passing 
between the elementary decoders. Fouad et. al 
proposed a decoding scheme related to this family of 
binary product codes. 

4.1 Non-Binary Product Codes 
Binary product codes were invented (in 1954 [2]) 
long before turbo product codes, but the qualifier 
“turbo” refers to the iterative decoder which 
comprises two SISO constituent decoders. Such a 
turbo decoder is easy to derive if we assimilate a 
product code to a serial concatenation of block codes. 
The challenge then would be to design a good 
constituent SISO block decoders necessary for the 
iterative decoding scheme. In the following, we will 
use the SISO non-binary ITD as constituent block 
decoder due to its low complexity compared with 
other known decoders. But first, we describe the 
construction and the coding process of product codes. 
4.1.1 Product codes construction and 

systematic encoding 
Let C1 and C2 be linear block codes over the Galois 
field GF (q), with parameters (n1,k1,d1) and (n2,k2,d2), 
respectively. The product code PC = C1⊗C2 consists 
of all n1×n2 matrices such that each column is a 
codeword in C1 and each row is a codeword in C2, or 
inversely. It is well known that PC is a (n1×n2,k1×k2) 
linear block code with minimum distance d1×d2 over 
GF (q) [14]. The direct product construction thus 
offers a simple way to build long block codes with 
relatively large minimum distance using simple, 

short component codes with small minimum  
 

 
distance. When C1 and C2 are two EG codes over GF 
(q), we obtain an EG product code over GF (q). 

Table 2 shows some examples of non-binary block 
product cyclic OSMLD codes. In this table we use 
the abbreviations as in Table 1 by adding a power of 
2 in the code parameter (n,k,dmin)2, to indicate that is 
a symmetric product code (i.e. formed by the same 
component code horizontally and vertically ) . 

Starting from a k1×k2 information matrix, 
systematic encoding of PC is easily accomplished by 
first encoding the k1 information rows using a 
systematic encoder for C1. Then, the n1 columns are 
encoded using a systematic encoder for C2, thus 
resulting in the n1×n2 coded matrix shown in Figure 
4. 

In the case of a symmetrical product code, the code 
used horizontally and vertically is the same, thus to 
send a k×k matrix of information symbols, we have 
to send an n×n matrix. Therefore the code rate of  2 

 
Figure 4: Code Word In The Product Code PC=C1×C2. 

 
4.1.2 Binary image of EG product codes 
Communication systems usually employ some form 
of binary signaling. Binary expansion of the EG PC 

Table 2: Set of non-binary Product Code based on OSMLD codes 

code GF (q) (n,k,dmin) R (n,k,dmin)2 Binary expantion R’ 

PG GF (8) (7,3,4) 0.42 (49,9,16) (147,27,48) 0.18 

EG GF (16) (15,7,5) 0.46 (255,49,25) (1020,196,100) 0.19 

EG GF (4) (15,7,5) 0.46 (255,49,25) (510,98,50) 0.19 

PG GF (64) (21,11,6) 0.52 (441,121,36) (2646,726,216) 0.27 

EG GF (8) (63,37,9) 0.58 (3969,1369,81) (11907,4107,243) 0.34 

RS GF (256) (255,239,17) 0.93 (65025,57121,289) (520200,456968,2312) 0.87 

EG GF (16) (255,175,17) 0.68 (65025,30625,289) (260100,122500,1156) 0.47 

RS GF (256) (255,153,103) 0.6 (65025,23409,10609) (520200,187272,84872) 0.36 

EG GF (256) (255,175,17) 0.68 (65025,30625,289) (520200,245000,2312) 0.47 

RS GF (256) (255,223,33) 0.87 (65025,49729,1089) (520200,397832,8712) 0.76 
 

  = k × k 
 ×  = k 
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code is then required for transmission. The element 
of the Galois field GF (2m) have a binary 
representation of m bits. 

 
The extension field GF (2m) forms a vector space 

of dimension m over GF (2). A binary image PCb of 
PC is thus obtained by expanding each code symbol, 
either horizontally or vertically, into m bits using the 

polynomial basis  where α is a 
primitive element of GF (2m). In this study, the 
product code PC is divided into one binary image, 
either 
PCb

− or PCb
| to symbolize the horizontal or vertical 

expansions respectively. 

4.2 Turbo Decoding Scheme Using SISO nb-ITD 

As Elementary Decoder 

In this section we describe the proposed turbo 
decoding algorithm for non-binary product codes. 
The decoding process of turbo codes is a suboptimal 
iterative processing in which each component 
decoder takes advantage of the extrinsic information 
produced by the other component decoder at the 
previous step.The original work in this context is due 
to Berrou [4] and Robertson [8] for convolutional 
codes, Pyndiah [5] and Lucas [6] for block codes. 
Hagenauer [13] gave an extrapolation of Robertson’s 
scheme for block codes by using a trellis decoder. 
Belkasmi [11] used connexion scheme of Pyndiah 
and Threshold decoding of Massey [9] to derive a 
turbo decoding scheme for binary block product 
codes. 

The iterative decoding process presented in this 
section follows that given by Belkasmi in [10] where 
we use a non binary version of the soft-input 
softoutput iterative threshold decoding algorithm 
with Pyndiah’s connexion scheme, and it is designed 
to decode product codes based on two systematic 
OSMLD codes. The iterative decoding process is  
shown in Figure 5, and it is described in the 
following. 

 
In this section we describe in details the proposed 

decoding process of non binary product codes. As 
shown in Figure 4, starting from a I = [k1×k2] 
information matrix, systematic encoding of PC is 
easily accomplished by first encoding the k1 

information rows using a systematic encoder for C1. 
Then, the n1 columns are encoded using a systematic 
encoder for C2, thus resulting in the U = [n1×n2] 
coded matrix. This matrix has elements in GF (2m), 
therefore we can expand each of its symbols either 
horizontally, resulting in V− = [m×n1,n2] binary 

matrix, or vertically resulting inV| =[n1,m×n2] binary 
matrix. After that, we obtain the channel reliabilities 
llr− and llr|. Then the iteration process starts. 

The block diagram of the turbo decoder at the kth 

half-iteration is shown in Figure 6. A half-iteration 
stands for a row or column decoding step, and one 
iteration comprises two half-iterations. 
 

 
Figure 5: Block Diagram Of Our Turbo-Decoder At The 

Kthiteration Of The Prodect Decoder. 

The output of the SISO decoder at horizontal 
halfiteration k is given by: 

 LLR  (15) 
where λ1 is a scaling factor used to amplify the 

channel reliability, and where λ2 is a scaling factor 
used to attenuate the influence of extrinsic 

information during the iterations. The term X  is 
the extrinsic information matrix delivered by the 
SISO decoder at the previous half-iteration and it is 
initially equal to 0 (i.e. . 

The output of the SISO decoder at horizontal 
halfiteration k is given by: 

  (16) 
The decoder outputs an updated extrinsic 

information matrix X , and possibly a code array 
z(k) of hard-decisions. Decoding stops when a given 
maximum number of iterations has been performed. 

Algorithm 4 describes our proposition of the 
turbo block decoder based on the elementary 
decoder nonbinary Iterative Threshold Decoding 
described in the previous section. 
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5. RESULTS AND PERFORMANCE 
ANALYSIS 

 
In this section we present the error performance of 
the proposed decoder for various non-binary EG 
product codes in terms of Symbol Error Rates (SER) 
and Block Error Rates (BLER). We investigate the 
effect of the iterations on the performance of the 
decoder, in order to find the optimal maximum 
number of iterations for each code used.  

 
 
5.1 Symbol and Block Error Rate 
In the following, we will use Euclidean Geometry 
codes to illustrate the decoding performance of the 
non-binary block turbo decoder described above. The 
non-binary EG product codes used here have  
 
symbols belonging to GF (2m), therefore each code 
symbol can be represented by m bits. Each codeword 
is decoded with the nb-ITD, and we compute its 
symbol error performance assuming BPSK signaling 
for transmission over the AWGN channel with a 
singlesided power spectral density N0, are used in our 
numerical simulations. Our results are obtained by 
the Monte-Carlo simulation, with stopping criteria of 
at least 1000 decoded blocks and 200 residual symbol 
errors. In Table 3, we summarize the simulation 
settings. 
 
 
 
 
 
 

Table 3: Simulation settings. 

Model codes 

nb-EG-
PC(n,k)2 

Alphabet 

nb-EG-
PC(15,7)2 

GF(22) 

nb-EG-
PC(63,37)2 

GF(23) 

nb-EG-
PC(255,7175)2 

GF  

Modulation BPSK  
Channel AWGN  

Simulation method Monte Carlo  
Minimum number 

of transmitted 
blocks 

1000  

Minimum number 
of residual symbol 

errors 

200  

 

 
 

Figure 6: Symbol Error Rate Performances Of 4-Ary 
Nb-EG(15;7)2 Decoded With A Different Maximum 

Number Of Iterations. 
Figure 6 shows the convergence rate of the 

iterative decoding of the 4-ary nb-EG(15,7)2 product 
code decoded with the proposed decoder based on 
two nb-ITD elementary decoders. We see that 
convergence is very fast, about 3 iterations to reach 
the maximum performance, i.e. after 3 iterations 
there is no more noticeable amelioration. This code 

is based on the Euclidean Geometry EG , and 

has symbols belonging to GF . Thus each symbol 
has a 2-tuple binary representation. Therefore the 
resulting product code is equivalent to a (255,49,25) 

codes over GF  which is itself equivalent to a 
binary (510,98,50). 
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Figure 7: Symbol And Block Error Rate Performance Of 

Nbeg(255,175)2 Over GF(24) Decoded With Nb-ITD 

Product Decoding Algorithm. 

Example: Consider the non-binary (255,175) 

cyclic EG code over GF with column weight 16 
and minimum distance at least 17, whose generator 
polynomial is g(X) = α5 + α3X2 + αX4 + α14X6 + 
α11X9 + α9X11 + α8X12 + α7X13 + α5X15 + α4X16 
+ α2X18 + X20 + α14X21 + α11X24 + α10X25 + α7X28 
+ α5X30 + α3X32 + αX34 + α13X37 + α11X39 + 
α10X40 + α9X41 + α8X42 + α7X43 + α13X52 + α12X53 
+ α11X54 + α9X56 + α8X57 + α7X58 + α5X60 + 
α4X61 + 
α3X62+α2X63+αX64+X65+α14X66+α12X68+ α11X69 
+α10X70 +α8X72 +α7X73 +α4X76 +X80. Each symbol 
in GF can be expended into 4 bits. The symbol error 
performance of the 16-ary product code 
EG(255,175)2 decoded with the proposed decoder 
(10 iterations) is shown in Figure 7. 

 

 
Figure 8: Symbol Error Rate Performances Of Different 

Nb EG Product Codes. 

 
Finally, Figure 7 shows the symbol error rate of the 

product codes (15,7,5)2, (63,37,9)2 and (255,175,17)2. 
These codes respectively equivalent to binary codes 
(510,98,50) of 

0.19, (11907,4107,243) of rate 0.34 and 
(260100,122500,1156) of rate 0.47, as shown in 
Table II. We notice that the obtained product codes 
that have higher rates have better performance. 
CONCLUSION 
In this paper we presented a comprehensive study 
about the construction and the turbo decoding of 
Product Codes based on a family of cyclic EG codes, 
that are LDPC and OSMLD at the same time, due to 
their structural properties. This method of Product 
Codes construction results in a wide range of possible 
codes lengths and rates with different possible 
alphabets, which adds variety to the pool on 
nonbinary error correcting codes. The non-binary 
Iterative Threshold Decoding algorithm is an upgrade 
of the binary ITD algorithm proposed by Belkasmi et 
al. to make it decode non-binary codes. The nb-ITD 
updates only the extrinsic information over the 
iterations, while keeping the same channel 
reliabilities of the received symbols during each 
iteration. By taking into consideration the channel 
output, we assign weights to each one of these 
orthogonal equations, which associate with each 
decision a reliability that will be exploited during the 
iterations. The most pertinent point is that this 
decoding algorithm is of low complexity compared 
to most well-known decoders for non-binary codes, 
and since the decoding complexity is a key challenge, 
our decoder seems to be a good proposition for turbo 
decoding of non-binary product codes based on 
nonbinary OSMLD EG codes. We carried out 
simulations on an AWGN channel using BPSK 
modulation, and the results showed that codes with 
higher code rates achieve better performance. We 
also showed the effect of the iterations on the 
proposed decoder, and noticed that our decoder 
reaches its maximum performance just after 10 
iterations, therefore no need to go all the way to a 100 
iterations. The performance can be improved by 
changing the factors that affect channel reliability 
and extrinsic information during the iteration. One 
perspective of our work is to design a decoding 
scheme for parallel concatenation of non-binary 
OSMLD codes using SISO nb-ITD as component 
decoder, and study the performance in the Rayleigh 
fading channels using high order modulations such as 
QAM modulations. 
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