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ABSTRACT 
 

The purpose of the study is to develop a method for calculating the mathematical models of block diagrams 
in the form of equations in a state-space representation. The model is calculated through an iterative process. 
The initial condition of the mathematical model is taken as a model consisting of unconnected elements of 
the block diagram. The hierarchy of elements, in general, is not set and is arbitrary, but remains unchanged 
throughout the computation. The iterative process is composed of steps, each of which processes one 
connection. The connection bridges the output and input ports of the element(s) in the block diagram. It is 
helpful (for example, to obtain the matrix frequency response of the system) to implement an algorithm for 
calculating the current connection without excluding and without zeroing the rows and columns of the 
equation-of-state matrices corresponding to this connection. This corresponds to a derivation of an equivalent 
model of a block diagram with input ports accessible for signal input and output ports of all elements 
composing the block diagram being open for observation. In this case, the definition of indexes at all steps 
of the algorithm remains the same as at step zero. The paper demonstrates that if a linear dynamic system 
contains a solvable system of algebraic loops, the mathematical model of a said dynamic system can be 
obtained as equations of state. In this case, the condition is derived, under which the system of algebraic loops 
can be solvable, and then the mathematical model of the block diagram can be obtained. If this condition is 
not met, the block diagram is to be rebuilt. The paper provides an example of step-by-step construction of a 
control system model defined by a block diagram and a class diagram of a system defined by a block diagram. 

Keywords: Mathematical Model, Block Diagram, Algebraic Loop, Object-Oriented Development. 
 
1. INTRODUCTION 

 
Applied control engineering has mostly taken its 

shape and has become a subject of academic 
disciplines at universities. Computer-Aided Control 
System Design (CACSD) systems are fundamental 
tools used for analysis and synthesis in various 
subject areas [1,2]. The traditional way of graphical 
representation of mathematical models is a block 
diagram, which defines the main functional elements 
of the system and their mutual relationships [3].  

Among the first developments in this area were 
instruments based on modeling languages and 
designed for solving systems of ordinary differential 
equations (ODEs). Since 1974, scholars have created 
over forty languages for modeling continuous 
systems, which evolved from attempts to present the 
behavior of analog computers, widely used until the 
1960s, in a digital form. A famous development from 
this period is Continuous System Simulation 

Language (CSSL), a language that defines the 
system as a compound of blocks, emulates basic 
analog simulation blocks, and finds a numerical 
ODE solution. Advanced Continuous Language 
(ACSL for FORTRAN) [4] is one of the successful 
implementations of CSSL. Later there appeared two 
important developments: declarative or equation-
based language modeling and object-oriented 
modeling. Declarative languages do not impose a 
fixed causality [5] on the model. In these languages, 
the model is defined by a series of equations that 
establish the relationship between states, their 
derivatives, and time. A certain procedure in the 
modeling process performs the conversion of these 
equations into software, which is executed by the 
computer. The advantage of declarative languages is 
that users do not have to define the mathematical 
causality of the equations, so the model can be used 
for any causality imposed by another system 
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component [6]. Further research is based on the 
development of component-based modeling [7]. 

An important step was the development of 
graphical user interfaces that provide modeling 
based on block diagrams. Landmark developments 
were SystemBuild [8] and SIMULAB (later 
renamed Simulink) [9]. Both products use a 
customizable set of block libraries that have been 
integrated into two powerful interactive computing 
systems: MATRIXX and MATLAB. 

Currently, the widely recognized MATLAB 
engineering and scientific calculation system and 
Simulink simulation system [10,11] are integrating 
many new methodological developments in the 
sphere of control associated with toolbar control. 
MATLAB is also developing as a powerful object-
oriented programming language. Existing CACSD 
tools are constantly being expanded to include new 
classes of models and new computational 
algorithms. 

Block diagrams are used for representing and 
visualizing dependencies in models of complex 
dynamic systems. Such schemes can represent 
different levels of complexity: the blocks that exist 
in a diagram can be mathematical operators, a 
description in the form of a system of equations, and 
subsystems. The syntax of structural diagrams used 
by engineers is not formally regulated. However, a 
number of technologically oriented forms of block 
diagrams are standardized. The IEC 61131-3:2003 
(2013) [12] standard describes programming 
languages for programmable logic controllers. In 
this case, a graphical language is a software tool for 
describing a diagram of a set of connected functional 
blocks. The ISO 10628:2014 [13] standard regulates 
diagrams for the chemical and petrochemical 
industry, defines the representation of block 
diagrams, and serves to indicate the general flow of 
plant processes (process flow diagram, PFG). 

The computational approach to modeling, in 
some cases, has many advantages over physical 
modeling [14], because developing a computational 
model is both easier and less costly [15]. In addition, 
computational models are more flexible and 
modifiable. Control system models are developed by 
engineers in different fields and for different 
purposes. For example, when designing a control 
law, the model of an object is often given in the form 
of continuous differential equations, because they 
can provide automatic methods of synthesis [10]. 

In developing control systems with a typical 
computer-aided design system (CACSD), there are 
several steps to be followed. The mathematical 
model of the system is developed in mathematical 

terms, reflects the qualities of the real system, and 
has a quantitative description. The construction of 
the model is the first step, which consists in the 
development of a certain equivalent that 
mathematically represents the laws it abides and the 
connections between its components. Then, the 
factors that are non-essential to the behavior of this 
equivalent are discarded and additional factors, also 
written in mathematical terms, are considered. The 
mathematical model is studied using theoretical 
methods, which produces preliminary data. Dynamic 
models are typically represented by systems of 
ODEs [16,17], differential-algebraic equations 
(DAEs) [18], or partial differential equations 
(PDEs). Here it is essential that the model research 
goal is present and formulated. In mathematical 
modeling, which relies on numerical methods, the 
second step has to be the representation of the model 
through a computational algorithm [19,20]. In the 
case of block diagrams being used for the 
representation of the model, the second step is the 
application of the chosen method of forming the 
model of a set of interconnected parts that make up 
the scheme.  

However, for the purposes of control system 
synthesis, simplification of models is required, e.g., 
linearization, discretization, or model reduction, or 
directly defined in some form data from the 
measured inputs — outputs that use system 
identification methods. The commonly used 
continuous or discrete-time synthesis models, linear 
time-invariant (LTI) systems describe the nominal 
behavior of object models at a certain operating point 
[21]. More precise linear parameter-varying (LPV) 
models can serve to account for uncertainties due to 
various approximations and nonlinearities 
performed or changes in model parameters. 

The subject of this article is the development of 
a method (algorithm) for constructing a 
mathematical model of a block diagram for linear 
continuous systems.  

 
2. MATERIALS AND METHODS 
 
2.1 Basic Provisions. Problem Statement 

The set of states of a mathematical model of a 
system or process is related to the metric space of 
states of this system or process. When the system 
interacts with other systems, a set of controls with 

elements  and a set of influences 𝑤 ⊆ 𝑊are 
introduced. Each system can be decomposed into 
interrelated subsystems. In this case, the space of 
states X is represented as a sum of subspaces of 
states that are a section of the space X. The equations 
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of state for a deterministic linear continuous 
controlled system in time under deterministic 
influences can be written as 

 
𝑥˙(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡); 𝑥(𝑡) = 𝑥; 𝑢(𝑡) = 𝑢. 𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡),  (1) 

 
where x – dimension state vector n, u – dimension 
input vector k, y – dimension output vector m, and 
the matrices of state – A, input – B, output – C, and 
direct transmittance – D have consistent dimensions.  

A structural diagram is defined by a set of 
diagram elements and connection lines linking these 
elements. Each element has a certain number of 
inputs and outputs, which are uniquely represented 
by the input and output ports in the diagram. The 
connection line uniquely defines the pair to be 
connected: the output port and the input port. 

Each element in the block diagram is defined by 
its mathematical description in the form of state 
equations in the state space of the form (1). 

The task set is to obtain a mathematical model 
in the form of state equations of the form (1) for a 
given block diagram. 

 
2.2 Computational Method for Constructing a 
Mathematical Model of a Control System Defined 
by a Linear Block Diagram 

Assume that the block diagram contains N linear 
elements mathematically described in state variables 
(1).  

The computation of the mathematical model is 
constructed in the form of an iterative process. The 
initial condition of the mathematical model (the zero 
step of the iteration, as well as all subsequent steps, 
is indicated by the upper index in brackets) is taken 
as a model consisting of unconnected elements of the 
block diagram. 

 
𝑥˙(𝑡) = 𝐴()𝑥(𝑡) + 𝐵()𝑢()(𝑡);  𝑦()(𝑡) = 𝐶()𝑥(𝑡) + 𝐷()𝑢()(𝑡), (2) 

 
where 
 

𝐴() = 𝑑𝑖𝑎𝑔 (𝐴ଵ, 𝐴ଶ, … , 𝐴ே) 
𝐵() = 𝑑𝑖𝑎𝑔 (𝐵ଵ, 𝐵ଶ, … , 𝐵ே) 
𝐶() = 𝑑𝑖𝑎𝑔 (𝐶ଵ, 𝐶ଶ, … , 𝐶ே) 

𝐷() = 𝑑𝑖𝑎𝑔 (𝐷ଵ, 𝐷ଶ, … , 𝐷ே)) 

(3) 

 
In these equations, N is the number of structural 

elements with dimensions n1, n2,…nN, k1,k2,…,kN, 
m1,m2,…, mN; the state vector 𝑥 with the dimension 
n=n1+n2+…+nN, input vector 𝑢() with the 
dimension k=k1+k2+…+kN, and the output vector 
𝑦() with the dimension m=m1+m2+…+mN.. 

The order of the elements is arbitrary but 
constant throughout the calculation process. This 
entails that all input and output ports on the block 
diagram, having their sequence number within its 
structural element, unambiguously receive a unique 
sequence number within the description of the entire 
block diagram (2)-(3). 

The iterative process of calculating the 
mathematical model consists of steps, each of which 

processes one connection represented on the block 
diagram by one communication line, which uniquely 
defines one output port and one input port of the 
diagram.  

Taking relations (2)-(3) as the initial state of the 
mathematical model of the diagram, at the first step 
of the iterative process, we choose a particular 
connection (connection line), thereby explicitly 
defining the output port, let it be 𝑖(), and the input 
port, let it be 𝑗(), in the (2)-(3) model. Then the 
condition for this connection in the model of scheme  
(2) will be the equation 

 

𝑢
()

= 𝑦
() (4) 

 
(in this expression, the top index denoting the 

iteration number for indexes i and j is omitted since 
the iteration number is specified in the expression 
itself). The use of (4) together with (2)-(3) delivers 
the model of the block diagram at the first step of the 
iterative process  

 
𝑥˙ = 𝐴(ଵ)𝑥 + 𝐵(ଵ)𝑢(ଵ);  𝑦(ଵ) = 𝐶(ଵ)𝑥 + 𝐷(ଵ)𝑢(ଵ), (5) 

 
Here the vector of open outputs in the first 

iteration 𝑦(ଵ) is obtained by excluding from the 
output vector of the zero iteration the component 

𝑦
(). The vector of open inputs in the first iteration 
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𝑢(ଵ) is acquired by excluding the component 𝑢
() 

from the input vector of the zero iteration. 

If 1 − 𝑑,
(ଵ)

≠ 0, then the matrices of the 
diagram model at the first step are calculated through 

the matrices of the zero-step model by formulas (6, 
7) 

 

𝐴(ଵ) = 𝐴() +
1

1 − 𝑑


()
𝑏

()
𝑐

()
;  𝐵(ଵ) = 𝐵

()
+

1

1 − 𝑑


()
𝑏

()
𝑑



()
, (6) 

 

𝐶(ଵ) = 𝐶
()

+
ଵ

ଵିௗ
,ೕ
(బ) 𝑑/

()
𝑐

()
; 𝐷(ଵ) = 𝐷,

()
+

ଵ

ଵିௗ
,ೕ
(బ) 𝑑/

()
𝑑/

() (7) 

 

where the 𝐵
() matrix is formed from the 𝐵() matrix 

by extracting from it the 𝑗()-th column, 𝑏
();  

the 𝐶
() matrix is formed from the 𝐶() matrix by 

extracting from it the 𝑖()-th row, 𝑐
();  

the 𝐷,
() matrix is formed from the 𝐷() matrix by 

extracting from it the 𝑖()-th row, 𝑑
(), and the 𝑗()-

th column, 𝑑
(); 𝑑ೕ



() is the 𝑗()-th column of the 𝐷() 

matrix without the 𝑖()-th component; 𝑑

ೕ

() is the 𝑖()-

th row of the 𝐷() matrix without the 𝑗()-th 
component. 

The further iterative process of calculating the 
mathematical model of the control system is 
described by the following recurrence relations. 

Let the current mathematical model of the 
control scheme at the l-th step of the iterative process 
(the 1st, 2nd, ..., l-th connections already entered into 
the model) be calculated as 

 
𝑥 = 𝐴()𝑥 + 𝐵()𝑢(); 

 
𝑦() = 𝐶()𝑥 + 𝐷()𝑢() 

(8) 

 
At the (𝑙 + 1)-th step, the iterative process 

addresses the (𝑙 + 1)-th connection line with 
unambiguously defined input and output ports of the 
block diagrams. This explicitly (but perhaps 
nontrivially) defines the output, let it be 𝑖(), and the 
input, let it be 𝑗(), in the model (8) constructed at 
step l. Then the condition for this connection in the 
model (8) will be the equation 

 

𝑢
()

= 𝑦
() (9) 

 
the use of which delivers the model at the (𝑙 + 1)-th 
step of the iterative process 
 

𝑥 = 𝐴(ା)𝑥 + 𝐵(ା)𝑢(ା); (10) 

 
𝑦(ା) = 𝐶(ା)𝑥 + 𝐷(ା)𝑢(ା) 

 
where the matrices are recurrently defined as 

 

𝐴(ାଵ) = 𝐴() +
1

1 − 𝑑
,

()
𝑏

()
𝑐

()
; 

 

𝐵(ାଵ) = 𝐵
()

+
1

1 − 𝑑
,

()
𝑏

()
𝑑/

()
; 

 

𝐶(ାଵ) = 𝐶
()

+
1

1 − 𝑑,
()

𝑑/
()

𝑐
()

; 

 

𝐷(ାଵ) = 𝐷,
()

+
1

1 − 𝑑
,

()
𝑑/

()
𝑑/

()  

(11) 

 

The relations (11) assume that 1 − 𝑑,
()

≠ 0 and 
uses the following designations:  

𝑏
() – the 𝑗()-th column of matrix 𝐵(); 𝑐

() –the 

𝑖()-th column of matrix 𝐶(); 𝑑ೕ



() – the 𝑗()-th 

column of matrix 𝐷() without the 𝑖()-th element; 

𝑑

ೕ

() – the 𝑖()-th column of matrix  without the 

𝑗()-th elementа; 𝐵
() – the matrix obtained by 

excluding the 𝑗()-th column from 𝐵(); 𝐶
() – the 

matrix obtained by excluding the 𝑖()-th row from 

𝐶(); 𝐷,
() – the matrix obtained by deleting the 𝑖()-

th row and the 𝑗()-th column from 𝐷(). 
2.3 Determination of the Numbers of Diagram 
Input and Output Ports 

The 𝑖() and 𝑗() indices need to be recalculated 
at each step minding the rows and columns of input, 
output, and bypass matrices of the diagram deleted 
at the preceding step. Calculations can be performed 
by zeroing out the corresponding rows and columns 
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instead of deleting them. This provides an equivalent 
but redundant closed-loop scheme with fully-
dimensional input and output vectors corresponding 
to the input and output ports of all the elements 
composing the block diagram. In this case, the 
calculation of input/output port indices at all steps of 
the algorithm remains the same as at step zero. To 
strictly obtain the resulting model of the diagram, it 
is necessary to delete the rows and columns of the 
input, output, and bypass matrices of such a 
redundant model canceled as a result of the 
implementation of the structural connection. 

The case of detecting an algebraic loop (a loop 
without dynamics) in the block diagram 

The presence of algebraic loops causes 
complications with numerical methods [22-24]. In 
this section, we will demonstrate that it is possible to 
obtain a mathematical model of a dynamic system in 
the form of equations of state for a linear dynamical 
system if it contains a solvable system of algebraic 
loops. A condition is derived, under which the 
system of algebraic loops can be solvable, and then 
the mathematical model of the block diagram can be 
obtained. If this condition is not met, the block 
diagram is to be rebuilt.  

Returning to the proposed method, we note that 
the condition for the resolution of the algebraic 
contour at the first calculation step is the relation 

(1 − 𝑑
()

) ≠ 0. Similarly, at the l-th step of the 
algorithm, the condition for the resolution of the 

algebraic loop is (1 − 𝑑
()

) ≠ 0. If at the 
intermediate step of the algorithm it is found that 

൫1 − 𝑑
()

൯ = 0, consideration of the respective 
connection has to be delayed until the last step of the 
algorithm, moving to the next connection of the set 
in the current step.  

Assume that at the l-th step of the algorithm, all 
remaining unprocessed connections are found to 
form a system of algebraic loops, each of which 
individually cannot be solved with respect to the 
scalar output by the algorithm described above. Let 
there be 𝑚 of such connections. For each 𝑘-th of 
them, the numbers of the diagram input port, 𝑗, and 
the diagram output port, 𝑖 are known. From them, 
we form vectors 𝐽 = [𝑗ଵ  ⋯ 𝑗  ⋯ 𝑗 ] and 𝐼 =
[𝑖ଵ  ⋯ 𝑖  ⋯ 𝑖 ]. Then the condition for the 
connection will be the vector equality 

 

𝑢
()

= 𝑦ூ
() (12) 

 

where the 𝑢
()vector is obtained by selecting 

elements with numbers determined by vector 𝐽 from 

vector 𝑢(), the 𝑦ூ
() vector is formed by picking out 

elements with numbers determined by vector 𝐼 from 
vector 𝑦() , and equations written down as 
 

𝑥(𝑡) = 𝐴()𝑥(𝑡) + 𝐵()𝑢()(𝑡); 
 

𝑦()(𝑡) = 𝐶()𝑥(𝑡) + 𝐷()𝑢()(𝑡); 
 

𝑢
()

= 𝑦ூ
() 

(13) 

 
define initial data for constructing the model of 

the diagram if the system of algebraic loops turns out 
to be solvable. 

Let 𝐶ூ
() denote the matrix obtained by selecting 

from matrix 𝐶()the rows with numbers given by 

vector 𝐼 and 𝐷ூ
() signify the matrix formed by 

selecting from matrix 𝐷()the rows with numbers set 
by vector 𝐼. As a result, we have 

 

𝑦ூ
()

= 𝐶ூ
()

𝑥 + 𝐷ூ
()

𝑢() (14) 
 

Let 𝐷ூ
() denote the matrix acquired by picking 

out columns with numbers given by vector 𝐽 from 

matrix 𝐷ூ
() and 𝐷ூ¯

() signify the matrix comprised of 
the remaining columns. Then the following equation 
is true 

 

𝑦ூ
()

= 𝐶ூ
()

𝑥 + 𝐷ூ
()

𝑢
()

+ 𝐷ூ¯
()

𝑢 (15) 
 
Using the condition for connection (12), we 

obtain a system of equations describing the system 
of algebraic loops  

 

(𝐼 − 𝐷ூ
()

)𝑢
()

= 𝐶ூ
()

𝑥 + 𝐷ூ¯
()

𝑢 (16) 
 

the solvability condition of which is  
 

𝑑𝑒𝑡(𝐼 − 𝐷ூ
()

) ≠ 0 (17) 
 

where 𝐼 is an identity matrix of dimension 𝑚 × 𝑚. 
If the condition (17) is met, the system of 

algebraic loops (16) has a solution 

𝑢
()

= (𝐼 − 𝐷ூ
()

)ିଵ𝐶ூ
()

𝑥 + (𝐼 − 𝐷ூ
()

)ିଵ𝐷ூ¯
()

𝑢 (18) 
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Let 𝐵
() be the matrix obtained by selecting 

from matrix 𝐵() the columns with numbers given by 

vector 𝐽, and let 𝐵¯
() be the matrix comprised by the 

rest of the columns. Further, let 𝐷
() denote the 

matrix acquired by selecting from matrix 𝐷() the 

columns with numbers set by vector 𝐽 and 𝐷¯
() be the 

matrix formed from the remaining columns. From 
the output vector 𝑦()(𝑡) in the system of equations 
(13), we form the vector of open ports in the system 

𝑦(𝑡). For this, we form the 𝐶ூ¯
() matrix by crossing 

out the rows set by vector 𝐼 from matrix 𝐶(), the 𝐷ூ¯
() 

matrix by crossing out the rows set by vector 𝐼 from 

matrix 𝐷
(), and matrix 𝐷ூ¯¯

()  by crossing out the rows 

set by vector 𝐼 from matrix 𝐷¯
(). Then from the 

system of equations (13) we can find that 
 

𝑥(𝑡) = 𝐴()𝑥(𝑡) + 𝐵
()

𝑢
()(𝑡) + 𝐵¯

()
𝑢(𝑡) 

 

𝑦(𝑡) = 𝐶ூ¯
()

𝑥(𝑡) + 𝐷ூ¯
()

𝑢
()(𝑡) + 𝐷ூ¯¯

()
𝑢(𝑡) 

(19) 

 
whence, using expression (18) of the system of 
algebraic loops, we have  

 

𝑥(𝑡) = ቂ𝐴() + 𝐵
()

൫𝐼 − 𝐷ூ
()

൯
ିଵ

𝐶ூ
()

ቃ 𝑥(𝑡) + [B


()
+ 𝐵

()
൫𝐼 − 𝐷ூ

()
൯

ିଵ
𝐷ூ¯

()
]𝑢(𝑡) 

 

𝑦(𝑡) = ቂC
ூ

()
+ 𝐷ூ¯

()
൫𝐼 − 𝐷ூ

()
൯

ିଵ
𝐶ூ

()
ቃ 𝑥(𝑡) + [D

ூ

()
+ 𝐷ூ¯

()
൫𝐼 − 𝐷ூ

()
൯

ିଵ
𝐷ூ¯

()
]𝑢(𝑡) 

(20) 

 
The resulting system of equations is a model of 

the diagram in state variables for the considered case 
of the presence of a solvable system of algebraic 
contours (16) in the scheme. 

If condition (17) is not satisfied, it means that 
there is an unsolvable system of algebraic contours 
in the studied diagram. Such a block diagram should 
be re-formed. 

 
3. RESULTS  
 
3.1 An Example of Operation of the 
Computational Method 

Let us consider the block diagram presented in 
Figure 1. 

As an example, we take the following numerical 
data:  

𝑘 = 1.0; 𝑘ଵ = 0.9; 𝑘ଶ = 0.05; 𝑘ଷ = 1.1; 𝑇 =
0.006; 𝑘ସ = 3.0; 𝑘ହ = 2.0; 𝑙 = 4.0. 

Each element of the diagram is assigned its own 
sequence number, denoted in Roman numerals on 
the diagram. 

The element, called Object, is numbered as the 
first one. The transfer function of the Object is 

known to be 𝑊о(𝑠) =
ସ.

௦యାଷ.௦మାଶ.௦
. According to the 

conditions of use of the proposed method, the 
mathematical model of each element of the diagram 

is set by the equations of state. To this Object 
correspond the following matrices of the 
mathematical model in the state space: 

𝐴ଵ = 
0        1       0    
 0        0       1     
0 − 2.0 − 3.0 

൩ , 𝐵ଵ = 
  0   

0
 4.0 

൩ , 𝐶ଵ =

[1   0   0 ], 𝐷ଵ = [0]. 
The element of the diagram denoted as PID 

controller is numbered as the second. Its transfer 
function is known to be 𝑊р(𝑠) = 0.9 + 0.05/𝑠 +

1.1𝑠/(0.006𝑠 + 1). To this element corresponds the 
mathematical model in the state space defined by 
matrices:  

 

𝐴ଶ = ቂ
0         1        

 0 − 166.67 
ቃ , 𝐵ଶ = ቂ

−30555.51
 5092592.59 

ቃ , 𝐶ଶ =

[1 0 ], 𝐷ଶ = [184.23] . 
The summer is numbered as the third element in 

the diagram, branching is numbered fourth, and the 
amplification coefficient 𝑘 in the feedback loop is 
numbered fifth. These elements in the state space are 
given by bypass matrices: 𝐷ଷ = [1 − 1 ], 𝐷ସ =
[1   1 ], and 𝐷ହ = [1.0 ] , respectively. 

The ports of each diagram element are 
numbered according to its mathematical model.  

All data about the elements of the diagram 
necessary for the construction of its mathematical 
model is presented in Table 1. 
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Table 1: The set of Elements in the Diagram 

Number 
in the 
figure 

Dimensions State matrix Input matrix Output matrix 
 Direct 

transmittance 
matrix 

I 𝑛 = 3, 𝑘 = 1, 𝑚 = 1 
0          1          0  
 0         0          1   
  0  − 2.0  − 3.0 

൩ 
0
 0

 4.0 
൩ [1     0     0 ] [0] 

II 𝑛 = 2, 𝑘 = 1, 𝑚 = 1 
  

[1      0 ] [184.23] 

III 𝑛 = 0, 𝑘 = 2, 𝑚 = 1 – – – [1 − 1 ] 

IV 𝑛 = 0, 𝑘 = 1, 𝑚 = 2 – – – ቂ
1

 1 
ቃ 

V 𝑛 = 0, 𝑘 = 1, 𝑚 = 1 – – – [1.0] 
 
All declared connections in the diagram are 

shown in Table 2. Each connection is defined by the 
output and input ports to be connected. Each port in 
the diagram is uniquely specified by the element 
number from Table 1 and the sequential number of 
its port. Let us introduce a continuous numbering 
(throughout the diagram) of both input and output 

ports according to the order of the elements in the 
diagram and the ports in each of them. The number 
set in this way will be called the diagram port 
number. The port involved in the connection is 
represented in Table 2 by both the element port 
number and the diagram port number. 

 

 
Figure 1: Example of a Linear System Block Diagram 

 
In Figure 1, all connections are numbered 

according to their order in Table 2 with Arabic 
numerals in brackets. Ports are numbered as scheme 
ports in small Arabic numerals. 

Table 2: The Set of Connections in the Diagram 

Number in the 
figure 

Output port Input port 

Element 
(block) 

Element 
(block) port 

number 

Diagram 
port 

number (i) 

Element 
(block) 

Element 
(block) port 

number 

Diagram 
port 

number (j) 
(1) II 1 2 I 1 1 
(2) I 1 1 IV 1 5 
(3) III 1 3 II 1 2 
(4) IV 2 5 V 1 6 
(5) V 1 6 III 2 4 

 
Now we will construct a mathematical model of 

the block diagram in the form of state-space 
equations. To determine the corresponding matrices, 
we use the proposed method.  

Using Table 1, we find the initial data: 
Number of structural elements of the diagram 

𝑁 = 5, the diagram state vector 𝑥 of dimension n=5, 
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the input vector 𝑢() of dimension k=6, output vector 
𝑦() of dimension m=6. 

 
𝐴() = 0 1 0 0 0 

0 0 1 0 0 
0 -2 -3 0 0 
0 0 0 0 0 
0 0 0 0 -166.67 

В() = 0 0 0 0 0 0 
0 0 0 0 0 0 
4 0 0 0 0 0 
0 -30556 0 0 0 0 
0 5.0926e+06 0 0 0 0 

С() = 1 0 0 0 0 
0 0 0 1 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 

𝐷() = 0 0 0 0 0 0 
0 184.23 0 0 0 0 
0 0 1 -1 0 0 
0 0 0 0 1 0 
0 0 0 0 1 0 
0 0 0 0 0 1 

 
The indices of the bypass matrix columns and 

input matrix columns correspond to the numbers of 
the diagram input ports (Table 2): 1, 2, 3, 4, 5, 6. 

The indices of the bypass matrix rows and 
output matrix rows correspond to the numbers of the 
output ports in the diagram (Table 2): 1, 2, 3, 4, 5, 6. 

 

Step 1. 
Connection (1) is processed according to Table 

2: 𝑖 − 2; 𝑗 − 1. These are the row and column indices 

from the previous step. Since 1 − 𝑑ଶ,ଵ
()

= 1 ≠ 0, 
using expression (11), the model matrices at this 
stage of the iterative process are found to be: 

 
𝐴(ଵ) = 0 1 0 0 0 

0 0 1 0 0 
0 -2 -3 4 0 
0 0 0 0 1 
0 0 0 0 -166.67 

В(ଵ) = 0 0 0 0 0 
0 0 0 0 0 
736.93 0 0 0 0 
-30556 0 0 0 0 
5.0926e+06 0 0 0 0 

𝐶(ଵ) = 1 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 

𝐷(ଵ) = 0 0 0 0 0 
0 1 -1 0 0 
0 0 0 1 0 
0 0 0 1 0 
0 0 0 0 1 

 
Indices of the columns of the bypass and input 

matrices correspond to the numbers of the diagram 
input ports: 2, 3, 4, 5, 6. 

Indices of the rows of the bypass and output 
matrices match the numbers of the diagram output 
ports: 1, 3, 4, 5, 6. 

 

Step 2. 
Connection (2) is processed according to Table 

2: 𝑖 = 1; 𝑗 = 5. Since 1 − 𝑑ଵ,ହ
(ଵ)

≠ 0, using 
expression (11), the model matrices at this stage of 
the iterative process are found to be: 

 
𝐴(ଶ) = 0 1 0 0 0 

0 0 1 0 0 
0 -2 -3 4 0 
0 0 0 0 1 
0 0 0 0 -166.67 

В(ଶ) = 0 0 0 0 
0 0 0 0 
736.93 0 0 0 
-30556 0 0 0 
5.0926e+06 0 0 0 

С(ଶ) = 0 0 0 0 0 
1 0 0 0 0 
1 0 0 0 0 
1 0 0 0 0 

𝐷(ଶ) = 0 1 -1 0 
0 0 0 0 
0 0 0 0 
0 0 0 1 

 
Indices of the bypass and input matrix columns 

match the numbers of the diagram input ports: 2, 3, 
4, 6. 

Indices of the bypass and output matrix rows 
match the numbers of the diagram output ports: 3, 4, 
5, 6. 

 
Step 3. 
Connection (3) is processed according to Table 

2: = 3;  𝑗 = 2 . Given that 1 − 𝑑ଷ,ଶ
(ଶ)

≠ 0 , using 
expression (11), the model matrices at the third step 
of the iterative process are found to be: 

 
𝐴(ଷ) = 0 1 0 0 0 

0 0 1 0 0 
0 -2 -3 4 0 
0 0 0 0 1 
0 0 0 0 -166.67 
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В(ଷ) = 0 0 0 
0 0 0 
736.93 -736.93 0 
-30556 30556 0 
5.0926e+06 -5.0926e+06 0 

С(ଷ) = 1 0 0 0 0 
1 0 0 0 0 
1 0 0 0 0 

𝐷(ଷ) = 0 0 0 
0 0 0 
0 0 1 

 
Indices of the bypass and input matrix columns 

match the numbers of the diagram input ports: 3, 4, 
6. 

Indices of the bypass and output matrix rows 
match the numbers of the diagram output ports: 4, 5, 
6. 

 

Step 4. 
Connection (4) is processed according to Table 

2: 𝑖 = 5; 𝑗 = 6. As 1 − 𝑑ହ,
(ଷ)

≠ 0, using expression 
(11), the model matrices at this step of the iterative 
process are found to be: 

 
𝐴(ସ) = 0 1 0 0 0 

0 0 1 0 0 
0 -2 -3 4 0 
0 0 0 0 1 
0 0 0 0 -166.67 

В(ସ) = 0 0 
0 0 
736.93 -736.93 
-30556 30556 
5.0926e+06 -5.0926e+06 

С(ସ) = 1 0 0 0 0 
1 0 0 0 0 

𝐷(ସ) = 0 0 
0 0 

 
Indices of the bypass and input matrix columns 

match the numbers of the diagram input ports: 3, 4. 
Indices of the bypass and output matrix rows 

match the numbers of the diagram output ports: 4, 6. 
 

Step 5. 
Connection (4) is processed according to Table 

2: 𝑖 = 6; 𝑗 = 4. Given that 1 − 𝑑,ସ
(ସ)

≠ 0, through 
expression (11), the matrices of the model at this step 
of the iterative process are found to be: 

 
𝐴(ହ) = 0 1 0 0 0 

0 0 1 0 0 
-736.93 -2 -3 4 0 
30556 0 0 0 1 
-5.0926e+06 0 0 0 -166.67 

В(ହ) = 0 
0 
736.93 
-30556 
5.0926e+06 

С(ହ) =  1 0 0 0 0 

𝐷(ହ) = 0 

 
Indices of the bypass and input matrix columns 

correspond to the numbers of the diagram input 
ports: 3. 

Indices of the bypass and output matrix rows 
correspond to the numbers of the diagram output 
ports: 4. 

This exhausts the set of connections in Table 2 
and completes the construction of the mathematical 
model in the form of equations of state for the block 
diagram shown in Figure 1. The mathematical model 
of the diagram in full accordance with its depiction 
in Figure 1 has one free input, numbered as the 
diagram input port 3, and one free output, numbered 
as the diagram output port 4, and is represented by 
the obtained matrices of equations of state. 

The calculations were performed in a standard 
fixed-point and floating-point data format. The 
results are presented in a five-decimal form. 

 
3.2 Subsystems in Block Diagrams 

A subsystem of a block diagram is a group of 
elements in the scheme with all their connections. A 
subsystem of a block diagram is used as a single 
element. The concept of subsystems is one of the 
concepts of the metamodel of MATLAB systems, 
Simulink. The concept of the hierarchy of 
subsystems is also supported. The use of subsystems 
creates a hierarchical model. The subsystem is 
located at one level, and the elements that make up 
the subsystem are located at another level.  

The creation and use of subsystems assume the 
organization of a library of subsystems with the 
management of user access to subsystems by setting 
authority parameters. 

A subsystem combines functionally related 
elements that tend to retain the structure of their 
relationships and parameters during the design 
process. The number of displayed elements of the 
modeled scheme is reduced. All this makes the 
scheme more understandable and easy to handle. 

We propose to consider a subsystem to be an 
element with a mathematical model in the form of 
equations-of-state matrices calculated by the 
proposed computational method. 

Let us assume that the design of the system 
provides and defines its subsystem from the start. 
Then, using the proposed method, it is possible to 
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calculate the mathematical model of this subsystem 
in the state space, which can then be used as a model 
of a new element (subsystem-element) ready for use 
in this parent structural scheme and not only this one. 

If the allocation and creation of a subsystem 
become a necessity in an already compiled complex 
block diagram, a part of the parental scheme is 
selected by means of the graphic interface and 
transferred to the window of a new block diagram 
along with all information on the elements 
comprising this subsystem and their connections. In 
principle, information on the elements and 
connections of the subsystem contained in the 
description of the parental scheme is enough to 
automatically calculate the mathematical model of 
the subsystem by the proposed method. 

Further, such a subsystem can be formalized as 
a subsystem-element and used as such element in the 
original parent scheme, as well as in other schemes. 

Subsystems give an opportunity to create a 
hierarchical model including different levels. 
Moving through the hierarchy of subsystems 
provides such features as opening a subsystem for 
viewing, opening a subsystem for editing, returning 
from an open subsystem to the parent system, and 
deploying a subsystem, which consists in moving the 
subsystem content to the parent schema and 
flattening the hierarchy to a single level. 

The task of realizing a multilevel hierarchy of 
subsystems in the calculation of mathematical 
models for the parental scheme and all of its 
subsystems does not change anything in principle 
about the essence of the proposed computational 
method. The resolution of this task is defined by the 
conditions and features of the application of the 
method and lies in the area of using graphical 
interface design tools. 

 
3.3 Object-Oriented Approach to Modeling of 
Block Diagrams  

A dynamic block diagram is considered an 
object that has properties (elements, connection 
lines, and possibly others) as well as methods that 
determine its development (input, removal of 
elements and connection lines, saving the scheme, 
loading the scheme, etc.). Utilizing the object-
oriented approach [25], we will introduce a data type 
for describing the scheme – the Schema class. In this 
class, a description of elements and links should be 
available. Let us introduce two more data types: 
Element – a class of schema elements, and Link – a 
class of links. A Schema object must include as its 
properties a set of Element objects (let us call this set 
Elements) and a set of Link objects (Links). The 

relationship between the Schema class and the 
Element and Link classes corresponds to the 
composition relation. The composition relation 
between the Schema class and the Element and Link 
classes stipulates that the Schema class object alone 
is responsible for creating and destroying all (and 
each separately) objects of the Element and Link 
classes, and destroying a structural scheme means 
destroying all its constituent elements and links. 

Naturally, a link as an object of class Link does 
not exist by itself but connects two already existing 
elements – two objects of class Element. The 
interaction occurs between elements (objects of the 
Element class), and their interaction, defined by 
links, at the logical level is described by a “class-
self-association” connection. In this case, deleting an 
element removes all of its connection lines with 
other elements of the diagram. Thus, the connection 
line is a property of the element, or rather a property 
of a port of the element, at the same time being a 
property of another port of the diagram element. 
Removing any link is provided as one of the methods 
of the diagram modifying the properties of two ports 
of its elements. Element ports can be described with 
a reference to an object of the Link class (for this 
purpose, we introduce the type Link*, connected to 
the Link class on the class diagram by an 
implementation relation), in which case an open port 
corresponds to a NULL value. Note that Заметим, 
что a property of an element must be a reference to 
a Link object (a variable of Link* type) and not the 
object itself, because two equal possessors -- the two 
elements connected by it -- have a claim to the same 
link, and, therefore, neither of them can have the 
prerogative to remove it as an object of Link class. 
The description of all input and output ports in the 
Element class can be organized as two arrays, InPort 
and OutPort, consisting of Link* type elements. In 
the Link class, we need to define at least four 
variables: pOutElm, OutNumber, pInElm, 
InNumber. The pOutElm variable is a reference to 
the object of the element associated with the 
beginning of the connection line, while the pInElm 
variable is a reference to the object of the element 
associated with the end of the connection line. To 
describe these variables, the Element* type is 
introduced (in the diagram of classes, Element and 
Element* are connected by an implementation 
relation), the variable of which is a reference to the 
Element class object. The OutNumber variable of 
integer type is the number of the output port of the 
element pointed to by the pOutElm variable. The 
InNumber variable of integer type is the number of 
the input port of the element pointed to by pInElm. 
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Note that the Link object properties described by the 
pOutElm and pInElm variables cannot be replaced 
directly with Element objects, because one element 
can have several Link objects associated with it, and 
none of them can have the right to remove it. 

Thus, the block diagram is described by class 
Schema, which contains a composition (e.g., array, 
list) of uniform objects – elements – described by the 
Element class. Interactions of elements in the 
scheme, i.e. interaction of objects of the Element 

class, can be described at the logical level by self-
association defined by the Link class. This 
interaction will correspond to the line of connection, 
that is, connection lines will be considered objects of 
class Link. Next, a composition of objects of class 
Link is introduced into the Schema class to define all 
lines of connection in the diagram. The introduced 
data types and their interaction at the logical level are 
included in the class diagram shown in Figure 2.  

 

 
Figure 2: Class Diagram 

 
Here we should note that the proposed 

realization of the association of elements in a block 
diagram by means of Link and Element classes is 
redundant with respect to the data entered. As a 
consequence, there is a clear and easily realized 
opportunity to make appropriate changes in the 
properties of the elements connected by a link when 
deleting said link and, when deleting an element, to 
remove all the corresponding connections to it with 
changes in the properties of the elements that were 
in conjunction with it.  

At the stage of discussion of the proposed 
method, it is fundamental for us that access to an 
object of the Element class provides a complete 
acquisition of data of the element’s mathematical 
model in the form of equations in state variables. 
However, when displaying the connectivity property 
of elements in the scheme, the mathematical model 
of the element can be taken out of the picture. 

Therefore, it seems reasonable to introduce a system 
of inherited classes to describe the essence of 
elements and connection lines.  

The Element class describes an element as a 
structural unit of the diagram, which has all the 
necessary and only necessary properties to be 
attached to a scheme consisting of other similar 
structural units. This class is parent to the 
ABCDElement class, which describes the 
mathematical model of the element in the form of 
equations in state variables. To get the matrices of 
the element model, abstract (polymorphic) 
operations getA(), getB(), getC(), getD() are 
introduced into the Element class. These operations 
will be defined in the derived classes (in particular, 
in the ABCDElement class). Aside from the above, 
the Element class provides abstract operations 
get_n(), get_k(), get_m(), which will give the 
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number of states, inputs, and outputs in the Element 
object. 

This system of inheritance will enable further 
consideration of schemes with elements described 
by different mathematical models serving as 
structural units. To describe such elements, we can 
design classes that inherit the Element class with all 
its properties and methods, reflecting its essence as a 
structural unit of the scheme. 

In addition, two more classes are introduced, 
BaseElement and BaseLink, which are designed to 
give each port a unique number within the diagram. 
These classes have the feature that the properties of 
objects of these parent classes cannot be defined 
without their descendants. Thus, it is only after a 
Schema class object is created and the Elements 
composition (with access to objects of specific 
descendants) and Links composition are defined in it 
that the properties of the parent BaseElement and 
BaseLink class objects can be calculated. The values 
of BaseElement and BaseLink object properties are 
determined at the initial stage of calculating the 
mathematical model of the scheme. Three attributes 
additionally introduced in the BaseElement class are 
three integer variables (base_n, base_k, and base_m) 
intended to store the numbering offset within the 
scheme to recalculate the numbers of the state 
variables and input and output ports of a given 
element when it is included in the scheme. In the 
BaseLink class, there are two attributes introduced: 
two integer variables (out_abs_number and 
in_abs_number) to store the sequential numbers of 
the connected output and input ports when 
numbering them consecutively in the scheme (which 
is called an absolute number in contrast to the 
relative number of the same port within an element). 
In addition, the connection state variable, state, is 
introduced into the BaseLink class, taking values 
such as NOT_DONE (not done), DONE (done), 
PASS (skipped). The inheritance chains of classes 
BaseElement-Element-ABCDElement and 
BaseLink-Link are included in the class diagram 
shown in Figure 2. 

 
4. DISCUSSION  
 

In the theory of systems, connections can be 
represented by several types of graphs: linear graph, 
bond graph, signal flow graph, temporal causal 
graph (TCG), or block diagrams [26]. In a study by 
J. Willard et al. [27], TCG serves to identify 
algebraic loops and equivalent transformations to 
remove them. 

The algebraic loop is considered in the Simulink 
modeling system [10,24,28]. It is noted that in the 
general case its presence in the dynamic system 
transfers the system under study from the category 
of ODEs to the system of DAEs. Possibilities for 
detecting, diagnosing, and working out algebraic 
loops are offered. Various response strategies are 
provided to the user. In the general case, when an 
algebraic loop is identified, Simulink uses methods 
for solving nonlinear algebraic equations at each 
simulation step to resolve it. However, the tools for 
solving algebraic loops are noted to have limitations. 

The present article presents the solution in the 
form of a mathematical description used to perform 
a stage of construction of the model of a linear 
dynamic system given by a structural scheme. At 
each stage of connection sequence processing, the 
corresponding mathematical models are formed, and 
the presence of algebraic loops in the model is 
revealed. Unprocessed connections form m 
algebraic loops. The system of equations describing 
the system of algebraic loops and the condition of 
existence and uniqueness of its solution are obtained. 
Based on the obtained solution to the system of 
equations, a mathematical model of the block 
diagram is created, which, at the stage of 
construction, includes solvable algebraic loops. If 
this is not the case, the block diagram must be 
reconfigured. The process is constructed as a 
procedure for checking a mathematical condition 
and is related to the processing of a particular 
connection. The user can set the sequence of 
connection processing and have information about 
the input and output ports, the connection lines 
between which give rise to algebraic loops. This 
feature is desirable when forming high-order 
multiple input and output (MIMO) systems. 

In the scientific literature, the problem of the 
presence of an algebraic (static) contour in a 
dynamic system does not go unnoticed. In recent 
years, several works have been devoted to this 
subject [13, 29]. Their authors use a single research 
scheme addressing multidimensional algebraic 
contours both in terms of their solvability (well-
posed) and in terms of practical implementation in 
linear systems with compensation for the effect of 
drive saturation in control systems (anti-windup 
schemes). 

The difference between the approach proposed 
in this article is that the issue of the solvability of a 
well-posed algebraic loop is solved at the stage of 
constructing a mathematical model of a control 
system, given by its block diagram. The difference is 
also that the article does not set the task of designing 
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anti-windup control and considers only linear 
control systems. However, assuming that the 
nonlinearity of the saturation type is piecewise 
linear, it is possible to use the proposed method to 
solve the problem of the solvability of a well-posed 
algebraic loop that occurs in a linear system with 
compensation for the effect of saturation of the 
control drives. 

The difference in the approach considered in the 
article is that the issue of calculating a well-posed 
algebraic loop is not raised at the modeling stage 
since the resolvable loop is included in the 
mathematical model of the simulated linear control 
system. 

 
5. CONCLUSION  

 
Calculation of the mathematical model is an 

iterative process consisting of steps, each of which 
processes one connection represented on the block 
diagram by one connection line. 

The proposed method is convenient for 
developing a software-oriented algorithm and using 
it to develop software for the study of complex high-
order dynamic systems by classical and modern 
methods.  

The method makes it possible to detect an 
algebraic loop in the block diagram, and in the 
general case – a system of algebraic loops. The 
condition of solvability of the system of algebraic 
loops is derived, making it possible to obtain a 
mathematical model of the block diagram. If the said 
condition is not satisfied, the block diagram is 
considered ill-posed due to the presence of an 
algebraic contour in it, which is unsolvable or does 
not have a unique solution. 

The paper explores an illustrative numerical 
example of the operation of the computational 
method and the possibility of using this method to 
implement a multilevel hierarchy of subsystems in a 
block diagram. Mathematical models of both the 
parental system and all of its subsystems can be 
calculated by means of the proposed computational 
method. The practical resolution of this task is 
determined by the conditions and features of the 
application of the method and lies in the area of using 
graphical interface design tools. 

The data types and class system needed for 
constructing a mathematical model of a dynamic 
system given by a block diagram are developed and 
described. 

The obtained results give grounds to conclude 
that this study contributes to the practice of creating 
software systems for designing control systems. 

The limitation of this study is the application of 
the presented method in the framework of linear 
dynamic systems. 
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