ISSN: 1992-8645

www.jatit.org

A COMPARATIVE STUDY ON MACHINE LEARNING AND DEEP LEARNING METHODS FOR MALWARE DETECTION

ESLAVATH RAVI¹, MUMMADI UPENDRA KUMAR²

¹Research Scholar, Osmania University, Department of CSE, Hyderabad, India ²Professor, Muffakham Jah College of Engineering and Technology, Department of CSE, Hyderabad, India E-mail: ¹eslavathravi@gmail.com, ²upendra.kumar@mjcollege.ac.in

ABSTRACT

The advent of Artificial Intelligence (AI) and data science with Machine Learning (ML) and deep learning techniques has paved way for solving many real world problems. Malware detection is one such problem that is solved with AI based solutions. Malicious code that comes through genuine software components or through storage media and networks is termed as malware. This paper has made a reviews of literature for ascertaining the current academic thinking and the methods being used or methods possible to detect malware automatically. The study in this paper is divided into three categories known as ML methods for malware detection, deep learning methods for malware detection and optimization methods for improving malware prediction performance. Each category is summarized to have most useful insights. It covers malware research with various datasets available including Android apps based datasets. It has brief discussion on ML and deep learning methods along with their methodology. The insights of this paper provide good understanding on different methods existing, their approach, datasets collected and used besides evaluation metrics. These insights along with the proposed framework and experimental results can trigger further research with specific possibilities in future. Since the dataset utilized in this paper has more number of attributes the survey has identified that deep learning based approaches has more efficiency rather than the ML approaches. The integration of deep learning approaches with optimization techniques has enhanced the utilization of resources.

Keywords: Malicious Code Detection, Malware Detection, Machine Learning, Deep Learning, Malware Detection Optimization

1. INTRODUCTION

With the evolution of fast app development many untrusted sources are releasing their apps similar to real apps. It is difficult to identify the difference between real and clone apps. Clone apps attack or controls the personal information in the mobile with the help of malware virus.

Malware is the term which indicates some sort of malicious piece of software that causes damage to computers, network and communication systems. It is written for disruption of computing infrastructure and deny users of services. Malware causes many issues such as system crash, down of network, server may be down, reduce speed of Operating System (OS), loss of disk space and even disruption of an important software causing services come to a halt. Given the proliferation of malware on the Internet, malware detection is essential since it serves as a computer's early warning system for malware and cyberattacks. It stops hackers from accessing the computer and guards against data breaches. The process of checking a computer and its contents for malware is known as malware detection. Because it uses a variety of methods and techniques, it is efficient at identifying malware. It's a two-way process; in fact, it's rather complicated. The great news is that malware identification and uninstallation only take a few minutes.

The learning approaches scan the attributes of the training dataset and analyze them to check its characteristics. The dataset contains

<u>31st October 2022. Vol.100. No 20</u> © 2022 Little Lion Scientific

ISSN: 1992-8645	www.	jatit.org E-ISSN: 1817-3195
vital information about the source of	the server, its	M.U. et al. [46] proposed Dependable Solu-tions
complete domain listing, trust issues	with apk, and	Design by Agile Modeled Layered Security
much other information. For the efficiency	cient working	Architectures. Shravani, D. et al. [47] proposed
of the model, learning algorithms ca	an utilize the	Designing Dependable Web Services Security
optimality principle to reduce the	e number of	Architecture Solutions. Krishna Prasad, A.V. et al.
attributes and can enhance the	execution of	[48] proposed Designing Dependable Business
algorithms.		Intelligence Solutions Using Agile Web Services

With the advent of AI based techniques associated with data science, it is now possible to predict malware and prevent its adverse effects. As explored in [1], [2], [3], [4], to specify few researches, there has been ML methods that are able to learn from historical events and monitor malicious events and detect presence of malware. In the same fashion, as discussed in [11], [12], [13], to mention few, there have been different methods that are associated with deep learning. There are certain optimization methods that use some sort of evolutionary methods used to optimize prediction performance. Chaung and Wang [2] proposed a hybrid fusion model using fusion logic that combines both normal and malicious behavioral models based on machine learning. Their model performance better than the existing models like SVM but suffers from data imbalance problem.

The research carried out in this paper has witnessed tremendous possibilities in terms of detecting malware and make intelligent response systems. Kakavand et al. [8] applied SVM and KNN for detecting malware and training is given based on the manifest keywords. Dynamic approach and hybrid malware detection approach is missing in their models. Lopes et al. [9] focused on mobile malware and investigated on different ML approaches including permissions based, API calls based, permissions and used features based and permissions and API calls-based ones. It has problem with small data sets and data imbalance problem. Wang et al. [13] proposed a deep learning framework known as Droid Deep Learner for Android malware detection. Their method analyzes Java source code and also manifest files for obtaining API function calls and permissions in order to get all features from Android apps. Chander, N.et al. [45] proposed Metaheuristic feature selection with deep learning enabled cascaded recurrent neural network for anomaly detection in Industrial IoT Environment. Kumar,

v d V 1. s S Mining Architectures, Mahalakshmi et al. [49] proposed Automatic Water Level Detection Using IoT.

Then these features are subjected to deep learning to detect presence of malware. From the literature, it is understood that the possibilities to control malware towards cyber security is very affirmative. It has given sufficient hypotheses to look into this research further. The Artificial Intelligence (AI) based methods in terms of ML and deep learning techniques paved way for improving prediction performance. In this regard, it is very significant to explore such methods for efficient malware detection. This paper's contributions are:

- 1. An academic investigation into the present state of the art on ML and deep learning methods for automatic malware detection.
- Model have provided summary of findings 2. associated with ML methods, deep methods learning and optimization approaches.
- 3. Model also provide possible research gaps.

The remainder of the paper is structured as follows. Section 2 reviews literature on different ML approaches for malware detection. In the same fashion, Section 3 reviews existing methods of deep learning for malware detection automatically. Section 4 on the hand focuses on the optimization methods including evolutionary approaches to improve prediction performance. Section 5 presents the research gaps that could trigger further research. Section 6 draws conclusions.

2. MACHINE LEARNING FOR MALWARE DETECTION

Machine learning techniques are widely used for malware detection. In order to foresee or make judgments without being explicitly told to, machine learning algorithms create a model using

31st October 2022. Vol.100. No 20 © 2022 Little Lion Scientific

.

sample data, often known as training examples. Numerous techniques employ machine learning methodologies. Without explicit instructions, machine learning programmes can complete tasks. To learn how to perform particular tasks, computers use the data that is readily available. It is feasible to create algorithms that teach a machine how to complete all the steps required to solve the problem at hand for simple tasks; the machine doesn't need to learn how to do these things. A machine learning system uses the prediction models it has created from historical data to anticipate the result when it gets new data. How well the output is predicted depends on the amount of information employed; a larger data collection makes it simpler to build a model that forecasts the result more precisely. supervised learning, unsupervised learning, and reinforcement learning are the three different forms of machine learning.

ISSN: 1992-8645

Mahindru and Singh [1] investigated on Android malware detection using ML approaches. They extracted 123 permissions from Android applications used Random Forest (RF), Decision Tree (DT) and Naïve Bayes (NB). Their approach is to collect features from. APK files and train ML classifiers to detect malicious apps. Homodelver, the dataset can be updated with new apps so as to improve performance. Chaung and Wang [2] proposed a hybrid fusion model using fusion logic that combines both normal and malicious behavioral models based on machine learning. Their model performance better than the existing models like SVM but suffers from data imbalance problem. Liu et al. [3] made a review of several approaches found in the literature for malware detection. They contributed in the reliability estimation of different models for a comparative study. Lou et al. [4] defined a model where sensitive data flows and topics are used with ML for Android malware detection. Homodelver, their method needs further improvement with extraction of dynamic information flows. Ma et al. [5] proposed a hybrid model that combines control flow graphs and ML techniques along with LSTM to detect Android malware. Homodelver, finding malicious API position in code and finding category of malwares are yet to be explored.

E-ISSN: 1817-3195 www.jatit.org Zhao et al. [6] investigated on the samples used for malware detection in Android apps. They studied the issues associated with sample duplication and identified duplication types in order to handle them modelll in the empirical study. Jung et al. [7] used ML techniques like SVM and useful API calls to discover Android malware. They intended to combine SVM and Artificial Neural Network (ANN) in future for better performance.Kakavand et al. [8] applied SVM and KNN for detecting malware and training is given based on the manifest keywords. Dynamic approach and hybrid malware detection approach is missing in their models. Lopes et al. [9] focused on mobile malware and investigated on different ML approaches including permissions based, API calls based, permissions and used features based and permissions and API calls based ones. It has problem with small data sets and data imbalance problem.

Gavrilut et al. [24] used ML approaches for detection of malware. In the process, they investigated on the tradeoff betmodelen model accuracy and memory footprint. Takawale and Thakur [25] proposed a methodology based on ML techniques. It includes extracting permissions from Android apps, feature extraction, model building and model evaluation. Homodelver, their research needs further improvement with larger datasets. Data is collected by gaining permission to access "Canadian Institute of cyber security's datasets". Bayazit et al. [26] explored different methodologies based on ML approaches towards malware detection. Kosmidis et al. [27] a methodology for feature engineering and modeling a classifier towards malware detection. The malware binary data is converted to 8-bit vectors and it is converted grayscale image in order to perform malware detection process further. Different ML approaches are employed with comparative study. Ali et al. [30] investigated on Android apps and the malware problem with different kinds of methods.

Arvind Mahindru *et al.*[41] have proposed an MLDroid framework to detect malware in Android devices using four distinct machine learning techniques. In the model to detect malware, different phrases have been chosen. Initially, upload the .apk package and extract the permissions from the device, carried by feature

Journal of Theoretical and Applied Information Technology <u>31st October 2022. Vol.100. No 20</u> © 2022 Little Lion Scientific

					2022 Little	Lion Selei	lille				JATIT
ISSN:	1992-8645				www	.jatit.org			Е	-ISSN: 1	817-3195
Multi- weight benigr malwa upload	on. Xinnin dimensiona t-based det a apps. To are affected ls the data.	l kernel ection, id identify or not, the	feature entifying whether e kernel	and f malwa the de feature	featured are and evice is initially			ues and LSTM		Accur acy and F1- score	API positio n in code and findin g catego
Table	1: Summary	of importan malware de		roaches	used for						ry of
S. No & Auth or	Journal, Year & Ref	Method	Datas ets/ Tools	Metri cs	Draw backs						malwa res are yet to be explor
1. Mahi ndra and Singh	ACM, 2017 [1]	Machin e Learnin g with RF, DT and NB (applica tion is specific to Android malwar e)	Dyna mic Permi ssion Datase t	Precis ion, Recal l, Accur acy and F1- score	Needs to consid er more recent apps in the dataset	5. Arvin d Mahi ndru <i>et al</i>	Neural Computin g and Applicatio ns 2020[41]	MLDroi d- framew ork	Virus Total datase t	Accur acy, F- meas ure	ed. soft compu ting model s to attain better detecti on
2. Chua ng and Wan g	IEEE, 2015 [2]	Hybrid method ology that fuses normal and malicio us behavio ral	Andro id .APK files datase ts	Precis ion, Recal l and Accur acy	Data imbala nce needs to be taken care of.	6. Xinn ing Wan g et al	Neuroco mputing 2021[42]	Kernal feature- based framew ork and WBD	Malw are& Benig n datase t	TPR, TNR, Accu racy	rate for malwa re the issue of overfit ting
3. Lou <i>et al</i> .	IEEE, 2019 [4]	models Sensitiv e data flows and topics are used with ML for Android malwar e detectio n	Derbi n datase t.	TP, TN and Accur acy	Extrac tion of dynam ic inform ation flows is still desire d.	approa divers 3. D Deep proces accura metho multi-	ETECTIO learning m as and esta ley in predi dology for model n	in the lite arious app ARNING N odels do sentially ction. Kin Android r eural n	rature. T roaches. FOR have de meant n <i>et al.</i> [malware net ap	MAL MAL pth in 1 for im [11] proj detectio proach	wARE earning proving posed a n using with
4. Ma <i>et al</i> .	IEEE, 2019 [5]	A hybrid of ML techniq	droZo o and AMD	Precis ion, Recal l,	Findin g malici ous	benefi Homo	entative fe ts of mu delver, in t on is still de	ıltiple de heir work	eep neu a, the dy	iral ne mamic i	tworks. features

31st October 2022. Vol.100. No 20 © 2022 Little Lion Scientific

on the prediction based on Linux kernel system call graphs using deep learning based autoencoders that contain encoding and decoding procedures in order to find anomalies. In their method, random event generation in component traversal method is yet to be done. Wang et al. [13] defined a framework known as DroidDeepLearner for Android malware detection. Their method analyzes Java source code and also manifest files for obtaining API function calls and permissions in order to get all features from Android apps. Then these features are subjected to deep learning to detect presence of malware. In future, they intended to employ fuzzy association rule mining on the feature set. Li Dongfang et al. [14] proposed a fine-grained deep neural network approach towards Android malware detection. Homodelver, their method does not collect dvnamic features from Android applications. Su et al. [15] explored on Android apps dataset collected from VirusTotal with feature extraction, feature learning and deep learning. Homodelver, their deep learning method needs further improvement for better performance.

ISSN: 1992-8645

Zegzhda et al. [16] explored different methods in deep learning along with observation of sequence of API calls to detect Android malware. Zero pixel padding in their method causes more overhead to the system. Sahbadiya et al. [17] used deep learning model for automatic feature extraction and make decisions on the malware presence and also the family of malware. They intended to improved their model to detect malware in Android apps even before they are installed. Zhu et al. [19] focused on the sensitive data usage of Android apps illegally. They proposed a deep learning based method for detecting it. It has feature extraction and feature granularity determination for improving performance. Sandeep [21] used static analysis of Android apps using deep learning for detecting presence of malware. Different activation functions and optimizers are used for performance evaluation. He and Kim [32] created malware images and used CNN based deep learning approach for malware detection. CNN based deep learning models with malware images are used for empirical study [40]. Homodelver, to be effective in their research, more pre-trained models are to be evaluated. Karbab et al. [33] proposed a methodology deep learning

www.jatit.org E-ISSN: 1817-3195 call based neural network for automatic detection of that malware. It has novelty in using many sources of der data for more efficient feature extraction. The that datasets used are Malgenome dataset, Drebin t to dataset, Google Play and MalDozer dataset.

> Hardy et al. [34] exploited deep learning technique with optimizations. Their method takes Portable Executable (PE) files and obtains API calls that are used to train deep autoencoders. The deep autoencoder with encoding and decoding procedures is crucial for detection of abnormalities and identify malware presence eventually. Alzaylaee et al. [35] proposed a methodology with dynamic analysis from phone devices, feature ranking and deep learning for classification. Zhong and Gu et al. [37] proposed a multi-level approach in deep learning for malware detection. They used a tree structure to combine many deep learning models for improving performance. Ye et al. [38] proposed deep learning framework for malware detection. Their method combines both Boltzmann mechanics and deep stacked autoencoder. PI files are taken as inputs and Windows API calls are used for training the system. Different feature representations and modeling is intended for their future endeavor. Yuxin and Siyi et al. [39] used deep belief networks (DBNs) for detection of malware. PE files are used for feature extraction and then the deep model is trained with extracted features. They intend to find tradeoff betmodelen unlabeled data size and performance.

> Nan Zhang et al.[43] discovered a deep learning method to analyze malware-affected devices as known feature selection is the most commonly used technique for retrieving data. By overcoming the feature here, the author used NLP to recognize text. Avowed the processes initially data should be generated then the reverse engineering comes to phrase to provide an integrated document. These documents are trained to text, and the data is distributed as effect and unaffected files. It needs to be compared to know whether the algorithm has achieved the best result. Therefore, the classification of various techniques is not better than the proposed algorithm. By avoiding feature selection, it is easy to auto-detection. Here the algorithm considers only text formatted data.

> Table 2: Summary of important deep learning basedmalware detection approaches

Journal of Theoretical and Applied Information Technology <u>31st October 2022. Vol.100. No 20</u> © 2022 Little Lion Scientific

ISSN:	1992-8645				www	.jatit.org			E	-ISSN: 1	817-3195	
S. No & Auth or	Journal , Year & Ref	Metho dology	Datasets/ Tools	Metr ics	Drawb acks	and Kim	2019 [32]	based deep learnin g models	collected from Andro- dumpsys project of	and FPR	pre- trained models are to be	
1. Kim et al.	IEEE, 2018 [11]	Multi- model neural net approac h with represe ntative feature selectio n	Virus Share and Malgeno me project	Accu racy	Dynam ic feature s additio n is still desired	6. Karb ab <i>et</i>	Elsevier (Digital Investig ation), 2018	with malwar e images Deep learnin g based neural networ k for automat	Korea Universit y Malgeno me dataset, Drebin dataset, Google	Preci sion, Recal l, Accu racy	evaluat ed. Pre- trained deep learnin g models	
		Predicti on is based	Android malware dataset is		Rando m event generat ion in	m event generat	al.	2018 [33]	ic detectio n of malwar e	Play and MalDoze r dataset	and F1- score	needs to be exploit ed.
2. Hou <i>et al</i> .	IEEE, 2016 [12]	on call graphs of Linux kernel system	collected from Comodo Cloud Security Center	Accu racy	compo nent travers al method is yet to be done.	7. Hard y et al.	Data Mining, CSREA [34]	Deep learnin g for PE based API calls extracti on and	Dataset is provided by Comodo Cloud Security Center	TPR and FPR	Autoen coder with sparsit y constra ints is yet to	
3. Su et al.	IEEE, 2016 [15]	Feature extracti on, feature learnin g and deep learnin g	Dataset is collected from VirusTot al	Preci sion, Recal l, F1- score and overa ll accur acy	Deep learnin g method needs further improv ement for better perfor mance.	8. Alza ylace <i>et al.</i>	Comput er and Securit y, Elsevier	modeli ng Dynami c analysis from phone devices, feature ranking and	McAfee Labs dataset	Preci sion, Recal l, Accu racy and	be explore Self- adaptat ion kind of IDS is expect ed to	
4. Feng et al.	IEEE, 2020 [18]	Used CNN and autoenc oder with two- layer deep learnin g approac h	CICAnd Mal2017 and Virus Total	Preci sion, Recal l and Accu racy	The two levels of detecti on work is to be integra ted for leverag ing perfor mance	9. Xiao <i>et al.</i>	[35] Hindaw i [10]	deep learnin g for classifi cation A novel approac h "behavi or- based deep learnin g framew	VX Heaven for malware samples and Cuckoo Sandbox for benign	Preci score Preci sion, Recal l, Accu racy and F1- score	ed to be done SAE along with other deep learnin g models are yet to be	

31st October 2022. Vol.100. No 20 © 2022 Little Lion Scientific

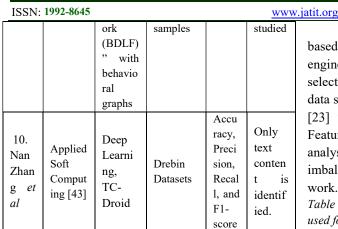


Table 2 shows the summary of important deep learning approaches found in the literature. The methods are diversified with various kinds of modus operandi towards efficient detection of malware.

4. OPTIMIZATION TECHNIQUES FOR MALWARE DETECTION

Optimization algorithms and evolutionary methods are widely used along with ML and deep learning models for performance improvement in detection process. The optimization technique is a potent instrument for obtaining the ideal operating circumstances and the required design parameters. This would serve as a guide for the experimental work and lower the risk and operating costs. Finding the decision variable values that optimize one or more intended objectives is referred to as optimization. The design of objective functions and the choice of optimization techniques determine the dependability of optimal solutions. A numerical method that explains and forecasts the behavior of the process is necessary for optimization. Optimization search may be used to estimate independent variables in complicated non-linear processes. Dynamic processes' uncertainty variables might be identified using robust optimization. Designing multiphase reactors and flow systems and scaling up methodologies could both benefit from optimization. Manufacturing and engineering operations won't be as effective as they are currently without optimization of design and operations.

E-ISSN: 1817-3195Fatima et al. [22] proposed a deep learningbased methodology focusing on APK reverseengineering, Genetic Algorithm (GA) for featureselection with discrimination capability. Limiteddata size is the limitation of their work. Irshad et al.[23] focused on feature optimization using GA.Feature optimization is made for efficient runtimeanalysis using GA. Limited dataset and dataimbalance problems are yet to be resolved in theirwork.

Table 3: Summary of important optimization approaches
used for malware detection

S. No	Journ	e detection			
&	al,	Method	Dataset	Metri	Drawba
Auth	Year	ology	s/ Tools	cs	cks
or	& Ref				
1, Fatim a <i>et</i> <i>al.</i>	IEEE, 2019 [22]	APK reverse engineer ing, Genetic Algorith m (GA) for feature selectio n with discrimi nation capabilit y	Android apps dataset collecte d from C3i Center of IIT Kanpur	Sensiti vity, specifi city, ROC and AUC	Limited dataset size.
2. Irsha d <i>et</i> <i>al.</i>	IEEE, 2019 [23]	Feature optimiz ation is made for efficient runtime analysis using GA.	Dataset is collecte d from Android apps in window s and AV-Test Engine antivirus	Sensiti vity, specifi city, accura cy and AUC	Limited dataset and data imbalan ce problem
3.Raz ak et al.	Arab J Sci Eng, Sprin ger [29]	Bio inspired methods to optimiz e features to improve predicti on perform	Drebin dataset and Google Play	Precisi on, Recall , Accur acy and F1- score	Still more training samples are desired for leveragi ng perform ance

<u>31st October 2022. Vol.100. No 20</u> © 2022 Little Lion Scientific

ISSN: 1992-8645							
		ance					
4.Cai et al.	Comp uters & Securi ty, Elsevi er [31]	Joint optimiz ation and feature modelig hting and modelig ht- mappin g	Drebin, AMD, Google Play and APKPur e.com	Precisi on, Recall , Accur acy and F1- score	Correlat ion betmod elen features is required for further improve ment.		
5. Yang et al.	IEEE, 2019 [36]	CNN model with optimiz ations	Google play and AMD dataset	Precisi on, Recall , Accur acy and F1- score	Extra features and control flows are to be incorpo rated.		
6. Christ iana <i>et al</i> .	iJIM, 2020 [40]	Ensemb le learning based optimiz ation	Android malware dataset	Sensiti vity, specifi city, precisi on, recall, F- measu re and ROC.	Need further optimiz ation with appropr iate bio- inspired method.		

Table 3 shows the summary of important optimization approaches. The methods are having different kinds of optimizations towards efficient detection of malware.

5. RESEARCH GAPS

The existing researches found in the literature, there have been rich set of methods that used ML approaches with different datasets and different methodologies. An important problem found is that there is need for more recent apps in the dataset as explored in [1]. It is also important to see that there is balance in the data. Imbalanced data [2] is a problem while dealing with supervised learning. As discussed in [3], it is important to extraction of dynamic information flows or topics or permissions associated with mobile apps is to be considered. In case of deep learning methods also it is understood that dynamic features addition is essential [11]. As discussed in [18], [32] and [33] it

is understood that there is still need for improving deep learning methods such as integration of underlying mechanisms, usage of more pre-trained models and usage of autoencoders with hybrid models. In essence, it is understood that there is need for further research on the ML and deep learning methods for detecting Android malware. There is also a need for exploiting optimization approaches to leverage predictive performance.

From the literature review, it is ascertained that efficient and timely detection of malware is an important problem considered. Therefore, automatic detection of malware is a challenging problem considered.

With these research gaps, the paper has formulated the problem statement as follows: The proposed model should design an efficient dimensionality reduction technique using optimization techniques. The model needs to reduce the execution time as well as resources so instead of traditional approaches it has to choose blending or stacking techniques which predicts the class labels with majority voting. The model needs to design a counter attack for the malware detected apps.

6. PROPOSED FRAMEWORK AND RESULTS

The important hypothesis considered from the review of literature is that "ML and deep learning methods have the capability to improve efficiency in malware detection". The preliminary solution is provided in this paper in the form of a framework that enabled malware detection to be done with several ML models and CNN with deep learning.

6.1 The Framework

The proposed framework is based on the supervised learning. It is presented in Figure 1. Drebin dataset [50] is used for empirical study. The Drebin dataset includes a text file for each application. All of the application's properties are described in the text file. Each asset falls into one of eight categories (S1 to S8). The frequency with which each category appears in the text file can therefore be used as a feature vector for such application. A feature vector for one application be 1-12-0-3-5-67-9-4, might for instance. Therefore, the S1 category appears once, the S2 category twelve times, and so forth. The DREBIN collection comprises up to 545,333

31st October 2022. Vol.100. No 20 © 2022 Little Lion Scientific

ISSN: 1992-8645
www.jatit.org

behavioral features
and
123,453
large
sample

sizes for
Android
applications,
including
5560

malicious samples.
Image: State State

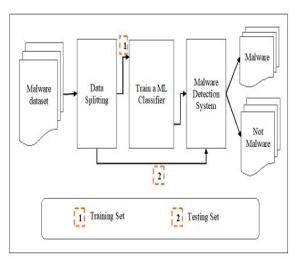
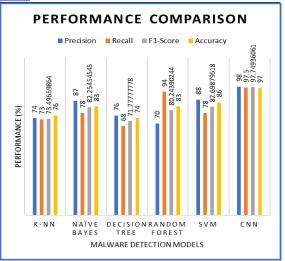



Figure 1: Proposed framework

As presented in Figure 1, the proposed framework splits data into training and testing with 80:20 ratio. Different prediction models are trained to have malware prediction model. After completion of training process, the ML models gain required intelligence to form a malware detection system that takes testing data and performs a malware detection process resulting in the classification of malware samples discriminated from genuine instances. The test data is evaluated to detect malware based on the knowhow of trained model. The prediction models are directly taken from [51] and evaluated the dataset aforementioned.

The Naive Bayes algorithm is a Bayes theorem-based supervised learning technique for classification problems. It often employs a huge training set to categorise texts. The Naive Bayes Classifier is one of the easiest and most effective classifiers currently in use. Making efficient machine learning models that can make precise predictions is made easier by this method. Because it is a probabilistic classifier, it creates an approximation based on the likelihood that an object will show up. Examples of Naive Bayes method applications include spam filtering, sentiment analysis, and article classification.

E-ISSN: 1817-3195

Figure 2: Performance of malware detection models

As presented in Figure 2, the performance of the malware detection models is presented. The highest performance of machine learning models is 86% which is exhibited by SVM. When compared with ML models, the CNN, deep learning model, shomodeld better performance with 97%. When the results of CNN are compared with state of the art, it is observed that the deep learning model used in [21] showed 95.57% accuracy. Based on this observation, CNN used in this paper showed better performance. The existing models utilized traditional approaches with good accuracy but most of them have not diagnosed the bias and variance problems. So, the proposed model utilizes the genetic approaches with dynamic parameter setting model to update the positions in the global spectrum and reduces the dimensions. It also tries to combine activation functions to customize the layers with new functions so that the neurons can travel towards the destination class with more speed and less learning rate.

7. CONCLUSION AND FUTURE WORK

In this paper, the model has made a review of literature for ascertaining the current academic thinking and the methods being used or methods possible to detect malware automatically. The study in this paper is divided into three categories known as ML methods for malware detection, deep learning methods for malware detection and optimization methods for improving malware prediction performance. Each category is summarized to have the most useful insights. It covers malware research with various datasets

31st October 2022. Vol.100. No 20 © 2022 Little Lion Scientific

ISSN: 1992-8645 www.jati available including Android apps based datasets. It has brief discussion on ML and deep learning methods along with their methodology. The insights of this paper provide good understanding on different methods existing, their approach, datasets collected and used besides evaluation metrics. These insights can trigger further research with specific possibilities in future. Particularly, in future, model intend to propose a ML framework for Android malware detection to leverage prediction performance and improve the state of the art. Another direction is to propose more efficient deep learning framework for improving malware detection significantly.

REFERENCES

- [1] Mahindru, Arvind, Singh, Paramvir, "Dynamic Permissions based Android Malware Detection using Machine Learning Techniques" Proceedings of the 10th in Software Innovations Engineering Conference, ACM Press the 10th Innovations in Software Engineering Conference, (India), February 05-07, 2017, pp.202-210.
- [2] Hsin-Yu Chuang and Sheng-De Wang, "Machine learning based hybrid behavior models for Android malware analysis", *IEEE International Conference on Software Quality, Reliability and Security*, 2015.
 - [3] Kaijun, Xu Shengmodeli, Xu Guoai, Zhang, Miao Sun, Damodeli; Liu, Haifeng, "A Review of Android Malware Detection Approaches based on Machine Learning", *IEEE Access*, 2020, pp.1–30.
- [4] Lou Songhao Cheng, Shaoyin Huang, Jingjing Jiang Fan, "TFDroid: Android Malware Detection by Topics and Sensitive Data Flows Using Machine Learning Technique", *IEEE 2nd International Conference on Information and Computer Technologies (ICICT)*,(Kahului, HI, USA), March 14-17, 2019, pp.30–36.
- [5] Ma Zhuo, Ge Haoran, Liu Yang, Zhao Meng, Ma, Jianfeng. "A Combination Method for Android Malware Detection Based on Control Flow Graphs and Machine Learning Algorithms", *IEEE Access*, 2019, pp.1–11.
- [6] Zhao Y, Li L, Wang H, Cai H, Bissyandé, T.F. Klein, J.Grundy, "On the Impact of Sample Duplication in Machine-Learning-

tit.org	E-ISSN: 1817-3195
	Based Android Malware Detection", ACM
	Transactions on Software Engineering and
	<i>Methodology</i> , March -30, 2021, pp.1–38.

- [7] Jung Jaemin, Kim Hyunjin, Shin Dongjin, Lee Myeonggeon, Lee Hyunja, Cho Seongje, Suh Kyoungwon, "Android Malware Detection Based on Useful API Calls and Machine Learning", *IEEE First International Conference on Artificial Intelligence and Knowledge Engineering* (AIKE), (Laguna Hills, CA, USA), September 26-28, 2018, pp.175–178.
 - [8] Kakavand Mohsen, Dabbagh Mohammad, Dehghantanha Ali, "Application of Machine Learning Algorithms for Android Malware Detection", Proceedings of the 2018 International Conference on Computational Intelligence and Intelligent Systems - CIIS (Phuket, Thailand), November 17-19, 2018, pp.32–36.
- [9] Lopes Joao, Serrao Carlos, Nunes Luis, Almeida Ana, Oliveira Joao, "Overview of machine learning methods for Android malware identification", *IEEE 7th International Symposium on Digital Forensics and Security (ISDFS)*,(Barcelos, Portugal), June 10-12, 2019, pp.1–6.
- [10] AeGuen Kim, BooJoong Kang, Mina Rho, Sakir Sezer and Eul Gyu Im. "A Multimodal Deep Learning Method for Android Malware Detection using Various Features", *IEEE* Access, 2017, pp.1-16.
- [11] Kim TaeGuen, Kang Boo Joong, RhoMina, Sezer Sakir, ImEul Gyu, "A Multimodal Deep Learning Method for Android Malware Detection using Various Features", *IEEE Transactions on Information Forensics and Security*, 2018, pp.1–16.
- [12] Hou Shifu, Saas Aaron, Chen Lifei, Ye Yanfang, "Deep4MalDroid: A Deep Learning Framework for Android Malware Detection Based on Linux Kernel System Call Graphs", *IEEE/WIC/ACM International Conference on Modelb Intelligence Workshops (WIW)*, (Omaha, NE, USA), October 13-16, 2016, pp.104–111.
 - [13] Wang Zi, Cai Juecong, Cheng Sihua, Li Modelnjia, "DroidDeepLearner: Identifying Android malware using deep learning", *IEEE 37th Sarnoff Symposium* (Newark, NJ, USA), September 19-21, pp.160–165.
- [14] Li Dongfang, Wang Zhaoguo, Xue Yibo, "Fine-grained Android Malware Detection

ISSN: 1992-8645www.jatit.orgbased on Deep Learning" IEEE Conference
on Communications and Network Security
(CNS), (Beijing, China), May 30 – June 01, [2
2018, pp.1–2.

- [15] Su Xin, Zhang Dafang, Li Modelnjia, Zhao Kai, "A Deep Learning Approach to Android Malware Feature Learning and Detection", *IEEE Trustcom/BigDataSE/ISPA*, (Tianjin, China), August 23-26, 2016, pp.244–251.
- [16] Zegzhda Peter, Zegzhda Dmitry, Pavlenko Evgeny, Ignatev Gleb, "Applying deep learning techniques for Android malware detection", Proceedings of the 11th International Conference on Security of Information and Networks – SIN, ACM Press the 11th International Conference, (Cardiff, United Kingdom), September 10-12, 2018, pp.1–8.
- [17] Sabhadiya Sagar, Barad Jaydeep, Gheewala Jaydeep, "Android Malware Detection using Deep Learning", *IEEE 3rd International Conference on Trends in Electronics and Informatics (ICOEI)*, (Tirunelveli, India), April 23-25, 2019, pp.1254–1260.
- [18] Feng Jiayin, Shen Limin, Chen Zhen, Wang Yuying, Li Hui, "A Two-Layer Deep Learning Method for Android Malware Detection Using Network Traffic", *IEEE* Access, 2020, Vol 8, pp.125786–125796.
- [19] Dali Zhu, Hao Jin, Ying Yang, Wu, Di Modeliyi Chen, "DeepFlow: Deep learningbased malware detection by mining Android application for abnormal usage of sensitive data", *IEEE Symposium on Computers and Communications (ISCC)*, (Heraklion, Greece), July 03-06, 2017, pp.438–443.
 - [20] M. Sujithra, G. Padmavathi, "Enhanced Permission Based Malware Detection in Mobile Devices Using Optimized Random Forest Classifier with PSO-GA", *Sciences, Engineering and Technology*, 2016, Vol. 21 (7), pp. 1-10.
- [21] HR, Sandeep, "Static Analysis of Android Malware Detection using Deep Learning", *IEEE International Conference on Intelligent Computing and Control Systems (ICCS)*, (Madurai, India), May 15-17, 2019, pp.841– 845.
- [22] Fatima Anam, Maurya Ritesh, Dutta Malay Kishore, Burget Radim, Masek Jan, "Android Malware Detection Using Genetic Algorithm based Optimized Feature Selection and Machine Learning", *IEEE* 42nd International Conference on Telecommunications and Signal Processing

- E-ISSN: 1817-3195 (TSP), (Budapest, Hungary), July 01-03, 2019, pp.220–223.
- [23] Irshad Areeba, Maurya Ritesh, Dutta, Malay Kishore, Burget Radim and Uher, Vaclav, "Feature Optimization for Run Time Analysis of Malware in Windows Operating System using Machine Learning Approach", *IEEE 42nd International Conference on Telecommunications and Signal Processing (TSP)*, (Budapest, Hungary), July 01-03, 2019, pp.255–260.
- [24] Gavrilut Dragos Teodor, Anton Dan Gabriel and Popoiu, George, "Machine Learning based Malware Detection. How to Balance Memory Footprint with Model IEEE 19th Accuracy", International on Symbolic and Numeric Symposium Algorithms for Scientific Computing (SYNASC), (Timisoara), September 21-24, 2017, pp.232-238.
- [25] Takawale Harshvardhan C, Thakur Abhishek, "Talos App: On-Device Machine Learning Using TensorFlow to Detect Android Malware", *IEEE 5th International Conference on Internet of Things: Systems, Management and Security (IoTSMS)*, (Valencia, Spain), October 15-18, 2018, pp.250–255.
- Esra [26] Bayazit Calik, Koray Sahingoz, Ozgur and Dogan Buket, "Malware Detection in Android Systems with Traditional Machine Learning Models: Survey", IEEE 2020 International Α Congress on Human-Computer Interaction, **Optimization** and **Robotic** Applications (HORA), (Ankara, Turkey), June 26-28, 2020, pp.1-8.
- [27] Kosmidis, Konstantinos and Kalloniatis, Christos, "Machine Learning and Images for Malware Detection and Classification", *Proceedings of the 21st Pan-Hellenic Conference on Informatics, ACM Press the 21st Pan-Hellenic Conference*, (Larissa, Greece), September 28-30, 2017, pp.1–6.
- [28] Mohd Faizal Ab Razak, Nor Badrul Anuar,Fazidah Othman, Ahmad Firdaus, Firdaus Afifi and Rosli Salleh, "Bio-inspired for Features Optimization and Malware Detection", *Computer Engineering and Computer Science*, 2017, pp.1-17.
- [29] Anam Fatima, Ritesh Maurya, Malay Kishore Dutta, Radim Burget and Jan Masek, "Android Malware Detection Using Genetic Algorithm based Optimized Feature

Journal of Theoretical and Applied Information Technology <u>31st October 2022. Vol.100. No 20</u> © 2022 Links Line Scientific

		22 Little Li				JATIT
ISSN	1992-8645	www.ja	atit.org		E-ISSN: 1	817-3195
	Selection and Machine Learning",	IEEE]	Malware Detection Via En	semble Lea	arning",
	Access, 2019, pp.1-4.			IEEE Access, 2020, Vol. 14		
[30]	Ali Mariam Al, Svetinovic, Davor,				0	A. L.,
	Zeyar and Lukman, Suryani, "Ma			"MLDroid—Framework		Android
	detection in android mobile platform machine learning algorithms", <i>IEEE</i>			malware detection using techniques", Neural		
		ocom		Applications, 2020.	computing	; ипи
		stems		Xinning Wang, & Cho	ng Li, "A	Android
	(Trends and Future Directions) (IC			malware detection through		
	(Dubai, United Arab Emirates), Dece			on kernel task structures",	Neurocon	nputing,
	18-20, 2017, pp.763–768.			<i>2021</i> ,435, pp.126–150		
[31]	Lingru Cai , Yao Li and Zhi X			Nan Zhang, Yu-an Ta		
	"Android Malware Detection Based			Yuanzhang Li, "Deep		
	Feature Modelighting with	Joint		exploration for Android m		
	Optimization of Modelight-Mapping Classifier Parameters", <i>Computers</i>			Applied Soft Computing, 20 Daniel Arp, Michael Spr		
	Security, 2020, pp.1-21.	u		Huebner, Hugo Gascon, a		
[32]	Ke He and Dong Seong Kim, "Ma	lware		"Drebin: Efficient and Exp		
	Detection with Malware Images using			of Android Malware in Y		
	Learning Techniques", IEEE Internal			Annual Network and D		~
	Conference On Trust, Security And Pr	ivacy		Security Symposium (NDSS	· · · · · · · · · · · · · · · · · · ·	•
[22]	In Computing, 2019, pp.1-8	1 1 .		Chander, N., Upend		
[33]	ElMouatez Billah Kabab, Mourad Det			"Metaheuristic feature sel		
	Abdelouahid Derhab and Djedjiga Mo "Automatic framework for android ma			learning enabled cascaded network for anomaly deter		
	detection using deep learning", D			Internet of Things envir		
	Investigation, 2018, pp.48-59.	igitat		Computing, 2022.	, on the second second	ensie
[34]	William Hardy, Lingmodeli Chen,	Shifu		Kumar, M.U., Kumar, D.S	., Rani, B.	P., Rao,
	Hou, Yanfang Ye and Xin Li, "A			K.V., Prasad, A.V.K.,		-
	Learning Framework for Intelligent Ma	lware		"Dependable Solutions I		
50	Detection", <i>Data Mining</i> , 2016, pp.1-7.	17		Modeled Layered Securit		
[3	5] Mohammed K. Alzaylaeea, Suleima Yerimab and Sakir Sezerc, "Deep Lea			Advances in Computer Information Technology.		
	Based Android Malware Detection			Communications. CCSIT		
	Real Devices", Computers & Security,	-		Notes of the Institute for C		
	pp.1-28.			Social Informatics and Te		
[36]	Shao Yang, "An Image-inspired and (CNN-		Engineering, 2012 vol 84.		
	based Android Malware Dete	ection		Heidelberg.		
	Approach", IEEE Access, 2019, pp.1-3.			Shravani, D., Suresh Var		
[37]	Modeli Zhong, Feng Gu. "A Multi-			Rani, B., Upendra Kumar,		
	Deep Learning System for Ma			sad, A.V. "Designing l Services Security Archite		
	Detection", <i>Accepted Manuscript</i> , pp.1-40.	2019,		Ad-vances in Network		
[38]	Yanfang Ye, Lingmodeli Chen, Shifu	Ноц		Applications. CNSA 2011.		~
L ⁰ 0.	William Hardy and Xin Li, "DeepA			in Com-puter and Information		
	heterogeneous deep learning framewor			vol 196. Springer, Berlin, H		
	intelligent malware detection", Spri			Krishna Prasad, A.V.,		
	Knowl Inf Syst, 2017, pp.1-21.			Padmaja Rani, B., Uper		
[39]	Ding Yuxin and Zhu Siyi, "Ma			Shravani, D, "Design		endable
	detection based on deep learning algori			Business Intelligence Solu		
	Springer Neural Comput & Applic., pp. 1-12	2017,		Web Services Mining Information Technology		ctures", <i>Mobile</i>
[40]	Abikoye Oluwakemi Christiana, Ben	iamin			, and 1IM	2011.
[10]		droid			<i>Computer</i>	
					1	

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org Information Science, 2011 vol 147. Springer, Berlin, Heidelberg.

- [49] Mahalakshmi, C.V.S.S., Mridula, B., Shravani, D, "Automatic Water Level Detection Using IoT", Advances in Decision Sciences, Image Processing, Security and Computer Vi-sion. Learning and Analytics in Intelligent Systems, 2020, vol 4. Springer, Cham.
- [50] Drebin Dataset. Retrieved from https://github.com/chamarh/drebin_dataset
- [51] Scikit-Learn, Machine Learning Library. Retrieved from https://scikitlearn.org/stable/index.html