ISSN: 1992-8645

www.jatit.org

E-ISSN: 1817-3195

NEURAL NETWORK AIDED OPTIMIZED AUTO ENCODER AND DECODER FOR DETECTION OF COVID-19 AND PNEUMONIA USING CT-SCAN 'SRINIVASA REDDY K, ²P. VENKATESWARA RAO, ³A.MALLIKARJUNA REDDY,

⁴K SUDHEER REDDY, ⁵DR. J. LAKSHMI NARAYANA, ⁶SRI SILPAPADMANABHUNI

Professor, School of Computer Science and Engineering, VIT-AP

Assistant Professor, Department of Computer Science and Engineering, VNRVignana Jyothi Institute of Engineering and Technology

Associate Professor, Departmentof Computer Science and Engineering, Anurag University, Hyderabad Professor, Department of Information Technology, Anurag University, Hyderabad,India Professor, Department of ECE, Potti Sriramulu ChalavadiMallikarjuna Rao College of Engineering and Technology,Kothapet,Vijaywada

Associate Professor, Department of Computer Science and Engineering, Potti Sriramulu Chalavadi Mallikarjuna Rao College of Engineering and Technology,Kothapet,Vijaywada

Email: kondasreenu@gmail.com, venkateswararao_p@vnrvjiet.in, mallikarjunreddycse@cvsr.ac.in, sudheercse@gmail.com,drjln@pscmr.ac.in, silpa.padmanabhuni@gmail.com

ABSTRACT

Most of the countries in the world are now fighting against Covid-19 and many of the people are losing their life because of the less immunity or due to the late diagnostics and it is especially in the case of old age people and people with other medical issues. The concept of early detection of disease is really important in the case of the Covid-19 scenario because along with the infected people, the other people who are in close contact with the infected persons will also have life risk. During this pandemic, pneumonia and Covid-19 people suffers from almost the same symptoms. So, the proposed work designs an automated system that can perform multi-classification on general health, pneumonia and Covid-19 through Chest X-Rays by designing an optimized auto encoder- decoder network. Most of the earlier approaches which are used to perform the binary classification couldn't differentiate the Covid-19 and Pneumonia effectively because the traditional CNN extract the high level features, which are similar in case of COVID-19 & Pneumonia. These two have variations in the case of low level features. The major focus of this paper is to construct a hyper-parameterized auto encoder-decoder system that can help the user to detect level of lung infection. The level of infection helps the model to accurately classify the model. This method helps doctors and other medical-related people with the early diagnosis of disease.

Keywords: Neural Networks, Augmentation, Auto Encoder Decoder, Latent Space Representation, Hyper-Parameters

1. INTRODUCTION:

COVID-19 is an epidemic disease that made people across the globe fear their lives. The doctors perform identification of the disease by using the Positive PRC polymerase chain reaction (PCR) test. These test kits are available in a limited amount and it takes a lot of time to get the result. So, to overcome this problem our proposed system takes X-ray[1] as an input because research studies have proven that COVID-19 patients also suffer from a lung infection. Working on images and videos is getting much easier with the development of neural networks. Neural Networks take the input from original sources and generate the outputs by analyzing the relationships among the hidden patterns. COVID-19 is a highly infectious <u>15th November 2022. Vol.100. No 21</u> © 2022 Little Lion Scientific

www.jatit.org

E-ISSN: 1817-3195

disease with difficult-to-predict characteristics. According to a study conducted by a Chinese team on COVID19, the majority of persons hospitalized in Wuhan, China, had anomalies in their chest X-ravs. indicating bilateral involvement[2]. As a result, there is a strong need to develop a solution using less expensive methods to keep individuals out of quarantine. The data was gathered from a Chinese open source website called "Chester," which contains COVID-19, SARS, MERS, and ADRS chest xrays. The healthy chest photos from the kaggle dataset can be used to train the system as shown in table 1. The detection of Covid-19 from chest X-ray using deep learning techniques plays a vital role in automation process and also reduces the cost of equipment because X-rays are less expensive than MRI and CT scan. To reduce the complexity involved in image classification and object detection, different CNN architectures are proposed. Auto encoders are famous for extracting the both high and low level images but the construction of encoder by checking every estimator of the neural network is difficult task which involves more resources and more combinations of estimators for checking the optimality. The proposed recognizes the best parameters that can design good encoder and good parameters for bottle neck using the optimization techniques. The efficiency of the network depends on some factors so there is a mechanism known as "Hyper-parameter optimization". Hyper-parameters act as deciding thresholds for the betterment of values. The different hyper-parameter techniques are described in figure 1.

ISSN: 1992-8645

Figure 1: Classification TECHNIQUES IN Hyper Parameter Optimization

2. RELATED WORK:

The current research study explains about the novel pandemic that caused many loses in variant sectors round the globe. SARS-CoV-2 is the virus that was affected and have caused several deaths around 3v million according to [1]. By the author, many researchers have been working on identifying more about this deadly virus and have recommended few effective measures to standby it. A remarkable growth in pathogens has happened and many effective measures were being made to tackle with this pandemic. This article's aim is to showcase a DL based COVID-19 identification over the data gathered from the X-ray and CT images. The objective in proposing this research article is to help the researchers by utilizing the current resources by making an in-depth study in training with ML for generating possible outcomes of the pandemic. The article presented a comparative study with the available researchers regarding COVID-19 and concluded that computer vision would be applicable in identifying the infected organs through the gathered data by comparing them to the healthy images.

This research study [3] focused on finding out the patients infected with COVID-19 by utilizing their radiographical reports because, the researchers have discovered that there would be a change in the patient's lungs before and after they were infected when these scans were done at the early stages of their infection. Persuaded by this, this research was continued over the COVID-19 test cases by introducing a deep CNN framework designed developed especially for the identification of the infection through the chest X-ray pictures that were open and available for the public. Besides this, authors use an explain ability technique to examine how COVID-Net draws conclusions to not only obtain additional insights into significant elements affiliated with COVID instances, that can aid physicians in better inspection, but also to review COVID-Net in a transparent and accountable fashion to ensure that it is acting responsibly derived from existing information from the CXR pictures. The

© 2022 Little Lion Scientific

ISSN: 1992-8645www.jatit.orgresearch performed have shown a significant
outcome in distinguishing among the normal,
non-COVID and COVID-19 with a 94% of
identifying the non-COVID19 category and 91%
with COVID-19.could be apple
applications.

The primary motive of this paper is to develop a fast and automatic framework to diagnose the patients with COVID-19 using their CT images that is built on DL methods [4]. The researcher here has opted an innovative DL framework and a transfer training approach with a specified quantity designed for each DL structure to gain best outcomes. Extensive research has been done on two different pictorial datasets with CT scans of the patients with COVID-19. From the developer, their model had outperformed achieving higher results compared to the standard techniques.Many evaluation strategies were performed by gainingabout 99.4% of accuracy for the first dataset and 92.9% for the second dataset respectively. For better understanding of the model and interpretation the developers had implemented visualization techniques for deeper explanations of the model. The model is said to be failed at identifying one of the infected lungs from the dataset. This means, the model could only identify the patients with heavy infection than identifying at the early stages.

According to [5], DL techniques could be applicable to the recent pandemic and could derive better results based on the patients'scanning images. In this study, a novel DCNN model named CoroNetwas implemented that could automatically identify the infected images from the chest X-ray images. Other architectures like Xceptionwere also performed over a pre-trained ImageNet dataset and trained over an end-to-end dataset by gathering the publicly available data. The developers say that their experimental outcomes have shown an overall accuracy of 89.6% and the preciseness of the model derived 93% with a recall rate of 98.2% According to the author, the developed model could also be applicable for larger amount of data as the currently underwent only over a smaller data with minimum possible pre

<u>corg</u> E-ISSN: 1817-3195 processing and with deeper processing within the data the model is said to gain greater results and could be applicable to various other real time applications.

Due to the disease's rapid dissemination, [6] healthcare professionals are having trouble recognizing COVID-19 sufferers. The major priorities for developing a universal DL model are creating a coherent approach and maintaining privacy. This study presents a platform that uses blockchain-based collaborative intelligence to gather a limited quantity of data from various sources and build a universal DI model. This solution verifies data and uses distributed training to build the machine worldwide while maintaining the organization's confidentiality. They initially presented a data normalization approach to cope with the variability of data obtained from multiple hospitals using various types of diagnostic equipment. To discover COVID-19 individuals, they utilized a Modular Network-based fragmentation and categorization. Finally, they devised a way for integrating BT with distributed training to interactively train a universal system while maintaining privacy. Furthermore, they had gathered genuine COVID-19 patient records that were available to the scientific community. The developed framework is said to attain 0.987 sensitivity as best compared to standard methods.

According to[7] implemented deep learning approaches on chest x-rays to detect covid. The author proposed pre-trained models for classification of images and applied fine tuning mechanisms for performing the feature extraction. In the pre-trained model, the last layer i.e., fully connected layer is customized with traditional SVM classification using linear kernel and obtained an accuracy of 94.7%. In this model, synthetic dataset combined from multiple data repositories is used. For extracting the deep features associated with the images, an ensemble architecture is proposed, it combines 5 pretrained models and classification is performed by changing the kernel function of SVM and it is observed that among all the combination of ResNet-50 with linear kernel has obtained best

© 2022 Little Lion Scientific

ISSN: 1992-8645 wv score. To fine tune the model, data augmentation technique with three major image manipulation operations is performed. The training with these newly created images has reduced loss function. To give end to end training, a 21-layered architecture is designed with all possible combination of layers.

From[9] ensembles MobileNet and SqueezeNet model by customizing the classification layers using "SVM". MobileNet is famous for segmentation process because of its dense layers and SqueezeNet is famous for classification because of its fire layers. It also implements AlexNet to reduce the cost of model. The fire layers acts as compressors and expansions depending on the requirement of the processing application. It also separable filters for compression phase and expansion phase which helps the model to define the hyper plane accurately and to convert the non-linear transformations into linear transformations. To handle the noises in image and low quality images, it reconstructs the entire image with the help of fuzzy logic technique and tries to reduce the distance between the pixels and improvement of color is performed by summing the elements of the pixel windows. Since the summing up of value increases the pixel value, the quality of image improves at low cost.

The researchers[10] designed Xception deep learning model to detect and analyze the chest xray images. In this algorithm, the pre-processing is implemented as a combination of traditional and data augmentation techniques then it is passed as input to the Xception model, which is a pre-trained model, the major advantage of this architecture is it has the capability to concatenate the layers and it also needs very less number of parameters to train. It uses Leaky ReLu activation function for performing inferences from the last dense layer but it implements softmax function to perform classification.

Sources[11] implemented fusion technique integrated with deep learning. Instead of normal images, this model fused HOG processed images with CNN and is passed as input to the neural network. In HOG step, it iteratively selects bins in different regions of image. Feature extraction

E-ISSN: 1817-3195 www.jatit.org is the crucial step in any of the image processing applications, in this model to preserve edges, it implements MAD filtering technique. It computes the fusion vector one is based on HOG and other is computed using CNN. These two vectors are added to form a new vector and a threshold limit is initialized, to ignore the unwanted features. The first serial fusion produces a vector of 1X7694 but the last feature vector reduces the dimension to 1X1183. It uses wavelet shed segmentation to identify the infected part in lung and then classify the images based on the level of intensity. It computes the fusion vector one is based on HOG and other is computed using CNN.

> Authors have [12] proposed fast AI which is based on pre-trained ResNet to classify the chest x-ray images of covid patients. In fast AI, transfer learning helps the model to work with huge amount of data to produce more accurate systems than the models which work on smaller datasets. In this model, to enhance the training phase, it has implemented ImageNet, in which batch size is adjusted to 32 for 20 epochs. For performing feature extraction, it fine tunes the VGGNET-16 pre-trained model. The callback mechanism in fast AI helps the utilities of training phase to execute quickly and also performs customization of data blocks. All the weights assigned to ImageNet are fixed and it applies Residual operations on the down sample images. It reduces 7X7 size to 1X1 by continuously reiterating the layers with dynamic size variation of CNN.

> According to the works on [8][13], the authors haveimplemented deep learning techniques on radiography images for automating the covid detection process. The model implemented transfer learning to avoid the training process from scratch. Out of the two mechanisms available in transfer learning, the model has choosen second approach in which pre-trained model is utilized for solving the classification problem. During this process, the researcher has customized VGGNET containing 16 layers as 13 layers has been maintained the same but the last

<u>15th November 2022. Vol.100. No 21</u> © 2022 Little Lion Scientific

ISSN: 1992-8645www.jatit.org3 fully connected layers are implemented for
performing multi classification like covid,
dat
pneumonia, and normal. To perform feature
extraction, it implements dense layer and reduces
the feature vector size to 1X1X4096, which
the problem of overfitting by implementing
dropout by passing necessary threshold valuesThe
basing on the maxpooling layers implemented.

The work of authors[14] proposed computation of uncertainty estimation process, which is considered as vital parameter in CT images. Any deviation from the results can make the radiologists to conclude in the wrong information. So, this model implemented semi supervised technique known as "MixMatch", using unlabeled data because these type of data are not controlled by the training and any missing information will not harm them. The computation of post-hoc capacity impacts the retraining of the deep learning model. So, more attention is given to this parameter. In this model, softmax is implemented as activation function and any class with highest prediction rate is considered as proxy element and mentioned as over confident output neuron. This problem is addressed by adding temperature as decision making parameter to activation function.

The researchers [15] have compared the working scenario of different pre-trained models on two types of dataset. In one dataset, they worked on chest X-ray and in second dataset; they work on CT scan images. The researchers implemented machine-driven generation algorithm in which MosMed technique creates an augmented data because of which the diversity of images increases and it is less expensive than transfer learning. The model has its uniqueness to identify the white pneumonia region by using glass opacity technique and its efficiency is computed with the help of mathematical notation <u>corg</u> E-ISSN: 1817-3195 known as "NCP and CP grouping". The entire dataset is divided into n batches and based on the progression learning rate of the image is computed and it is utilized to mixup the data to create fusion images using forward propagation. It also implements backward propagation while classifying the images.

The authors [16] have designed a novel approach known as "Squeeze Excitation Block" as a layer that can be immersed in CNN. The researcher also proposed mish activation function to optimize the convergence factors. In general traditional approaches researcher's implements pre-defined neural network layers but here the researcher combined max-pooling layer with SEB layer to extract the features and reduces the dimensions layer by layer using HAAR transformations. Since the model implements ResNet and VGGNet during classification process, it reduces number of trainable parameters. The combination of neurons and wavelet transformations can drastically reduces the number of layers by eliminating utilization of batch normalization layers.

The work proposed in [17], the authors havedesigned framework known as "EfficientNetB0", in which multiple pre-trained models are ensembled. The amount of data is increased by combining GANs and data augmentation technique and pipelined transfer learning takes care of classification process. Instead of activation function, the model has designed activation maps for both optimization and visualization of results. Image training is performed using VGGNet-16 and ResNet-50. To identify low level features, proposed framework is implemented and in the fine tune process the first layers of pre-trained models recognizes generalized features and backbone model helps to extract specific features. Grad-CAM activation maps help the model to exhibit the infected part using the concept of ROI.

Journal of Theoretical and Applied Information Technology <u>15th November 2022. Vol.100. No 21</u> © 2022 Little Lion Scientific

ISSN: 1992-8645 <u>www.jatit.org</u> E-ISSN: 1817-3195						
		Table 1: Mechan	isms Implemented in Previous Rese	arch		
S.No	Authors	Algorithm	Advantage	Limitations/	Accuracy	
				Future Work		
1	AmjadRehman	Machine	The author explained the	A practical study	91	
		learning	usage and importance of	was not		
		algorithms	data science in identifying	implemented.		
			the COVID-19			
2	Linda Wang	COVID –	The method also makes	In future, deeper	93	
		Net.	predictions to make deeper	enhancements		
			conclusions into critical	could be included		
			factors related to COVID.	for finding the		
				risks included,		
				survival statistics,		
				predicting risk		
				status etc.,		
3	HammamAlshazlv	SqueezeNet	The model is said to	The model could	99.4	
		and	outperform the early	only predict		
		ShuffleNet	methods.	heavily infected		
				images but not		
				theidentify the		
				early predictions		
4	Asiflabal Khan	CoroNet	Computationally less	The performance	89.6	
-	Asinqua Khan	Colonet	expensive	can be improved	07.0	
			expensive.	better if the		
				training data		
				haama ayailahla		
5	Daiash Kumar	Plackshain	Private data was collected	Working of the	08 7	
5	Kajesii Kuillai	BIOCKCHAIII	and experimented for this	working of the	90.7	
			and experimented for this	model for more		
			a click anotively train the	number of		
			conadorativery train the	auribules and		
			for denoted the model with	nuge data is not		
	T 1	F' 1	Tederated learning.	explained.	047	
6	Ismael	Fine tuned	Fine tunedResNet helps in	It consists of	94.7	
		for feature	deep training on the data	limited images		
		extraction.	available. Instead of local	and the cubic		
		Pre-trained	texture identification	kernel function		
		with linear	techniques, learning	need deep neural		
		SVM	algorithms performs much	network for		
			more faster	better		
				performance		
7	Rachna Jain	Xception	A deeply separable layer	The validation of	97.97	
		Model	helps in reduction of training	data is performed		
			epochs.	well and it gives		
				wrong output for		
				real world data		
8	Nur-A-Alam	Fusion based	It efficiently handles speckle	Implementation	98.36	
		CNN	noise and low resolution	of k-fold		
			images and it also reduce the	validation can		

<u>15th November 2022. Vol.100. No 21</u> © 2022 Little Lion Scientific

ISSN	ISSN: 1992-8645		www.jatit.org	E-ISSN: 1817-3195	
		error rate during feature		improve the	
			selection process	efficiency of the	
				model	
9	Mohammad	Transfer	Usage of transfer learning	Data pre-	92.53
	Khalid	Learning	has reduced the training time	processing is not	
			over large dataset.	taken care before	
				passing it to the	
				neural networks	
10	TahminaZebin	Backbone	Ensemble mechanism	The utilization of	96.8
		Neural	reduces the complexity of	pipeling	
		Network	model and also produces the	technique	
			accurate results for	increases training	
			validation data	cost and time	

Problem Statement: The proposed research should include a mechanism that can identify the level of infection in the images. Most of the mechanisms don't pre-process the images with an intention that CNN layers have the capability for automation of pre-processing technique. So, the proposed model should design a layer that can normalize the elements of the image pixels. One more standard approach to differentiate the X-rays images is using either cross fold validation so that every epoch can get the training on every different possible class available in the dataset or by induction of random noise in the images. Transfer learning

approaches are best for the models where, the classification involves in general images but for the medical images, it doesn't suit. So, the model needs to re-train the weights of fine tune layers to customize the freeze portions.

3. MATERIALS AND METHODS:

The proposed model works on the public dataset available at [14]. Since it contains three cases namely healthy, covid-19, and pneumonia, the model has decided to implement a multi classifier and the sample representations for each case is shown in figure 2 and the statistics are provided in Table 2.

<u>15th November 2022. Vol.100. No 21</u> © 2022 Little Lion Scientific

Figure 2: Samples Of All The Three Cases Present In The Dataset: Covid-19, Healthy, And Pneumonia

	Covid	Health	Pneumoni	Coun
	-19	у	a	t
Train	874	806	112	1793
Image				
S				
Test	90	84	50	224
Image				
s				
Total	964	890	162	2017
Image				
s				

 Table 2: Statistics on the images present in train and test datasets

By observing the above sample data figures and statistics, the system has decided to perform two major operations as part of the pre-processing operation. First, it deals with resizing[18]all the images to the same size, because neural networks can work smoothly with the same size images as input. Second, from the statistics, the model tries to increase the number of images by performing basic manipulations on the image as described in table 3.

S.No	Operation	Value	Description
	Name		
1	Scaling	1/255	To make all the
			images
			ofthesame size
2	Shift	30%	It shifts the
	(Horizontal		image pixel
	& Vertical)		values in both
			the directions
3	Horizontal	True	It transforms the
	Flip		horizontal pixels
			into vertical
			pixels
4	Zoom	50%	The nearest
			neighbors values
			are replicated so
			that most of the
			values gets
			intensified

After applying these operations, the new images created are shown in figure 3. These are utilized in online mode for further processing.

 Table 3: Manipulation Operations on Image

<u>15th November 2022. Vol.100. No 21</u> © 2022 Little Lion Scientific

Figure 3: New Images Creations Using Image Operations

The proposed algorithm uses auto-encoders and decoders [16] to extract the features since they are good at handling dimensionality reduction, which is kind of unsupervised machine learning and mainly deals with noisy data. Suppose the units in the hidden layers get all the features from the previous layer because of the fully connected network[19] then it may suffer from a bottleneck problem. So to avoid this auto-

encoder tries to learn features from the existing structure and creates a compressed vector representation then using the auto decoder it again reconstructs the input image. The autoencoders are popular for understandably presenting the features. The architecture for the auto-encoder using CNN is represented in figure 4

Figure 4: 5-Layered Architecture for Auto Encoder Decoder Mechanism

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org These images are passed as input to the neural network layer to extract the features of top layers and are presented in figure 5.

Figure 5: Presentation of extracted features using Neural Networks

The proposed model has applied Bayesian Optimization[20-27] to decide the Hyper Parameters of the neural networks. The obtained performance for the model with different combinations of the parameters is described in table 4.

Table 4: Hyper-parameters turning using Bayesian
Optimization

S.No	Parameter	Value	Description
1	Learning	0.003	The time
	Rate (LR)		needed by the
			network to
			learn the
			patterns from
			the hidden
			layers and get
			acquainted
			with
			configuration.
			The lesser rate

			always helps	
			in training	
			[28,29]	
2	Weight	0.01	When the	
	Decay		number of	
			features	
			increases then	
			the model and	
			its training	
			becomes	
			complex. By	
			adding all the	
			features to the	
			loss function	
			sometimes it	
			might result in	
			zero. So, the	
			training model	
			assumes a	
			value and	
			multiple with	

Journal of Theoretical and Applied Information Technology <u>15th November 2022. Vol.100. No 21</u>

© 2022 Little Lion Scientific

			feature value,		Table	5: Multi-Cl	assification	Conj
			it claims it as			For Of	ptimized Net	ural .
			"Weight	Г			Dradi	atad
			Decay".				1 I cui	leteu
3	Batch Size	32	It defines the number of samples with which the model should work in the process of		Act ual valu	Pneum onia Health	Pneum onia 12 1	H th
4	Loss	Multi-	training [30]. It calculates		63	y Covid- 19	0	
	Function	Class	distribution			Count	13	1
			and tries to minimize the difference between the actual class and the predicted class[31-32].		In the accura binary equati	computation acy calcula v classification fon 1 accuracy_n	on of the control tion remain tion, which $multi = \frac{T}{2}$	onfu ns th n is r r <u>PP+</u> Tota
,	Optimizer	RMSProp	The major advantage of RMSProp is it can easily immerse with newly updated weights		$=\frac{12+1}{W}$ T_{H} T_{CO} The	$\frac{103+10}{224} = 9$ here T_{PP} d and denotes the characteristic of the theorem of theorem of the theorem of the theorem of the theorem o	8.12% enotes the pneumo he true labe e true labe and rec	true nia el va l val call
6	Number of Epochs	350	It represents the number of times the complete process has to take place.		compt metric equati	uted by w c "per cla ion 2 and e <u>pero</u> <u>true value</u> total comm	reighted av ass" comp quation 3. <i>cision_per</i> <i>for tha part</i>	verag outati r_clo rticul

4. EXPERIMENTAL RESULTS:

The proposed system performs better than the previous by doing the multi-classification[21] task and it is reported in the following confusion matrix represented in table 5.

.org	E-ISSN: 1817-3195
Table 5: Multi-Classific	ation Confusion Matrix Table
For Optimize	ed Neural Network

		Predi	Predicted Values				
		Pneum	Heal	Cov			
		onia	thy	id-			
				19			
Act	Pneum	12	2	0	14		
ual	onia						
valu	Health	1	103	1	105		
es	у						
	Covid-	0	0	105	105		
	19						
	Count	13	105	106	224		

ision matrix, the he same as of the represented in

$$accuracy_multi = \frac{T_{PP}+T_{HH}+T_{CC}}{T_{otal \ Count}} - (1)$$

label value for

lue for healthy

lue for covid-19 computation is ge per class. The ion is shown in

$$percision_per_class =$$

$$\frac{true \ value \ for \ tha \ particular \ class}{total \ count \ of \ predicted \ class \ value} - (2)$$

$$Precision_per_pneumonia=\frac{12}{14}=0.857$$

$$Precision_per_healthy=\frac{103}{105}=0.980$$

$$Precision_per_covid-19=\frac{105}{106}=0.990$$

The weighted average of precision= \sum percentage of ith class actual total* precision of ith class

$$=\frac{14}{224}*0.857+\frac{105}{224}$$
* 0.99 = **95.9%**

<u>15th November 2022. Vol.100. No 21</u> © 2022 Little Lion Scientific

www.jatit.org

ISSN: 1992-8645 $recall_per_class =$ $\frac{true \ value \ for \ that \ particular \ class}{total \ count \ of \ actual \ class \ value} - (3)$ Recall_per_pneumonia= $\frac{12}{13}$ =0.923 Recall_per_healthy= $\frac{103}{105}$ =0.980 Recall_per_covid-19= $\frac{105}{105}$ = 1

The weighted average of recall= \sum percentage of ith class predicted total* precision of ith class

 $=\frac{13}{224}*0.923+\frac{105}{224}$

* $0.98 + \frac{106}{224}$ * 1= **96.69%**

The proposed model compares the simple auto encoder-decoder with a hyper parameterized network and it is observed that the optimized network has good evaluation. The values are illustrated in table 6.

Table 6: Comparative Study On Different Neural Networks

	Accura	Recal	Precisi	F-	
	cy	1	on	score	
Convolut					
ion	700/	69.6	67 00/	70.11	
Neural	/0%	%	07.870	%	
Network					
SimpleA					
uto	95 60/	82.3	0/10/	95.7	
Encoder	83.070	%	04.170	%	
Decoder					
Optimize					
d Auto	08 120/	96.69	05.00/	96.24	
Encoder	98.12%	%	95.9%	%	
Decoder					

The comparative study graph representation is shown in figure 6. In Figure 6, X-axis represents the metrics that are needed to evaluate the model and Y- axis represents their measure in terms of percentages. In terms of all metrics, it is clearly evident that encoders are better than simple CNN but with the optimized parameters of the encoders, the proposed model has exhibited much better than the traditional encoder. In terms of accuracy alone, it is clear that from simple CNN to Optimized encoder the performance is improved by nearly +20%, which is highly remarkable.

Figure 6: Graphical Representation Of Performance Metrics

<u>15th November 2022. Vol.100. No 21</u> © 2022 Little Lion Scientific

ISSN: 1992-8645	www.jatit.org	E-ISS	SN: 18	817-3195
5. CONCLUSION:		10.1109/MITP.2020.3036820,	pp.	63-68,

This automated multi-classification model has obtained an accuracy of "98.12%" for classifying the images into three categories namely covid-19, pneumonia, and healthy. The model has tried to improve the performance by defining the important parameters in different combinations. The precision and recall metrics show that the system correctly the true labels accurately and better than the other systems. The proposed system has very low loss values in each iteration so the model can efficiently predict the COVID-19 but the system has observed from the visualization graph, at a certain interval of time the system has reached 100% accuracy, which represents the system may suffer from overfitting problem. Many models suffer from overfitting because of the noisy data, So to address this issue researchers can design good fine tuned transfer learning techniques which help the model to get sufficient training.

REFERENCES:

- [1]. K, S. R., V, A. R., K, M. & C, S. K. "Prediction of Covid-19 Outbreak in India hv Employing EpidemiologicalModels" Journal of Computer Science, 16(7), https://doi.org/10.3844/jcssp.2020.886.890, pp.886-890. ,2020.
- [2]. JavadiMoghaddam, S., &Gholamalinejad, H. "A novel deep learning based method for COVID-19 detection from CT image" In Biomedical Signal Processing and Control, https://doi.org/10.1016/j.bspc.2021.102987, Vol. 70, p. 102987,2021.
- [3]. S. T. H. Kieu, A. Bade, a. M. H. A. Hijazi and H. Kolivand, "COVID-19 Detection Using Integration of Deep Learning Classifiers and Contrast-Enhanced Canny Edge Detected X-Ray Images" in IT Professional, vol. 23, no. 4, doi: 10.1109/MITP.2021.3052205, pp. 51-56, 2021.
- [4]. A. Rehman, T. Saba, U. Tariq and N. Ayesha, "Deep Learning-Based COVID-19 Detection Using CT and X-Ray Images: Current Analytics and Comparisons, "IT Professional, vol. 23, no. 3, doi:

2021

- [5]. A. M. Reddy, K. SubbaReddy and V. V. Krishna, "Classification of child and adulthood using GLCM based on diagonal LBP" 2015 International Conference on Applied and Theoretical Computing and Communication Technology, Davangere, 2015. doi: 10.1109/ICATCCT.2015.7457003, pp. 857-861, 2015.
- [6]. Panwar, H., Gupta, P. K., Siddiqui, M. K., Morales-Menendez, R., & Singh, V. (2020) "Application of deep learning for fast detection of COVID-19 in X-Rays using nCOVnet"Chaos, Solitons& Fractals (Vol. 138, 109944). Elsevier BV. p. https://doi.org/10.1016/j.chaos.2020.10994 4
- [7]. C. R. T, G. Sirisha and A. M. Reddy, "Smart Healthcare Analysis and Therapy for Voice Disorder using Cloud and Edge Computing" 4th International Conference on Applied and Theoretical Computing and Communication Technology (iCATccT), Mangalore. India. doi: 10.1109/iCATccT44854.2018.9001280, pp. 103-106, 2018.
- [8]. Pandit, M. K., Banday, S. A., Naaz, R., &Chishti, M. A. "Automatic detection of COVID-19 from chest radiographs using deep learning" Radiography, https://doi.org/10.1016/j.radi.2 020.10.018, Vol. 27, Issue 2, pp. 483-489,2021.
- [9]. Ayaluri MR, K. SR, Konda SR, Chidirala SR. "Efficient steganalysis using convolutional auto encoder network to ensure original image quality"PeerJ Computer Science, https://doi.org/10.7717/peerj-cs.356, 2021.
- [10]. Ismael, A. M., &Şengür, A. "Deep learning approaches for COVID-19 detection based on chest X-ray images" Expert Systems with Applications https://doi.org/10.1016/j.eswa.2020.114054, Vol. 164, p. 114054,2021.
- [11]. A. M. Reddy, V. V. Krishna, L.Sumalatha and S. K. Niranjan, "Facial recognition based on straight angle fuzzy texture unit matrix" International Conference on Big Computational Data Analytics and

	© 2022 Little Lion	on Scientific
ISSN: 1992-8645	www.jati	tit.org E-ISSN: 1817-3195
Intelligence (ICBDAC), pp. 10.1109/ICBDACI.2017.8070 [12]. Wang, L., Lin, Z.Q. & Wong Net: a tailored deep convol	366-372, doi: 0865,2017. 5, A. "COVID- utional neural	from chest x-ray images"Compute Methods and Programs in Biomedicine Elsevier BV https://doi.org/10.1016/j.cmpb.2020.10558
network design for detection cases from chest X-ray imag https://doi.org/10.1038/s4159 z,2020.	of COVID-19 ges" SCI Rep, 8-020-76550-	 Vol. 196, p. 105581, 2020. [21]. Zebin, T., Rezvy, S. "COVID-19 detection and disease progression visualization: Deep learning on chest X-rays for classification and coarse localization" Application.
[13]. Padmaja Grandhe, E. sro D.vasumathi "an adaptive image search and retrieve for to mri image filtering, segn	cluster based interactive roi nentation, and	https://doi.org/10.1007/s10489-020-01867- 1, 1010–1021, 2021. [22]. IlaiahKavati, A. Mallikarjuna Reddy, E
registration "Journal of Th Applied Information Techno 130,2018.	neoretical and blogy, pp.121-	Suresh Babu, K. Sudheer Reddy RamalingaSwamyCheruku,Design of fingerprint template protection scheme
[14]. R. Kumar et al., "Blockch Learning and Deep Learnin COVID-19 Detection Using IEEE Sensors Jour 10.1109/JSEN.2021.3076767 14, pp. 16301-16314, 2021.	ain-Federated- g Models for CT Imaging" rnal, doi: , vol. 21, no.	using elliptica structures,ICTExpress,Volume 7, Issue 4,2021,Pages 497-500,ISSN 2405 9595,https://doi.org/10.1016/j.icte.2021.04. 001. [23]. Swarajyalakshmi v papineni
[15]. Yang, D., Martinez, C., "Detection and analysis of medical images using d techniques" Rep,https://doi.org/10.1038/s4 99015-3,2021.	Visuña, L. COVID-19 in leep learning SCI 41598-021-	A.Mallikarjuna Reddy, Sudeeptiyarlagadda , SnigdhaYarlagadda, HarithaAkkineni "Ar Extensive Analytical Approach on Humar Resources using Random Fores Algorithm" International Journal o Engineering Trends and Technolog
[16]. Jain, R., Gupta, M., Tanej learning based detection an COVID-19 on che images"ApplIntell https://doi.org/10.1007/s1048 1, 1690–1700, 2021.	a, S. "Deep ad analysis of est X-ray 51, 9-020-01902-	 [24]. Swarajya Lakshmi V Papineni SnigdhaYarlagadda, HaritaAkkineni, A Mallikarjuna Reddy. Big Data Analytic: Applying the Fusion Approach o Multicriteria Decision Making with Deep
[17]. Zhao, W., Jiang, W. &Q learning for COVID-19 detec CT images "SCI Rep 11, Vo p. 455, https://doi.org/10.103 93832-2,2021.	iu, X "Deep ction based on bl. 21, Issue 2, 8/s41598-021-	 Learning Algorithms, International Journa of Engineering Trends and Technology 69(1), 24-28, doi 10.14445/22315381/IJETT-V69I1P204. [25]. A Mallikarjuna Reddy
[18]. Alshazly, H., Linse, C., &Martinetz, T. "Explainabl Detection Using Chest CT So Learning" SensorsM https://doi.org/10.3390/s2102	Barth, E., le COVID-19 cans and Deep IDPI AG, 0455,2021.	Vakulabharanam Venkata Krishna LingamguntaSumalatha and AvukuObulesh, "Age Classification Using Motif and Statistical Features Derived Of Gradient Facial Images", Recent Advance in Computer Science and Communication
[19]. Alam, NAA., Ahsan, M., H Haider, J., & Kowalski, M Detection from Chest X-ray Feature Fusion and Deen	Based, Md. A., . "COVID-19 Images Using Learning."	(2020) 13: 965 https://doi.org/10.2174/2213275912666190 417151247.
Sensors AG,https://doi.org/10.3390/s2 21, Issue 4, p. 1480,2021.	MDPI 21041480, Vol.	[26]. A.Mallikarjuna, B. KarunaSree, "Security towards Flooding Attacks in Inter Domain Routing Object using Ad hoc Network" International Journal of Engineering and

[20]. Khan, A. I., Shah, J. L., & Bhat, M. M. (2020) "CoroNet: A deep neural network for detection and diagnosis of COVID-19

International Journal of Engineering and

Advanced Technology (IJEAT), Volume-8

Issue-3, February 2019.

	© 2022 Little Lion Scien	unc		TITAL
ISSN: 1992-8645	www.jatit.org		E-ISSN:	: 1817-3195
[27]. Mallikarjuna Reddy, A., RupaK Chandrasekhara Reddy, T., Vish G., et al., (2019), "Generating fingerprint template using structures", Journal of Compute Theoretical Nanoscience, Voc Numbers 5-6, pp. 1951-195 https://doi.org/10.1166/jctn.2019	Linnera, G., nu Murthy, cancelable triangular ational and blume 16, 55(5), doi: .7830.	Journal of Technology Volume-8 Is:	Engineering and (IJEAT) ISSN: 22 sue-5, June 2019.	Advanced 249-8958,
[28]. Sri Silpa Padmanabhuni and Gera, "Synthetic Data Augme Tomato Plant Leaf using Meta Generative Adversarial Networ International Journal of Computer Science Applications(IJACSA), 13(6) http://dx.doi.org/10.14569/IJACS 30628	Pradeepini entation of Intelligent k: Milgan'' Advanced and), 2022. SA.2022.01			
[29]. Sudeepthi Govathoti, A M Reddy, Deepthi Kamidi, G Balak Silpa Padmanabhuni and Pradea "Data Augmentation Technique: Plants to Classify Healthy and Blight Disease Leaves" In Journal of Advanced Computer S Applications(IJACSA), 2022. http://dx.doi.org/10.14569/ 022.0130618.	fallikarjuna Krishna, Sri epini Gera, s on Chilly d Bacterial nternational Science and 13(6), /IJACSA.2			
[30]. Mallikarjuna A. Reddy, Sudheer Santhosh C.N. Kumar, Srinivasa "Leveraging bio-maximum in" method for iris and palm re International Journal of Biome Vol.14 No.3/4, pp.421 DOI: 10.1504/IJBM.2022.10048	K. Reddy, K. Reddy, verse rank cognition", trics, 2022 - 438, 978.			
[31]. Obulesh, A., Vamshi P., Mallikarjuna Reddy, A." Cl of lung patterns based on neighborhood pattern (TNP) "J Research in Dynamical & Systems,pp.no.35-41, Vol. 10, Issue, 2018.	Krishna, assification transition our of Adv z Control 15-Special			
[32]. B. Pruthvi Raj Goud, G. L. Anar Sekhar Reddy, A. Mallikarju "Multiple object detection inter HSV, hough and haar International Journal of Technology and Exploring E (IJITEE) ISSN: 2278-3075, Issue-9, July 2019.	nd Babu, G. nna Reddy rface using r-classifier" Innovative Engineering Volume-8			

[33]. Purushotham Reddy, M., Srinivasa Reddy, K., Lakshmi, L., Mallikarjuna Reddy, A." Effective technique based on intensity huge saturation and standard variation for image fusion of satellite images" International