
Journal of Theoretical and Applied Information Technology
15th December 2022. Vol.100. No 23

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6882

AN ENERGY EFFICIENT APPROACH FOR BIG DATA MASS
STORAGE SYSTEMS USING A SEQUENTIAL CACHE

AHMED F. MHDAWY1, MAEN M. AL ASSAF2

King Abdullah II School for Information Technology, The University of Jordan, Amman, Jordan

E-mail: 1amahdawe@gmail.com, 2 m_alassaf@ju.edu.jo

ABSTRACT

Big data storage centers became important in the recent era due to the advances in today’s world cloud
systems and the increased amount of the data generated by users. Mass-inexpensive storage devices are still
used in order to provide storage for a lower cost. It is a fact that data retrieval from commonly used mass-
inexpensive storage devices (i.e. HDDs and Tapes) consumes much power due to their cost-inefficient
hardware architecture (i.e. arm moves over different tracks on magnetic disk) especially with randomly
stored data blocks. Retrieving sequentially stored data blocks tends to consume less power as they require
less arm moves. Hence, the need for energy efficient solutions is important. In this research, we present an
energy efficient solution for big data storage system using sequential caching approach. It is practically
proven that users’ I/O requests for data tend to show repeating patterns. Data caching that keeps the most
frequently accessed data blocks showed efficient performance improvement for many solutions over the
last decades. Our Solution (EEHSC) boosts data caching and arm moves’ space locality by buffering most
frequently used data blocks in the middle of the storage medium. This in result reduces power consumption
by increasing the percentage of data blocks that are read sequentially over those that are read randomly. We
run performance evaluation for our EEHSC algorithm using a simulator created by ourselves based on real
world I/O traces. Results show an EEHSC can efficiently reduce power consumption without the need for
allocating big size cache due to the high data hit-rate that can be achieved in the cache. Results showed that
power saving ratio can reach 67.60% when using LASR machine01 trace and 36.74% when using LASR
machine06 trace. This difference goes to the variation of the repeated pattern for the most frequently used
data blocks.

Keywords: Energy Efficiency, Big Data Centers, Caching, Hard Desk Drive, Magnetic Storage

1. INTRODUCTION

Big data centers use Hard Disk Drives (HDD) as
an inexpensive mass storage device in order to store
the huge amount of data that are stored by users.
Such devices consume much of electrical power as
they comprise an arm that keeps moving during the
data read/write process. Hence, energy efficient
data retrieval algorithm is important when fetching
the data from HDDs. Solutions for energy saving in
storage systems became very important during the
recent years [1].

The use of Mass-inexpensive HDDs in today’s
world big data centers is inevitable due to their
ability to store big data at the lowest possible cost.
Indeed, their low cost came from their inexpensive
hardware architecture that consists of magnetic
cylinders and arms. To our best knowledge,
previous research on improving HDD performance
who focused on decreasing data retrieval time and
power consumption suggested adding an extra
hardware layer (i.e. Solid State Drives (SSDs)) to

the current basic architecture due to their high
performance and low energy consumption. They are
used to pre-load predicted important data [2][3][5]
Unfortunately, their cost per storage unit is much
expensive in respect to HDDs. In addition, SSD’s
cells lifetime is threatened by mass data writing
operations.

Our research gives a solution to reduce power
consumption without adding an extra layer to the
storage system. Most of users’ data request tend to
show repeating requests patterns. This helps data
caching algorithms to efficiently increase system
performance, enriches data locality, and increases
sequential reads without the need of using large size
caches according to possibility of caching as much
of most frequently used small data blocks in a small
buffer that is allocated in the HDD.

In this research, we present an energy efficient
approach (EEHSC) that caches the frequently
accessed data in a sequential HDD buffer in order

Journal of Theoretical and Applied Information Technology
15th December 2022. Vol.100. No 23

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6883

to reduce its power consumption by increasing the
volume of sequential reads.

The following points summarize our research’
motivations:

1. The inevitability of Mass-inexpensive HDDs use
in today’s world big data centers due to their ability
to store big data in lowest possible cost.

2. Sequential data retrieval from HDDs consumes
much less power in respect to random data retrieval.

3. The ability to localize data in the middle of the
HDDs due to the user's data request repeated
patterns.

The rest of this paper is organized as the
following: Section 2 presents a literature review for
previous power consumption research and how we
can increase system performance. Section 3 present
a full description of our energy efficient algorithm
(EEHSC). Section 4 presents EEHSC simulation
and performance evaluation. Finally, section 5
presents conclusions and a roadmap for future
works

2. RELATED WORK

This section spotlights on the previous
research that provide solutions for improving big
data centers performance in terms of data retrieval
speed and energy consumption. In addition, we
discuss issues related to hard disk drives used in
data centers in which our solution is oriented for.

2.1 Improving performance of magnetic mass

storage systems

HDD is an in-expensive storage device
used to permanently store data. HDD also provides
large space and reasonable average access time.
Although HDD has many advantages, but it has an
annoying disadvantage which is the power
consumption besides the longer data retrieval
latency [1][3][5].

Retrieving data from HDD in many cases

degrades system performance due to the gap of its
performance in respect to CPU and Main Memory,
in which they have fast data retrieving and
processing speed. Many researchers provided
solutions for increasing HDD’s system performance
and energy efficiency. There are two important
concepts used to reduce the gap between CPU,
Main Memory and storage system as following:

2.1.1 Caching

Data caching techniques proved their
capability in reducing data access time and in
reducing power consumption. Much research used
either built in caches in the storage devices or in the
main memory for that concern [12][13]. Cache
sizes can range from small to large sizes. Many
researchers proved that large caches will not
significantly increase the performance when using a
cache size higher than a particular threshold. [1].

2.1.2 Prefetching

Contemporary world applications request

and process huge amount of data. Data centers with
huge amount of storage capacity stores such data
that are accessed frequently. In many applications,
users tend to do data read transactions more than
performing writes [1][5][6]. In addition, users tend
to have a repeated data access patterns in which
they could be leveraged to predict their future data
need. Hence, data prefetching techniques are used
to cache the data blocks that are predicted to be
accessed soon in advance in caches that are near to
the process level. Prediction accuracy is considered
the most important dilemma in such technique. In
case the prefetched data were or not needed in the
near future, cache space will be polluted [4][6].

 Several research in data prefetching

showed that prefetching leads to a better
performance in terms of data load speed when
using large size data blocks. This is because a large
size data block contains contiguous relative data
content. Reading small data blocks from HDDs
may take longer time, and this problem increases if
the small data blocks are allocated randomly in the
HDD. In case data blocks were small, they tend to
combine them into large size data blocks [1][6]. In
many applications, data blocks stored in the HDD
may be small and may not be combined into larger
size blocks. Hence, our research focuses on small
data blocks and can cope with different data blocks
sizes.

When new relative data blocks are created,

they tend to be stored contiguously in the HDD
especially if the disk contains a hole that can
accommodate them. If the data blocks are moved
into different locations, they might be fragmented
[14]. In this case, prefetching such those data
blocks will become in a random manner and will
need more time and electrical power.

Journal of Theoretical and Applied Information Technology
15th December 2022. Vol.100. No 23

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6884

There are two types of prefetching:
informed and predictive. In informed Prefetching,
applications should have the ability to provide hints
on future needed data blocks. On the other hand,
Predictive Prefetching predicts future requests
using different smart algorithms to be pre-loaded.
Informed prefetching indeed provides more
accuracy than predictive prefetching but for
informed prefetching, however, there exists many
applications that cannot give hints on their future
data access and hence, predictive approach is more
practical [4].

 In reality, prefetching algorithms may take
much time to predict future data access and provide
decisions especially in case the algorithms are not
enough efficient. Low accuracy in predicting the
correct future data accesses (i.e. high ratio of those
data blocks that are predicated to be accessed soon
and the user has not actually accessed them) will
decrease the system performance, increase the data
fetching time, and pollute used caches. In addition,
it will increase the power consumption for those
systems who are using prefetching especially in
case when using Hard Disk Drives.

2.2 Adding an Extra storage layer

Solid State Drive (SSD) is a modern
technology of storage devices that can be used to
store the data permanently. SSDs are known of
their high reading speed and energy efficiency with
respect to Hard Disk Drives (HDDs), but on the
other hand, more cost per storage unit. Some
researchers suggested using SSD as a big cache for
HDD data blocks to increase system performance
especially in data retrieval time [1][5].

For large data centers, some researchers

suggest adding SSDs layer on the top of HDDs
layer to buffer users' frequently requested data
block in the SSDs. For example, [15] suggested a
scheme that adds SSD layer to work as a middle
level between slow HDDs and users requests. Such
solutions prefetches data from HDDs to the SSDs
before the users request the data. Hence, more data
will be found in the SSDs.

Another example suggested an (ECO-

Storage) energy efficient algorithm that prefetches
data blocks from HDDs to SSDs in order to enable
HDDs to sleep as long as possible in order to
reduce power consumption [6]. Our solution can
reduce energy consumption of HDDs without the
need of using an additional energy saving layer.

2.3 Hard Disk Drive (HDD)

Hard disk drive (HDD) magnetic storage
technology was introduced long time ago. It is
considered the most popular non-volatile secondary
storage used to store and to retrieve data. Currently,
HDDs still the most important type of secondary
storage because of their huge capacity, low prices,
and moderate data access and retrieval speed.

Each HDD consists of a magnetic circular

platters and a head attached to an arm that moves
all over the platter in order to read or write data in a
particular location. Disk access time is measured by
seek time and data transfer time. Seek time mainly
is the time needed for the head to reach to a specific
location on the disk. HDD data transfer time is
mainly affected by the ability of the disk to read the
data from the current head's location and differs
from a type of disk to another.

When a application requests a group of

relative data blocks from the HDD, those data
blocks may be stored randomly in different
locations. This indeed increases the total head
elapsed movements and in result, increases the seek
time and the disk power consumption according to
mechanical HDD arm movements. On the other
hand, in case the relative data blocks are founded
stored sequentially, their reading time and the disk
power consumption will be reduced (See: Figure 1).

Figure 1 HDD head sequential and random read

2.4 Contemporary research on big data system

Research on big data centers is an ongoing
process and new recent research provided many
solutions. All of those research came to provide
solutions due to the exponentially increased amount
of data that are stored in contemporary big data
centers for different application domains [10].

Journal of Theoretical and Applied Information Technology
15th December 2022. Vol.100. No 23

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6885

For example, [7] provided a solution based
on Hadoop open-source system to manage data sets
and make the access, storage, and processing of
data more efficient in parallel and distributed
storage environments. [8] Proposed a master/slave
parallel binary-based algorithm that improves the
process of finding the frequent patterns of large size
datasets in big databases. This reduces the
processing time when compared to binary based
technique algorithm. Research in data clustering
using smart algorithm plays important role for
providing solutions for big data centers. [9]
Introduced a big data analysis solution in real time
systems based on K- mean clustering approach that
provided a significant accuracy level.

The amount of stored data in today’s

world is estimated to exceed 44 Trillion GB which
makes it need much traditional storage medium to
store them. DNA molecules as information carrier
are expected to be more practical in the future. [11]
provided a technique that leverage the capabilities
of DNA storage and to optimize the process of
storing the huge amount of data.

3. ENERGY EFFICIENT HARD DISK

USING SEQUENTIAL CACHE (EEHSC)

In this section, we propose our new
solution called, Energy Efficient Hard Disk Drive
using Sequential Cache (EEHSC).

3.1 EEHSC Introduction

Hard Disk Drive (HDD) has a mechanical
motion in which a head moves all over the location
insides on its platter. There exists an average head
movement time for each type of HDD. As the head
moves more to reach a particular data block for
performing read or write operation, it consumes
more electrical power. HDD vendors measure an
estimated average head movement time and power
consumption to be listed in the description of their
HDD specifications.

When the user’s application requests a

particular data block stored on the HDD, the data
block might be stored near or far away from the
head. The worst-case (highest) power consumption
in (watts) is recorded in case both of; the head and
the requested data block; are allocated on the disk'
different extremes. Hence, the head will need to
move from the beginning to the end of the disk
cylinder or vice versa.

Research in storage systems uses average
power consumption (in watts) to measure the
amount of used power because the requested data
blocks stored on the HDDs tend to show a normal
distribution of their distance from the HDD' head.
Therefore, we assume that every requested data
block by the application requires that the head
moves within the average head movement
displacement in respect to the overall disk length in
order to be reached.

Hence, it will consume the average power

consumption (in watts) recorded for HDD's head
movement. As mentioned previously, when relative
data blocks (i.e. related to the same application) are
stored sequentially on the HDD, the head
movements will be sequential and will record the
minimal displacements when those data blocks are
requested. On the other hand, the head movements
will be random and the displacements will be larger
in case those requested data blocks are found stored
randomly over the HDD. Indeed, requesting
randomly stored data blocks will require more head
movements, and eventually more HDD power
consumption.

Our proposed solution introduces HDD

energy efficient algorithm without hurting system
performance. The new algorithm (EEHSC)
involves allocating a relatively small data blocks
cache in the middle track of the HDD in order to
temporarily hold copies of accessed data blocks in
the middle of the HDD. In the same time, the
algorithm maintains the head allocated in the cache
location when the user’s application requests a
particular data block. This caching and head
behavior will ensure that frequently accessed data
blocks will be reached sequentially (i.e. head will
move sequentially to accesses them). Our
suggestion of making the cache location in the
middle track of the HDD (as shown in Figures 2
and 3) is for the following reasons:

1. Caching copies of frequently accessed data
blocks in the middle track of the HDD will
guarantee that we can cache them in one contiguous
location in average head movement displacements
(low power consumption).

2. Allocating the cache in the middle track of the
HDD facilitates the system task of maintaining the
head allocated in the cache location (in the middle
of the HDD) when the application requests a
particular data block. This will ensure that the

Journal of Theoretical and Applied Information Technology
15th December 2022. Vol.100. No 23

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6886

frequently accessed data blocks are reached
sequentially.

3. In case a requested data block misses in the
cache, the head will take less than average head
movement displacements in order to reach its
original location and to bring a copy to the cache.

Figure 2 A new sequential cache in a middle track

Figure 3 A data stored sequentially in a cache

3.2 EEHSBC Assumptions

Related data are stored in HDDs in a form
of data blocks. Storge systems of big data centers
either decide to combine data in small or larger
sizes data blocks. Large data block size may
consume disk space as they are liable for internal
fragmentation.

Systems that combine related data into
small data blocks tend to be able to manage the
HDD in a better way. On the other hand, in case
that the related data are stored in small data blocks,
their accessibly will become harder especially if
they were stored completely random on different

locations on the disk. Hence, this will cause high
volume of head moves, increased data reading
latency, and increased power consumption.

As mentioned previously, many previous
research where not able to reach a better system
performance without using large data block. For
this purpose, they used special tools to group small
data blocks into large ones.

In reality, data blocks may exist small, and
the grouping process may create more overhead. In
EEHSC, we focus on using small size data blocks
as it represents the case where random data access
is a big burden. On the contrary, in case the data
blocks are originally large enough, sequential data
access will not show much better performance than
random data access.

3.3 EEHSC Algorithm

EEHSC initially allocates a buffer in the
middle of the HDD (as shown in Figure 4). If the
middle track is holding some data blocks, EEHSC
will move them to other locations.

Figure 4 An empty buffer on the system startup

When a data block is requested by an
application, it will miss in the cache. Therefore,
EEHSC will bring copy of the requested data block
from its original location to be cached in the middle
cache. The head then will be allocated on the cache
area This process will continue while the requested
data blocks miss in the cache. Figure 5 shows the
case when a data block mises in cache and the
process of copying it from its original location.

Journal of Theoretical and Applied Information Technology
15th December 2022. Vol.100. No 23

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6887

Figure 5 When a data block misses in the cache

When a requested data block hits in the
cache, the HDD head will not need to move to the
requested data block' original place in order to read
a copy and to place it in the central cache. The data
block in this case will be read sequentially from the
buffer. Least recently used (LRU) algorithm is used
replace newly buffered data blocks with old ones
(See: Figure 6).

Figure 6 When a data block hits in the buffer

When the cache reaches its maximum
limit, EEHSC chooses a victim block to replace it
with a recently missed data block. We can use any
cache replacement mechanism like: First in First
out (FIFO), Most Recently Used (MRU) and Least
Recently Used (LRU).

EEHSC shows it is best performance when
using LRU to evict useless data blocks (i.e.
maintaining most frequently used (MRU) data
blocks). For example, if the size of the HDD cache
is equal to 8 slots and all of them were used (as
shown in Figure 7), EEHSC will evict the least
recently used cached data block (i.e. 1) whenever a

newly requested data block misses in the cache and
the later one will occupy the location (i.e. 9).

Figure 7 When using LRU replacement algorithm

Figure 8 shows EEHSC Algorithm Pseudo-code

Figure 8 EEHSC Algorithm Pseudo-code

4. PERFORMANCE EVALUATION.

EEHSC uses small data block size stored
in HDD as of the fact that small data block requires
more rotations when seeking for a particular block,
and hence, consumes more energy in respect to the
case when using large data blocks. We also assume
that the HDD has enough space to implement the

Journal of Theoretical and Applied Information Technology
15th December 2022. Vol.100. No 23

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6888

cache in the middle, as the cache does not require a
large space.

We implement EEHSC using a trace-
driven simulator written in C++. We extract results
when using different cache sizes in the HDD from
one to 200 cached data blocks. HDD Power
consumption was tested in terms of (watt) with and
without implementing EEHSC.

We used real world traces from SANIA:

LASR machine01 and LASR machine06 [17][18].
Each trace has number of HDD reading requests
and a particular behavior of repeated patterns. In
LASR machine01, the trace consists of 11676
reading requests on 886 distinct data blocks. In
LASR machine06, the trace consists of 51206
reading requests on 3142 distinct data blocks.

For simulation purpose, we did our best to

find power consumption in watts when moving
HDD arm and reading a data block sequentially and
randomly. We inferred from [16] that when using
HDD of ATOM D525 Disk for small size data
blocks, it requires about 0.078688119 Watts to read
a data block that is stored in the furthest random
location. We also inferred that a sequential move
for the HDD head and reading the data block that is
stored near the current position of the it requires
0.009020619 Watts, which is significantly less than
the random case. We assumed using small sizes
data block where each block does not exceed 100
KB.

We simulated EEHSC using the two traces

when using different cache size implemented in the
middle of the HDD from 1 to 200 block. The size
of each cache block is relative to the size of the
original blocks. Without EEHSC, data blocks were
read randomly, and the power consumption stays
always constant. Figures 9 and 10 show when using
LASR machine01 and LASR machine06
respectively.

Figure 9 Power Consumption for LASR machine01.

Figure 10 Power Consumption for LASR machine06.

The experimental results show that
EEHSC reduces the total energy consumption when
the cache size is at least 12 blocks or larger when
using LASR machine01 and 15 blocks or larger
when using LASR machine06. In non-EEHSBC
case, the system’s power consumption is always
constant and equals to 918.762 watts when using
LASR machine01 and 4020 watts when using when
using LASR machine06.
Depending on the behavior of the users recorded in
the traces and their repeated patterns of data
requests, EEHSC starts giving good performance
when the cache size is 12 blocks in LASR
machine01 case and when it is 15 blocks in LASR
machine06 case. Performance improvement has
reached to 67.60% when using LASR machine01
trace and to 36.74% when using LASR machine06
trace with respect of non-EEHSC scenario.

It is also visible that LASR machine01
shows faster reduction in power consumption as the
cache size increases. This is also due to the higher
repeated requests and locality of reference.

In addition, the two solutions give high

power consumption when using small size cache
size as it will increases the disk moves for data
reads without much benefit from the disk caching
solution.

It is also noted from the above results on

the two traces that after a particular cache size,
there will be no significant reduction in the power
consumption, this is due to the caching limited
power after reaching a particular threshold, and
hence, this shows that EEHSBC does not need a big
cache size in the HDD to provide a significant
performance improvement.

Journal of Theoretical and Applied Information Technology
15th December 2022. Vol.100. No 23

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6889

One final note is that our solution was able
to reduce power consumption with the mentioned
ratios (67.60% and 36.74%) without the need of
using an energy efficient device in the storage
system as other research did (For example: [6]) in
which an performance improvement in-terms of
power consumption reduction was achieved by
75% when using a SSD layer.

5. CONCLUSIONS AND FUTURE WORK

This paper introduced EEHSC approach that
reduces the power consumption of the Hard Disk
Drivers HDDs used in big data centers by caching
the frequently accessed data blocks in a central
cache. Such cache does not consume the disk space.
Randomly accessed data blocks in the HDDs tends
to consume more power as the arm needs to move
longer especially with small size data blocks.
Caching them in the center will increase the amount
of the data blocks that are reached sequentially, and
hence, reducing the power consumption. Our
simulation results on real world traces shows that
EEHSC power consumption reduction may reach to
67.60% in many cases.
 Our solution was able to reduce power
consumption without the need of adding an extra
energy efficient layer of storage devices such as
SSDs. Adding extra layer of SSDs might provide
higher reduction of energy consumption, but
indeed, it will be will extra cost.

In our future work, we will be including
AI algorithms that predict the user access pattern
for performing the caching process in the HDD.

REFERENCES:
[1] Al Assaf, Maen et al (2018). Informed

Prefetching in Distributed Multi-Level Storage
Systems. Journal of Signal Processing Systems.
90. 10.1007/s11265-017-1277-z.

[2] Niu, Junpeng & Xu, Jun & Xie, Lihua. (2018).
Hybrid Storage Systems: A Survey of
Architectures and Algorithms. IEEE Access.
PP. 1-1. 10.1109/ACCESS.2018.2803302.

[3] Al Assaf, Maen. (2020). Performance
Optimization for Distributed Hybrid Storage
Systems Using a Predictive Approach.
International Journal of Advanced Trends in
Computer Science and Engineering. 9. 4819.
10.30534/ijatcse/2020/91942020.

[4] Al Assaf, Maen & Rodan, Ali & Qatawneh,
Mohammad & Abid, Mohamed. (2015). A
Comparison Study between Informed and
Predictive Prefetching Mechanisms for I/O

Storage Systems. Int. J. Communications,
Network and System Sciences. 8. 181-186.
10.4236/ijcns.2015.85019.

[5] Al Assaf Maen, Alghamdi Mohammed, Jiang
Xunfei, Zhang Ji and Qin Xiao (2012), A
Pipelining Approach to Informed Prefetching in
Distributed Multi-Level Storage Systems.
Proceedings of the IEEE 11th International
Symposium on Network Computing and
Applications.

[6] Al Assaf Maen M., Jiang Xunfei, Abid
Mohamed Riduan and Qin Xiao (2013), Eco-
Storage: A Hybrid Storage System with Energy-
Efficient Informed Prefetching. Journal of
Signal Processing Systems, Volume 72, (Issue
3), 165-180.

[7] Qureshi, Nawab Muhammad Faseeh & Shin,
Dong & Siddiqui, Isma & Abbas, Asad. (2017).
Hit-ratio storage-tier partition strategy of
tempeature data over Hadoop. Journal of
Theoretical and Applied Information
Technology. 95. 2466.

[8] Amir, A.N. & Alhussian, Hitham & Fageeri,
Sallam & Ahmad, R.. (2021). P-BBA: A
master/slave parallel binary-based algorithm for
mining frequent itemsets in big data. Journal of
Theoretical and Applied Information
Technology. 99. 3517-3526.

[9] El-Barbeer M. & Rezk A. & Abu Elfetouh S.
(2021). Real-time big data clustering using
spark: uber case study. Journal of Theoretical
and Applied Information Technology. 99. 1414-
1425.

[10] Ennassiri, A., Elouahbi, R., Alhammadi, G.,
Boudallaa, I., Zrigui, I., & Khoulji, S. (2022).
The contribution of data mining to the education
sector. journal of theoretical and applied
information technology, 100(6).

[11] SAIS, M. & Najat, Rafalia & Abouchabaka,
Jaafar. (2021). Synthetic dna as a solution to the
big data storage problem. Journal of Theoretical
and Applied Information Technology. 99. 3912-
3922.

[12] Manzanares Adam, Qin Xiao, Ruan Xiaojun
and Yin Shu (2011), PRE-BUD: Prefetching for
energy-efficient parallel I/O systems with buffer
disks. ACM Transactions on Storage (TOS),
Volume 7, (Issue 1).

[13] Ruan Xiaojun, Manzanares Adam, Yin Shu,
Zong Ziliang and Qin Xiao (2009), Performance
Evaluation of Energy-Efficient Parallel I/O
Systems with Write Buffer Disks. International
Conference on Parallel Processing.

Journal of Theoretical and Applied Information Technology
15th December 2022. Vol.100. No 23

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6890

[14] Silberschatz Abraham, Galvin peter Baer and
Gagne Greg (2013), Operating System
Concepts, (Ninth edition). USA: Wiley.

[15] Zhang Xuechen, Davis Kei and Jiang Song
(2012), iTransformer: Using SSD to Improve
Disk Scheduling for High-performance I/O.
Proceedings of the 26th IEEE International
Parallel & Distributed Processing Symposium,
21-25 May 2012, Shanghai, China, 715-726.

[16] Issa Joseph and Figueira Silvia (2012), Hadoop
and memcached: Performance and power
characterization and analysis. Journal of Cloud
Computing: Advances, Systems and
Applications, Volume 1, (Issue 1), 1-20.

[17] LASR trace machine01.
http://iotta.snia.org/traces/system-call/4926

[18] LASR trace machine06.
http://iotta.snia.org/traces/system-call/4926

