
Journal of Theoretical and Applied Information Technology
31st December 2022. Vol.100. No 24

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4859

A STUDY OF NON-BINARY PRODUCT CODES AND THEIR
TURBO DECODING

ZAKARIA M’RABET∗, FOUAD AYOUB+, MOSTAFA BELKASMI∗

∗ICES Team, ENSIAS, Mohammed V University in Rabat, Morocco

+ERIATC Team, LaREAMI Lab, CRMEF-K, Kenitra, Morocco
E-mail: zakaria.mrabet@um5s.net.ma

ABSTRACT

In this paper we study a family of non-binary product codes (nb-PC) constructed from the family of low
density parity check (LDPC) codes known as Euclidean geometry (EG) codes. A coding/decoding scheme
of these non-binary product codes (nb-PC) is presented where the turbo decoder is based on a soft input soft
output (SISO) decoder suitable for non- binary one-step majority-logic decodable (OSMLD) codes, which is
described in details in this work. We study the effect of iterations on the performance of our (PC) decoder,
and exhibit the symbol and block error rates of some constructed codes transmitted over Additive Gaussian
Noise (AWGN) channel. The obtained results are satisfying.
Keywords– Non-Binary, Product Codes, Turbo Decoding, One-Step Majority-Logic Decodable (OSMLD)

Codes, Low Density Parity Check (LDPC) Codes.

1. INTRODUCTION

Shannon showed in [1] that random codes with long
block length are more likely to approach the channel
capacity. Unfortunately, increasing the code length
results in an increase of the decoding complexity.
One approach for designing long and powerful codes
from short length component codes, is to use a coding
technique called product coding. This coding
technique was invented in 1954 by Elias in [2] and it
consists on combining two or more codes to generate
a code with longer block size.

This work is a study of the non-binary Product
Codes, Their Construction and Decoding. This
method is not well documented for the non-binary
case [3], but it results in a variety of algebraically
constructed large codes with known parameters,
which is a strong point in code construction. Many
constructed methods of LDPC codes focus on
constructing the parity check matrix, and the code
associated with it would be the null space of this
matrix, which doesn’t give a clue about the
dimension or the minimum distance of the code,
which make the coding process challenging.
Therefore our approach of constructing large codes
with known parameters is a strong asset.

Since the introduction of turbo codes by Berrou [4]
for convolutionnal codes over two decades ago, there
has been much interest in the conception of design of
soft-input soft-output (SISO) decoding algorithms.

Soon after, turbo decoding was applied to block
codes by Pyndiah [5] and others. The decoding of a
product code can be assimilated to a turbo decoder of
serial concatenated block codes. However, for
concatenated schemes with block component codes,
the computational complexity of trellis-based SISO
decoding algorithms is often high. This has led to the
research for new SISO decoding algorithms with low
complexity and high performance, e.g., [5–7]. These
algorithms calculate extrinsic information using
classical decoders such as the Chase algorithm in [5],
ordered statistics decoding algorithm in [7] and the
Hartmann/Rudolph algorithm in [6]. In this
perspective Belkasmi et al. [10] presented a new
iterative decoding algorithm based on a SISO
extension form of the Massey algorithm [9]. Svirid
[11] also used the Threshold algorithm in iterative
decoding but for convolutional codes. Belkasmi’s
iterative decoding process follows that given by
Pyndiah in [5]. However, instead of using an
extension of the Chase algorithm on BCH codes, he
applied an extension of Massey’s algorithm on one
step majority logic decodable (OSMLD) codes.
Another known work is attributed to Lucas et al. [6],
who introduced an iterative decoding algorithm for
several families of codes including OSMLD codes
but they used an approximation of
Hartmann/Rudolph algorithm [12].

On the other hand, product codes can be
constructed as binary codes or as non-binary ones.

Journal of Theoretical and Applied Information Technology
31st December 2022. Vol.100. No 24

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4860

Binary product codes can be constructed by using
binary component codes, for example by using
BoseChaudhuri-Hocquenghem (BCH) codes or
Difference Set Cyclic (DSC) codes as their
component codes. In the same logic, non-binary
product codes can be constructed by combining non-
binary codes with each other, for example Reed-
Solomon (RS) codes or non-binary finite geometry
codes like Euclidean and Projective geometry codes.
Unfortunately non-binary turbo decoding is not well
investigated.

Since, constructing a code without presenting its
decoding is incomplete, and because a major issue of
the decoding algorithms of non-binary LDPC codes
is that they are very complex and are unsuitable for
practical implementation, our contributions are to
propose an iterative decoding scheme for non-binary
product codes that involves non-binary Euclidean
Geometry codes as component codes, and a non-
binary version of the Iterative Threshold Decoder of
Belkasmi et. al as elementary soft-input soft-output
decoder which is based on Majority Logic Decoding
(MLGD).

The rest of the paper is organized as follows;
Section II is dedicated to the presentation of non-
binary one-step majority-logic decodable (OSMLD)
codes and the description of the majority-logic
decoding (MLGD) algorithm. In Section III, Soft-
input Softoutput (SISO) decoding algorithm is
detailed along with its iterative version, which is the
first time this decoder is presented. Section IV is for
product code construction and iterative turbo decoder
is presented. The simulation results are exhibited in
Section V. Finally Section VI concludes the paper.

2. BINARY AND NON-BINARY ERROR

CORRECTING CODES

Error correcting codes are used to reduce the errors
in a received sequence of symbols that was
transmitted through a noisy channel. In the non-
binary codes, the transmitted symbols belong to a
Galois Field. In this section we describe the Galois
field elements, how we can obtain them, and why
each symbol in a Galois field has a binary
representation. Then we will present cyclic OSMLD
codes, and how EG codes are a good choice.

2.1 Non-Binary Cyclic EG OSMLD LDPC

Codes
The elements of a non-binary code can either belong
to a finite ring of integers, or to a finite Galois field,
in this study we investigate only the latter family.

Galois Fields are just regular fields that contain a
finite number of elements, denoted q which is a
power of a prime. Such Galois Fields are denoted GF
(q). Then elements of GF (q) can be derived from its
primitive element α, which is the root of the primitive
polynomial characterizing the field GF (q). Let α be
the primitive element of a GF (q), where q = 2m and
m is a positive integer. Then

GF , and
each element αs has a binary representation on m bits,
with s = 0,1,...,q−1. Therefore αs ∈ GF (q) means αs =
(as,0,as,1,...,as,m−1) is its binary representation.

2.2 1st Contribution : Non-Binary Extrinsic

MLGD
Consider a non-binary (n,k) cyclic codeC with parity
check matrix H, and symbols belonging to GF (q).
The row space of H is an (n−k,n) cyclic code, de-

⊥
noted by C or Cd, which is the dual code of C, or also
called the null space of C. For any vector u ∈ C

⊥ −∞ in and w ∈ C , the inner product
of u and w is α GF (q), that is,
 u.w = u1w1+u2w2+···+unwn = 0 (1)

In fact, an n-tuple u is a code-word in C means that
⊥ for any vector

w of the dual code C , u·w = 0. The equality (1) is
called a parity check equation. It is clear that there are
2n−k such parity check equations.

Suppose that z is a hard received vector. For any
⊥ vector w in the dual

code C , we can form the following linear sum of the
received symbols:

A znwn).w−n 1
(2)

which is called the parity check sum or simply
check sum. This parity check A must be equal to zero
if the received vector z is a code-word in C, however,
if z is not a code-word, then A may not be equal to
zero.

A received symbol zj is said to be checked by the
check sum A if the coefficient wj is non-zero.

We can also estimate the received symbol zn

checked by a check sum B, by calculating the
following sum:

B

There are some codes that can be decoded by

taking a majority logic vote from a set of check
equations orthogonal on each data symbol. When the
code is cyclic, we need just one set of J equations
orthogonal on the last symbol, then we cycle the data

Journal of Theoretical and Applied Information Technology
31st December 2022. Vol.100. No 24

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4861

symbols so that the orthogonality becomes on the
(n−1)th position, and so on until estimating all the n
data symbols. The first Majority Logic Decoding
algorithm was devised by Reed in 1954 [4] for Reed-
Muller codes.

Table 1 shows some examples of non-binary cyclic
OSMLD codes. In this table we use the abbreviations
EG for Euclidean Geometry codes, PG for Projective
Geometry codes and RS for Reed-Solomon codes.
These codes can serve to construct a product code as
we will discuss in later sections.

Table 1: Set Of Non-Binary Cyclic OSMLD Codes.

code GF (q) n k R J dmin

PG GF (8) 7 3 0.42 3 4

EG GF (16) 15 7 0.46 4 5

EG GF (4) 15 7 0.46 4 5

PG GF (64) 21 11 0.52 5 6

EG GF (8) 63 37 0.58 8 9

RS GF
(256)

255 239 0.93 17

EG GF (16) 255 175 0.68 16 17

RS GF
(256)

255 153 0.6 103

EG GF
(256)

255 175 0.68 16 17

RS GF
(256)

255 223 0.87 33

In the following, we show that certain properly

formed check sums can be used for estimating the
received symbols in zj.

Suppose that there exist J vectors in the dual code
⊥

C ,
w1 = (w1,1,w1,2,...,w1,n)
w2 = (w2,1,w2,2,...,w2,n)

...
wJ = (wJ,1,wJ,2,...,wJ,n)

which have the following properties:
1. The nth component of each vector is ” 6=

α−∞, 0”, that is , w1,n = w2,n = ... = wJ,n 6= 0.

2. For i 6= n, there is at most one vector whose

ithcomponent is ” 6= 0”; for example, if w1,i 6= 0, then

w2,i = w3,i = ··· = wJ,i = 0.

These J vectors are said to be orthogonal on the nth

symbol position. We call them orthogonal vectors or
orthogonal equations.

Now let us form J check sums from this orthogonal
vector using (3). We can form the relationship
between these J vectors and the received symbols in
the following manner:

Therefore, we see that the symbol zn is checked by

all the check sums above. Because of the second
property of the J orthogonal vectors, any received
symbol other than zn is checked by at most one check
sum. These J check sums are said to be orthogonal
on the symbol zn and they are crucial for the Majority
Logic (MLG) based decoding algorithms. In fact, this
structural property is crucial to deliver extrinsic
information about the symbol zn.

Let dmin be the minimum distance of the code.
Clearly, the threshold decoding is more effective for
codes when it is equal to or close to the error
correcting capability t = (dmin −1)/2 of the code; in
other words, J should be equal to or close to dmin −1.
For the cyclic Euclidean geometry codes dmin = J + 1,
thus this family of codes are best suited for MLGD
algorithms, and the bigger the set of equations is, the
more extrinsic information it will gather, therefore
the more powerful the decoding performance will be.

Algorithm 1 describes the non-binary Majority
Logic Decoding Algorithm nb-MLGD.

The performance of this decoder is displayed in the

Figure 1 for the nb-EG(255,175,17) over GF(16).

Algorithm 1 nb-MLGD
Input: Received signal y
Output: Non-binary Decoded sequence z

1: take the hard decision vector z from y
2: for j = (1 : n) do

3: for i = (0 : J) do
4: Bi
5: end for
6: zn is the Majority of the Bi
7: operate a cyclic shift to the vector z

8: end for

Journal of Theoretical and Applied Information Technology
31st December 2022. Vol.100. No 24

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4862

Figure 1: Uncoded BPSK vs nb-MLGD for nb-

EG(255,175,17) over GF(16).

We observe from Figure 1 that by using the nb

MLGD, in late SNR we have nearly 2dB of coding
gain compared to the uncoded BPSK modulation. In
the next section, we present the straightforward
amelioration of this decoder, which involves the
information delivered by the channel.

3. FROM SIHO TO SISO DECODER FOR

NONBINARY CODES

Reed’s algorithm was improved by Massay, who put
the first unified formulation of the MLGD named
Threshold Decoding (TD) [9]. In his original work he
considered two different variations of the decoding
algorithm. Consider here the method which involves
the computations of the Bi equations instead of the Ai

equations. Since the Bi’s are obtained from the Ai’s
by removing the symbol on which the equations are
orthogonal, the information delivered by the Bi’s will
be extrinsic to that symbol.

3.1 Non-Binary SIHO Threshold Decoder
In this section, we will describe the steps of the
Threshold Decoder for non-binary codes.

Now suppose that a code-word x in C is
transmitted. Let y = (y1,y2,...,yn) be the real received
vector, we can compute the reliability of the received
symbols being symbols from GF (q) as follows:

We can compute llr’s with (4) to work only with
positive values.

P(xj = αs|yj)

 llrj (4)
Therefore we compute 2s values of llrj (αs) for each

received symbol yj being αs ∈ GF (q).

Let z = (z1,z2,...,zn) be the hard decision vector,
computed from the channel reliability:

zj = arg max llrs,j (5)
αs∈GF(q)0≤s≤q−1

Let the magnitude of the reliability of the hard
decision symbol be the maximum value :

 rj llrj (αs) (6)

Let N , be the set of indices of
non-zero coefficients of wi involved in the parity

check sum Bi. Therefore, the weighting coefficient of
the ith equation can be computed in (7):

 Wi (7)
Let W0 be:

 W0 = rj (8)
Let Xs,j be the extrinsic reliability of the jth received

symbol being αs. X is initialized to zero, then it is
computed as follows:
 XBi,j = XBi,j +Wi (9)

Then we add the reliability of the symbol zj on
which the orthogonality holds as follows:
 Xzj,j = Xzj,j +rj (10)

Then the final reliability of the decoder is
calculated from the channel reliability and the
extrinsic information computed throuth the
orthogonal weighted equations as in (10)
 LLR = llr+X (11)

zj = arg max LLRs,j (12)
αs∈GF(q)0≤s≤q−1

The hard vector z is then cycled n times to compute
LLR for every position j.

Algorithm 2 Describes The Non-Binary Threshold
Decoding.

Algorithm 2 nb-TD
Input: Received signal y
Output: Non-binary Decoded sequence z for j

= (1 : n) do
2: for s = (0 : q−1) do

Calculate llrj (αs) from (4)
4: rj from (5) zj

from (6)
6: end for end for
8: for j = (n : 1) do for

i = (0 : J) do
10: compute Bi

compute Wi from (7) and (8)
12: end for

compute Xj from (9) and (10) 14:
compute LLRj from (11)

Calculate the hard decision zj of LLRj from
(12)

16: end for

Journal of Theoretical and Applied Information Technology
31st December 2022. Vol.100. No 24

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4863

To summarize, the non-binary Threshold
Decoding algorithm is the logical extension of the
Majority Logic Decoding algorithm. It enhances the
performance of this latter by taking into
consideration the channel output before computing
the orthogonal equations, which assigns weights to
each one of these equations, and this leads to more
accurate results. In the next section we will present
for the iterative version of this threshold decoder,
which will represent the non-binary version of the
binary ITD devised by Belkassmi et-al in [10]. In
Figure 2 we notice the coding gain obtained by the
nb-TD vs the nb-MLGD.

Figure 2: nb-TD vs nb-MLGD for EG codes over GF(16).

3.2 Non-Binary SISO Iterative Threshold

Decoder
In [6], Lucas et al. proposed the first iterative
decoding algorithm for OSMLD codes. His
algorithm computes the extrinsic information using a
weighted version of the Hartmann/Rudolph
algorithm [12]. In [6], Lucas new algorithm showed
that OSMLD codes can perform better than their
LDPC counterparts, for moderate code lengths
(between 200-1000). In [5], Pyndiah proposed an
iterative decoding scheme that updates only the
extrinsic information over the iterations, while
keeping the same channel reliabilities of the received
symbols during each iteration. This principle was
also used by Belkasmi et al. in [10], where they have
modified Pyndiah’s algorithm by associating with
each decision a reliability that is weighted by a fixed
parameter λ2, and which will be exploited during the
iterations.

LLR(t+1) = λ1llr(t)+λ2X(t) (13) then

compute the most likely hard decision by this

equation (14):

To jump from soft output to iterative, we just need
to reinject the extrinsic information generated by the
decoder in an iteration as a-priori information for
the decoder in the next iteration.

Algorithm 3 describes our proposition of the
nonbinary Iterative Threshold Decoding.
Performance of the non-binary Iterative Threshold
decoding algorithm is displayed in the Figure 3 in
terms of symbol error rate, for the code

EG(255,175,17) over GF . Clearly, the nb-ITD
outperforms the other algorithms, where a coding
gain of 1.5dB is achieved compared to the non-binary
Threshold Decoding algorithm.

Algorithm 3 nb-iTD
Input: Received signal y
Output: Binary Decoded sequence z for j

= (1 : n) do
for s = (0 : q−1) do

3: Calculate llrj (αs) from (4) rj from
(5) zj from (6)

6: end for end for
for j = (n : 1) do

9: for i = (0 : J) do compute Bi compute
Wi from (7) and (8)

12: end for
compute Xi from (10) and (11) compute the

overall reliability LLRj from (13)
15: Calculate the hard decision zj of LLRj from

(14) operate a cyclic shift to the vectors z and
r

end for

Figure 3: nb-SISO vs nb-SIHO vs nb-HIHO.

4. TURBO DECODING OF NON-BINARY

PRODUCT CODES

The decoding of product codes consists of
successively decoding lines and columns of a

Journal of Theoretical and Applied Information Technology
31st December 2022. Vol.100. No 24

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4864

received matrix, using an elementary soft decoder.
Among the first authors that used this principle of

decoding lines and columns of a matrix, we find
Berrou [4] and Robertson [8] for convolutionnal
codes. Also Pyndiah [5] and Lucas [6] used the same
principal to decode block codes. Hagenaur [13]
presented in his work a log likelihood algebra that
allows to determine the extrinsic information passing
between the elementary decoders. Fouad et. al
proposed a decoding scheme related to this family of
binary product codes.

4.1 Non-Binary Product Codes
Binary product codes were invented (in 1954 [2])
long before turbo product codes, but the qualifier
“turbo” refers to the iterative decoder which
comprises two SISO constituent decoders. Such a
turbo decoder is easy to derive if we assimilate a
product code to a serial concatenation of block codes.
The challenge then would be to design a good
constituent SISO block decoders necessary for the
iterative decoding scheme. In the following, we will
use the SISO non-binary ITD as constituent block
decoder due to its low complexity compared with
other known decoders. But first, we describe the
construction and the coding process of product codes.
4.1.1 Product codes construction and

systematic encoding
Let C1 and C2 be linear block codes over the Galois
field GF (q), with parameters (n1,k1,d1) and (n2,k2,d2),
respectively. The product code PC = C1⊗C2 consists
of all n1×n2 matrices such that each column is a
codeword in C1 and each row is a codeword in C2, or
inversely. It is well known that PC is a (n1×n2,k1×k2)
linear block code with minimum distance d1×d2 over
GF (q) [14]. The direct product construction thus
offers a simple way to build long block codes with
relatively large minimum distance using simple,

short component codes with small minimum

distance. When C1 and C2 are two EG codes over GF
(q), we obtain an EG product code over GF (q).

Table 2 shows some examples of non-binary block
product cyclic OSMLD codes. In this table we use
the abbreviations as in Table 1 by adding a power of
2 in the code parameter (n,k,dmin)2, to indicate that is
a symmetric product code (i.e. formed by the same
component code horizontally and vertically) .

Starting from a k1×k2 information matrix,
systematic encoding of PC is easily accomplished by
first encoding the k1 information rows using a
systematic encoder for C1. Then, the n1 columns are
encoded using a systematic encoder for C2, thus
resulting in the n1×n2 coded matrix shown in Figure
4.

In the case of a symmetrical product code, the code
used horizontally and vertically is the same, thus to
send a k×k matrix of information symbols, we have
to send an n×n matrix. Therefore the code rate of 2

Figure 4: Code Word In The Product Code PC=C1×C2.

4.1.2 Binary image of EG product codes
Communication systems usually employ some form
of binary signaling. Binary expansion of the EG PC

Table 2: Set of non-binary Product Code based on OSMLD codes

code GF (q) (n,k,dmin) R (n,k,dmin)2 Binary expantion R’

PG GF (8) (7,3,4) 0.42 (49,9,16) (147,27,48) 0.18

EG GF (16) (15,7,5) 0.46 (255,49,25) (1020,196,100) 0.19

EG GF (4) (15,7,5) 0.46 (255,49,25) (510,98,50) 0.19

PG GF (64) (21,11,6) 0.52 (441,121,36) (2646,726,216) 0.27

EG GF (8) (63,37,9) 0.58 (3969,1369,81) (11907,4107,243) 0.34

RS GF (256) (255,239,17) 0.93 (65025,57121,289) (520200,456968,2312) 0.87

EG GF (16) (255,175,17) 0.68 (65025,30625,289) (260100,122500,1156) 0.47

RS GF (256) (255,153,103) 0.6 (65025,23409,10609) (520200,187272,84872) 0.36

EG GF (256) (255,175,17) 0.68 (65025,30625,289) (520200,245000,2312) 0.47

RS GF (256) (255,223,33) 0.87 (65025,49729,1089) (520200,397832,8712) 0.76

 = k × k
 × = k

Journal of Theoretical and Applied Information Technology
31st December 2022. Vol.100. No 24

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4865

code is then required for transmission. The element
of the Galois field GF (2m) have a binary
representation of m bits.

The extension field GF (2m) forms a vector space

of dimension m over GF (2). A binary image PCb of
PC is thus obtained by expanding each code symbol,
either horizontally or vertically, into m bits using the

polynomial basis where α is a
primitive element of GF (2m). In this study, the
product code PC is divided into one binary image,
either
PCb

− or PCb
| to symbolize the horizontal or vertical

expansions respectively.

4.2 Turbo Decoding Scheme Using SISO nb-ITD

As Elementary Decoder

In this section we describe the proposed turbo
decoding algorithm for non-binary product codes.
The decoding process of turbo codes is a suboptimal
iterative processing in which each component
decoder takes advantage of the extrinsic information
produced by the other component decoder at the
previous step.The original work in this context is due
to Berrou [4] and Robertson [8] for convolutional
codes, Pyndiah [5] and Lucas [6] for block codes.
Hagenauer [13] gave an extrapolation of Robertson’s
scheme for block codes by using a trellis decoder.
Belkasmi [11] used connexion scheme of Pyndiah
and Threshold decoding of Massey [9] to derive a
turbo decoding scheme for binary block product
codes.

The iterative decoding process presented in this
section follows that given by Belkasmi in [10] where
we use a non binary version of the soft-input
softoutput iterative threshold decoding algorithm
with Pyndiah’s connexion scheme, and it is designed
to decode product codes based on two systematic
OSMLD codes. The iterative decoding process is
shown in Figure 5, and it is described in the
following.

In this section we describe in details the proposed

decoding process of non binary product codes. As
shown in Figure 4, starting from a I = [k1×k2]
information matrix, systematic encoding of PC is
easily accomplished by first encoding the k1

information rows using a systematic encoder for C1.
Then, the n1 columns are encoded using a systematic
encoder for C2, thus resulting in the U = [n1×n2]
coded matrix. This matrix has elements in GF (2m),
therefore we can expand each of its symbols either
horizontally, resulting in V− = [m×n1,n2] binary

matrix, or vertically resulting inV| =[n1,m×n2] binary
matrix. After that, we obtain the channel reliabilities
llr− and llr|. Then the iteration process starts.

The block diagram of the turbo decoder at the kth

half-iteration is shown in Figure 6. A half-iteration
stands for a row or column decoding step, and one
iteration comprises two half-iterations.

Figure 5: Block Diagram Of Our Turbo-Decoder At The

Kthiteration Of The Prodect Decoder.

The output of the SISO decoder at horizontal
halfiteration k is given by:

 LLR (15)
where λ1 is a scaling factor used to amplify the

channel reliability, and where λ2 is a scaling factor
used to attenuate the influence of extrinsic

information during the iterations. The term X is
the extrinsic information matrix delivered by the
SISO decoder at the previous half-iteration and it is
initially equal to 0 (i.e. .

The output of the SISO decoder at horizontal
halfiteration k is given by:

 (16)
The decoder outputs an updated extrinsic

information matrix X , and possibly a code array
z(k) of hard-decisions. Decoding stops when a given
maximum number of iterations has been performed.

Algorithm 4 describes our proposition of the
turbo block decoder based on the elementary
decoder nonbinary Iterative Threshold Decoding
described in the previous section.

Journal of Theoretical and Applied Information Technology
31st December 2022. Vol.100. No 24

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4866

5. RESULTS AND PERFORMANCE
ANALYSIS

In this section we present the error performance of
the proposed decoder for various non-binary EG
product codes in terms of Symbol Error Rates (SER)
and Block Error Rates (BLER). We investigate the
effect of the iterations on the performance of the
decoder, in order to find the optimal maximum
number of iterations for each code used.

5.1 Symbol and Block Error Rate
In the following, we will use Euclidean Geometry
codes to illustrate the decoding performance of the
non-binary block turbo decoder described above. The
non-binary EG product codes used here have

symbols belonging to GF (2m), therefore each code
symbol can be represented by m bits. Each codeword
is decoded with the nb-ITD, and we compute its
symbol error performance assuming BPSK signaling
for transmission over the AWGN channel with a
singlesided power spectral density N0, are used in our
numerical simulations. Our results are obtained by
the Monte-Carlo simulation, with stopping criteria of
at least 1000 decoded blocks and 200 residual symbol
errors. In Table 3, we summarize the simulation
settings.

Table 3: Simulation settings.

Model codes

nb-EG-
PC(n,k)2

Alphabet

nb-EG-
PC(15,7)2

GF(22)

nb-EG-
PC(63,37)2

GF(23)

nb-EG-
PC(255,7175)2

GF

Modulation BPSK
Channel AWGN

Simulation method Monte Carlo
Minimum number

of transmitted
blocks

1000

Minimum number
of residual symbol

errors

200

Figure 6: Symbol Error Rate Performances Of 4-Ary
Nb-EG(15;7)2 Decoded With A Different Maximum

Number Of Iterations.
Figure 6 shows the convergence rate of the

iterative decoding of the 4-ary nb-EG(15,7)2 product
code decoded with the proposed decoder based on
two nb-ITD elementary decoders. We see that
convergence is very fast, about 3 iterations to reach
the maximum performance, i.e. after 3 iterations
there is no more noticeable amelioration. This code

is based on the Euclidean Geometry EG , and

has symbols belonging to GF . Thus each symbol
has a 2-tuple binary representation. Therefore the
resulting product code is equivalent to a (255,49,25)

codes over GF which is itself equivalent to a
binary (510,98,50).

Journal of Theoretical and Applied Information Technology
31st December 2022. Vol.100. No 24

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4867

Figure 7: Symbol And Block Error Rate Performance Of

Nbeg(255,175)2 Over GF(24) Decoded With Nb-ITD

Product Decoding Algorithm.

Example: Consider the non-binary (255,175)

cyclic EG code over GF with column weight 16
and minimum distance at least 17, whose generator
polynomial is g(X) = α5 + α3X2 + αX4 + α14X6 +
α11X9 + α9X11 + α8X12 + α7X13 + α5X15 + α4X16
+ α2X18 + X20 + α14X21 + α11X24 + α10X25 + α7X28
+ α5X30 + α3X32 + αX34 + α13X37 + α11X39 +
α10X40 + α9X41 + α8X42 + α7X43 + α13X52 + α12X53
+ α11X54 + α9X56 + α8X57 + α7X58 + α5X60 +
α4X61 +
α3X62+α2X63+αX64+X65+α14X66+α12X68+ α11X69
+α10X70 +α8X72 +α7X73 +α4X76 +X80. Each symbol
in GF can be expended into 4 bits. The symbol error
performance of the 16-ary product code
EG(255,175)2 decoded with the proposed decoder
(10 iterations) is shown in Figure 7.

Figure 8: Symbol Error Rate Performances Of Different

Nb EG Product Codes.

Finally, Figure 7 shows the symbol error rate of the

product codes (15,7,5)2, (63,37,9)2 and (255,175,17)2.
These codes respectively equivalent to binary codes
(510,98,50) of

0.19, (11907,4107,243) of rate 0.34 and
(260100,122500,1156) of rate 0.47, as shown in
Table II. We notice that the obtained product codes
that have higher rates have better performance.
CONCLUSION
In this paper we presented a comprehensive study
about the construction and the turbo decoding of
Product Codes based on a family of cyclic EG codes,
that are LDPC and OSMLD at the same time, due to
their structural properties. This method of Product
Codes construction results in a wide range of possible
codes lengths and rates with different possible
alphabets, which adds variety to the pool on
nonbinary error correcting codes. The non-binary
Iterative Threshold Decoding algorithm is an upgrade
of the binary ITD algorithm proposed by Belkasmi et
al. to make it decode non-binary codes. The nb-ITD
updates only the extrinsic information over the
iterations, while keeping the same channel
reliabilities of the received symbols during each
iteration. By taking into consideration the channel
output, we assign weights to each one of these
orthogonal equations, which associate with each
decision a reliability that will be exploited during the
iterations. The most pertinent point is that this
decoding algorithm is of low complexity compared
to most well-known decoders for non-binary codes,
and since the decoding complexity is a key challenge,
our decoder seems to be a good proposition for turbo
decoding of non-binary product codes based on
nonbinary OSMLD EG codes. We carried out
simulations on an AWGN channel using BPSK
modulation, and the results showed that codes with
higher code rates achieve better performance. We
also showed the effect of the iterations on the
proposed decoder, and noticed that our decoder
reaches its maximum performance just after 10
iterations, therefore no need to go all the way to a 100
iterations. The performance can be improved by
changing the factors that affect channel reliability
and extrinsic information during the iteration. One
perspective of our work is to design a decoding
scheme for parallel concatenation of non-binary
OSMLD codes using SISO nb-ITD as component
decoder, and study the performance in the Rayleigh
fading channels using high order modulations such as
QAM modulations.

Journal of Theoretical and Applied Information Technology
31st December 2022. Vol.100. No 24

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4868

REFERENCES:

[1] C. E. Shannon, “A Mathematical Theory of
Communication,” Bell Syst. Tech. J., Vol. 27,
pp. 379-423, 1948.

[2] P. Elias, “Error free coding,”. IRE Trans.
Inform. Theory, vol. 4, pp.29-37, Sept. 1954.

[3] Mukhtar, H., Al-Dweik, A., and Shami, A.
(2016). "Turbo product codes: Applications,
challenges, and future directions. "IEEE
Communications Surveys and Tutorials,
18(4), 3052-3069.

[4] C. Berrou, A. Glavieux and P. Thitimajshima,
"Near Shannon limit error-correcting coding
and decoding: Turbo-codes," IEEE Int. Conf.
on Comm. ICC’93, Geneva, May 1993, pp.
10641071.

[5] R. Pyndiah, "Near-Optimum Decoding of
Product Codes: Block Turbo Codes," IEEE
Trans. Commun., Aug. 1998, Vol. 46, N° 8,
pp. 10031010.

[6] R. Lucas, M. Bossert and M. Breitbach, "On
Iterative Soft-Decision Decoding of Linear
Binary Block Codes and Product Codes, "
IEEE Journal on selected areas in
communications, February 1998, Vol. 16, No
2, pp. 276-296.

[7] M. P. C. Fossorier and S. Lin. "Soft-Input
SoftOutput Decoding of Linear Block Codes
Based on Ordered Statistics," Proc. 1998
IEEE Global Telecomm. Conf.
(GLOBECOM’98), Sydney, Australia Nov.
1998. pp. 2828-2833,

[8] P. Robertson, "Illuminating the structure of
code and decoder of parallel concatenated
recursive systematic (turbo) codes," in Proc.
IEEE Global Commun. Conf.
(GLOBCOM’94), San Francisco, CA, Dec.
1994, pp. 1298-1303.

[9] J.L Massey, "Threshold Decoding,"
Cambridge, Ma, M.I.T. Press, 1963.

[10] M. Belkasmi, M. Lahmer, and M. Benchrifa ,
"Iterative Threshold Decoding of Parallel
Concatenated Block Codes," Turbo Coding
2006 Conf., 4-7 April 2006, Munich.

[11] Yuri V. Svirid and Sven Riedel, "Threshold
Decoding of Turbo-Codes," IEEE Int.
Symposium on Information Theory, 1995, pp.
39.

[12] C. R. P. Hartman and L. D. Rudolph, "An
optimum symbol by symbol decoding rule for
linear codes," IEEE Trans. Inform. Theory,
Sept. 1973, Vol. IT-22, pp. 514-517.

[13] J. Hagenauer, E. Offer, and L. Papke,
"iterative decoding of binary block and
convolutional codes," IEEE Trans. Inform.
Theory, Mar. 1996, Vol. 42, pp. 429-446.

