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ABSTRACT 

 
Presently, the data traffic is increasing for video conferencing, online education, gaming and watching 
videos on Netflix, Amazon Prime, YouTube and other OTT platforms. And, the service users are always 
demanding high definition and high-quality video facilities day by day. However, in order to transmit 
video data across the Internet's constrained bandwidth effectively, video compression is a necessary task. 
In last few decades, various video compression algorithms, such as non-learning and learning were 
standardized. But still some improvements are needed for effective video related services. We propose a 
deep learning based Deep Recurrent Auto Encoders (DRAE) approach which contain various modules for 
implementing an efficient video compression technique. The experimental outcome shows our model 
achieves state-of-the-art learned video compression performance in terms of both PSNR and MS-SSIM. 
Keywords: Video, Compression, Deep Neural Networks, Recurrent Auto Encoders. 
 
 
1. INTRODUCTION          
 
          
Nowadays, video content contributes to more 
than 80% internet traffic, and the percentage is 
expected to increase even further. Therefore, it is 
critical to build an efficient video compression 
system and generate higher quality frames at 
given bandwidth budget. 
Modern digital video looks as impressive as it 
does is because of the sheer amount of 
information digital cameras can capture. This 
informational data is what creates the crisp 
details and vivid saturation of modern video. The 
problem is that it takes a ton of data to capture 
these beautiful videos. So much data that you 
may find your computers and hard drives filling 
up quickly due to the hefty storage demands of 
your video, not to mention the extremely long 
wait times for uploading or sharing these videos 
to online platforms. Luckily, compression offers 
the solution of taking the vast amounts of data 
that cameras generate and interpreting it in a way 

that is more efficient, creating new files that are 
only a fraction of the file size! The only way 
you’ll be able to share, upload, stream and store 
all of your great video content with any 
regularity is by compressing it. The trick is to 
know “good” compression from “bad” 
compression. The objective of “good” 
compression is to minimize the file size as much 
as possible with the least amount of image 
quality reduction by removing things like 
redundant or non-functional data from your 
video file. 
Internet traffic has recently been dominated by 
video-related applications including video on 
demand (VOD), live streaming, and ultra-low 
latency real-time communications.  
Due to the ever-increasing demands for 
resolution ([1] and [2]), and fidelity, more 
effective video compression is required for 
content transmission and storage, and therefore 
for successful implementation of networked 
video services ([3], [4]). Video compression 
systems develop suitable techniques to reduce 
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end-to-end reconstruction distortion within a 
specific bit rate budget. In the conventional 
sense, this is a rate-distortion (R-D) optimization 
problem. An abundance of well-liked standards 
and recommendation specifications (e.g., 
ISO/IEC MPEG series [5]– [7], ITU-T H.26x 
series [8]– [11], AVS series [12]) were produced 
as a result of the majority of previous effort 
being focused on development and 
standardization of video coding tools for 
optimized R–D performance. These tools include 
intra prediction/inter prediction, transform, and 
entropy coding. All of these standards have been 
widely adopted in market, allowing 
organizations and consumers to access 
innovative and high-performing services. They 
are now widely utilized for telemedicine, 
distance learning, video conferencing, 
broadcasting, e-commerce, online gaming, and 
short-form video platforms, covering all major 
video situations from VOD to live streaming to 
ultralow latency interactive real-time 
communications. Convolutional and recurrent 
neural networks may be used by traditional 
codecs, particularly those that utilize deep neural 
networks, as part of proposed strategy to 
improve their performance. 
Researchers working on these fields can use our 
DRAE model as a key point for their future 
research.  
 
2. RELATED WORK 
 
In [13,14,15,16], The proposed learning-based 
end-to-end deep video compression scheme 
outperforms h.264 [17] and h.265 [18] in 
experimental testing, because it consists of the 
different modules optical flow net, motion vector 
encoder-decoder net, motion compensation net, 
and residual encoder-decoder net. 
In [19], propose a two-step recurrent learning 
video compression (RLVC) model. Utilizing a 
recurrent auto encoder model in the first phase 
will allow you to take advantage of temporal 
correlation between the vast arrays of video 
frames. The second stage involves repeatedly 
estimating the temporally conditional probability 
mass function of latent representations using a 
recurrent probability model. To assess 
performance of proposed model against currently 
used learnt video compression models and to 
confirm the efficiency of each recurrent 
component in their framework, improved 
experiment results should then be obtained. 

In [20], suggest a three-hierarchical-layer, a 
hierarchical-quality, and a recurrent-
enhancement learning video compression 
technique. All frames are compressed in top 
layer utilizing the best image compression 
technique. For further, high-quality compression, 
use a bi-directional deep compression network at 
second layer. The least efficient additional 
compression will be achieved in the third layer 
by using a single motion deep motion 
compression network. Create a weighted 
recurrent enhancement network from the decoder 
side with inputs for compressed frames, bitrate 
data, and quality data for multi-frame 
enhancement. The HLVC model was shown to 
be effective through experiments. 
In [21], to eliminate perceptual redundancy in 
HD video and improve video quality while also 
speeding up video encoding, we offer a unique 
saliency-based HD video compression technique 
that is on top of HEVC video compression 
standard. Additionally, an enhanced video - 
saliency - model is proposed, which utilizes 
different deep learning techniques to obtain 
superior performance. 
In [22], propose, perceptual quality of final 
reconstructed information can be greatly 
improved over [23]. 
In [24], A learning-based video compression 
model is proposed and is used for inter frame 
coding. A motion predictor-net is used to 
anticipate motion vectors for the target frame and 
to deliver the differential motion vectors while 
reducing the transmitted motion information. 
Additionally, a refine-net working with the 
residual codec was built. The evaluation findings 
show that this model is quite competitive in 
terms of coding performance when compared to 
existing learning-based video codecs. 
In [25], To suggest a feature-space video coding 
network, perform the operations motion-
estimation, motion-compression, motion 
compensation, and residual-compression in 
feature space (FVC). According to experimental 
findings, this framework performs at the cutting 
edge on four datasets, which are HEVC, UVG, 
VTL, and MCL-JCV. 
In [26], propose Deep-coder based video 
compression framework. For predictive and 
residual signals, we use different CNN nets. The 
quantized feature maps (fMaps) are encoded into 
a binary stream using scalar quantization and 
Huffman coding. In this study, we employ the 
fixed 32x32 block to illustrate our ideas, and 
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compare results to well-known H.264/AVC 
video coding standard. 
In [27], a technique for video compression that 
performs better than H.264/AVC video coding. 
The proposed neural network architecture is 
composed of multiple layers and is split into two 
parts: an encoder and a decoder. In order to be 
used as any other compression encoding and 
decoding modules, encoder and decoder are 
separated during testing. The two components of 
the model are trained simultaneously. The entire 
model was created to attempt and take advantage 
of spatial and temporal relationships between 
video frames.       In [28], the idea of the Pixel 
Motion CNN (PMCNN), which incorporates 
hybrid prediction networks and motion 
extension. In order to efficiently perform 
predictive coding within the learning network, 
PMCNN can simulate spatiotemporal coherence. 
Results from experiments show how effective 
the suggested plan is. Despite not using entropy 
coding or complicated settings, we nonetheless 
demonstrate better performance than MPEG-2 
and H.264 codec. 
In [29], various methods of video compression 
were discussed, and deep learning techniques 
were used to advance the subject of research. In 
[30], Standard deep learning algorithms for video 

compression are still required. In [31,33], 
discussed the utilization, advantages and 
limitations of neural network models.  
 
3. PROPOSED METHODOLOGY: 
 
 
The main objectives of our proposed DRAE are: 
To lessen the amount of storage the video takes 
up. 
To decrease the amount of time that video 
transfers take. 
To improve the compression ratio and thus video 
quality. 
And, the proposed DRAE approach is mainly 
compared with our previous DCNN [32] 
approach. For motion estimation & motion 
compensation, we use same procedure in [32] 
and for motion compression & residual 
compression, we develop motion compression 
recurrent encoder – decoder and residual encoder 
– decoder, shown in Fig: 1. The proposed DRAE 
approach getting better results than compared 
with our previous DCNN [data2 - 32] approach 
and other data 1[19] approach which are shown 
in results section. The following notations are 
used in our proposed DRAE approach. 
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Fig _1: Our Proposed Deep Recurrent Auto Encoder (DRAE) Approach 
 
 

Table_1: Corresponding Variable Names And 
Notations Used In Our Proposed Approach. 

 
Similarly, this section provides an overview of 
our Deep Recurrent Auto Encoders (DRAE) 
approach, which is seen in Fig: 1.   
Similar to that, we employ a few notations for 
this implementation, and each notation's 
definition is shown in Table 1. And the 
following is a description of each module in our 
suggested strategy.  
 
3.1  Motion Estimation: 
 
We employ the motion estimation network, 
which Tensor Flow built based on a PyTorch 
implementation of pyramid network [32], to 
calculate motion data between current frame and 
previous compressed frame. We employ 5-level 
pyramid network and adhere to the parameters 
outlined in [32]. Five convolutional layers in 
each level, each having a 7x7 kernel and 
corresponding filter numbers of 32, 64, 32, 16, 
and 2. The estimated motion Vt is produced by 
the optical flow estimation network, as shown in 
Fig: 1. 
3.2  Motion Compression: 
 
In this, the proposed DRAE, which is depicted in 
the following Fig: 2, compresses the estimated 
motion. Recurrent cells are present in both the 

encoder and decoder of the proposed DRAE. 
Similarly, Fig: 2 provide an illustration of the 
DRAE network's architecture. In the DRAE 
encoder, we employ four convolutional layers 
with a 2 x down sampling and a GDN activation 
function. We place a ConvLSTM cell in the 
center of the four convolutional layers to create 
the recurrent structure. As a result, the 
ConvLSTM's hidden states allow information 
from earlier frames to flow into encoder network 
of current frame. In light of both current and past 
inputs, the suggested DRAE creates latent 
representation. The recurrent decoder in the 
DRAE also features a ConvLSTM cell in the 
center of the four 2 x up-sampling convolutional 
layers with IGDN, and as a result, it reconstructs 
Ft using both the most recent and earlier latent 
representations. Our DRAE approach may utilize 
the information in a wide range of frames since 
all prior frames can be thought of as reference 
frames for compressing present frame. 
 
3.3  Motion Compensation: 
 
In this case, reference frame is initially warped 
by compressed motion before being fed as inputs 
to the motion compensation network to produce 
the motion-corrected frame. The motion 
compensation network of our method is depicted 
in Fig. 3, where each layer has a 3-by-3 filter. 
Each layer's filter number is set to 64, with the 
exception of the final layer, whose filter number 
is 3. ↑ 2 and ↓ 2 indicate up- and down-sampling 
with the stride of 2, respectively, and ⊕ denotes 
the element-wise addition. 
 
3.4  Residual Compression: 
The difference between current raw frame and 
corrected reference frame following motion 
compensation is the residual. We compress 
residual in our DRAE using the same technique 
as the motion compression in fig 2. The sole 
distinction is that for residual compression, we 
utilize filters with a size of 5x5 in the auto-
encoder rather than 3x3 for motion compression. 
The explanation is that residual requires more 
bitrate and includes more information than 
motion, and a larger filter size enhances auto 
encoder's capacity to represent data. The residual 
can then be added to the corrected reference 
frame to produce the reconstructed compressed 
frame. 
 
3.5   Bit Rate Estimation: 

Definition Notation 

   
Reference frame F̂t-1 

Current frame Ft 

Estimated motion Vt 

Latent representation of motion Mt 

 
Quantized latent representation of motion 

 
M̂t 

   
Compressed motion V̂t 

 
Motion compensated reference frame 

 
F̅t 

Residual Rt 

Latent representation of residual Yt 

latent Quantized latent representation of 
residual 

 
Ŷt 

 
Compressed residual 

 
R̂t 

 
Compressed frame 

 
F̂t 
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During testing phase, quantized motion data 
from Step 2 and residual data from Step 4 are 
encoded as bits and transferred to the decoder. 
3.6  Frame reconstruction: 
 
The reconstructed frame is obtained by 
combining Steps 3 and 4. 
 
3.7  Quantization:    
 
The essential premise underlying quantization is 
that by converting the weights and inputs into 
integer types, we may reduce memory use and 
speed up computations on certain hardware. It is 
necessary to use latent representations like 
residual and motion representation. 
4. TRAINING AND TESTING 
In [19, 32], provides the training (viemo) and 
testing (UVG & JCT-VC) datasets. Our 
proposed DRAE technique trained the around 
29k frames or images (viemo) and tested 9k 
frames or images in Ultra-Video-Group dataset 
(UVG) and Joint Collaborative Team-Video 
Coding dataset (JCT-VC). In this paper the 
trained data sets link and tested data sets link are 
given in reference section. 
 
5. RESULTS AND PERFORMNACE 
ANALYSIS  

The Average is calculated by PSNR and bpp in 
Tables 2, 3, 4 and 5. And drawn the 
corresponding (We have taken the best of any 
four values from the Tables) Fig. 4(a) - Table 2, 
4(b) -Table 3, 4(c)-Table 4 and 4(d) - Table 5, 
compared with existing methods like data1 & 
data2 and produce better average psnr and 
average bpp values. The Average is calculated 
by MS-SSIM and bpp in Tables 6, 7, 8 and 9. 
And drawn the corresponding Fig. 5(a) - Table 6, 
5(b)-Table 7, 5(c) - Table 8, and 5(d) – Table 9, 
compared with existing methods like data1 & 
data2 and produce better average psnr and 
average bpp values. And also, the proposed 
approach (in terms of PSNR metric) proves to 
reduce the error rate with the following MSE 
Table 10, 11, 12 and 13 (mean square error rate) 
for the tested data sets are also given. The 
compression ratio and transmission time of the 
of the input/original videos and 
output/compressed videos are also one of the 
important objectives of our proposed approach. 
Our proposed DRAE approach also getting better 
compression ration than compared with existing 
video compression approaches. The transmission 
time of output video is obviously reducing than 
input video. 
 
 
 

 
Fig_2: The Motion compression Network. 

 

Fig_3: The Motion Compensation Network 
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Fig. 4(A): PSNR On UVG 

 
Fig. 4(B): PSNR On JCT-VC Class B 

 

 
Fig. 4(C): PSNR On JCT-VC Class C 

 
       Fig. 4(D): PSNR On JCT-VC Class D 

 
Fig. 5(A): MS-SSIM On UVG 

 
Fig. 5(b): MS-SSIM on JCT-VC Class B 

 
Fig. 5(C): MS-SSIM On JCT-VC Class C 

 
Fig. 5(D): MS-SSIM On JCT-VC Class D 

 
Similarly, the proposed approach (in terms of 
MS-SSIM metric) proves to reduce error rate 
with following MSE Table 14, 15, 16 and 17 
(mean square error rate) for tested data sets are 
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also given. Regarding figures our DRAE 
approach is compared with data 1(19) and data 
2(32) except Fig 4(c) and 5(c) are compared only 
with data 2(32). Based on the outcomes and 
functionality, this study serves as a bridge for 
academics working in a variety of areas, 
including deep model creation, computer vision, 

and video compression. And the basic goals of 
reducing the amount of storage needed for video, 
the amount of time video takes to transfer, error 
rate, and increasing video quality with a better 
compression ratio are all met by our proposed 
DRAE technique. 

Table 2: PSNR on 
UVG 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Table 3: PSNR on JCT-VC Class B 
 

Data Set Video Data 1(19) Data 2(32) Proposed DRAE 

    
Avg 

PSNR 
Avg 
bpp 

Avg 
PSNR 

Avg 
bpp Avg PSNR 

Avg 
bpp 

JCT-VC 
Class B BasketballDrive 31.2 1.05 38.26 1.02 38.6 0.93 

  BQTerrace 32.9 1.6 38.22 1.53 38.64 1.22 

  Cactus 34.2 1.64 38.41 1.63 37.53 1.57 

  Kimono - - 37.94 1.18 38.43 1.08 

  ParkScene 35.1 1.73 37.4 1.568 37.48 1.52 
 
 

Table 4: PSNR on JCT-VC Class C 

Data Set Video Data 1(19) Data 2(32) Proposed DRAE 

    
Avg 

PSNR 
Avg 
bpp 

Avg 
PSNR 

Avg 
bpp Avg PSNR 

Avg 
bpp 

JCT-VC 
Class C BasketballDrill - - 37.53 1.31 37.57 1.28 

  BQMall - - 38.52 1.27 39.24 0.98 

  PartyScene - - 37.09 2.34 37.51 1.9 

  RaceHorses - - 37.91 1.6 38.28 1.27 
 

Table 5: PSNR on JCT-VC Class D 

Data Set Video Data 1(19) Data 2(32) Proposed DRAE 

    
Avg 

PSNR 
Avg 
bpp 

Avg 
PSNR 

Avg 
bpp Avg PSNR 

Avg 
bpp 

JCT-VC 
Class D BasketballPass 27.9 0.9 39.41 0.86 39.92 0.73 

  BlowingBubbles 28.95 1.7 38.01 1.51 38.02 1.51 

  BQSquare 30.99 1.82 38.65 1.76 38.82 1.51 

Data Set Video Data 1(19) Data 2(32) Proposed DRAE 

    
Avg 

PSNR 
Avg 
bpp 

Avg 
PSNR 

Avg 
bpp Avg PSNR 

Avg 
bpp 

UVG Beauty 34.01 0.5 40.59 0.4 41.06 0.42 

  Bosphorus 35.8 0.95 38.2 0.94 38.5 0.83 

  HoneyBee 36.9 1.98 36.46 1.99 36.49 1.98 

  Jockey - - 37.83 1.05 41.27 0.35 

  ReadySetGo - - 37.04 1.8 38.34 1.31 

  ShakeNDry - - 36.05 2 36.23 1.91 

  YachtRide 38.9 1.15 38.05 1.12 38.14 1.1 
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  RaceHorses 32.5 1.41 38.15 1.37 38.5 1.18 
 

Table 6: MS-SSIM on UVG 
 

Data Set Video Data 1(19) Data 2(32) Proposed DRAE 

    
Avg MS-

SSIM 
Avg 
bpp 

Avg MS-
SSIM 

Avg 
bpp 

Avg MS-
SSIM 

Avg 
bpp 

UVG Beauty 0.964 0.06 0.951 0.07 0.96 0.05 

  Bosphorus 0.963 0.13 0.983 0.1 0.985 0.1 

  HoneyBee 0.98 0.19 0.913 0.14 0.991 0.1 

  Jockey - - 0.888 0.11 0.88 0.11 

  ReadySetGo - - 0.981 0.12 0.99 0.12 

  ShakeNDry - - 0.983 0.15 0.97 0.2 

  YachtRide 0.98 0.36 0.95 0.1 0.96 0.1 
 

Table 7: MS-SSIM on JCT-VC Class B 
 

Data Set Video Data 1(19) Data 2(32) Proposed DRAE 

    
Avg MS-

SSIM 
Avg 
bpp 

Avg MS-
SSIM 

Avg 
bpp 

Avg MS-
SSIM 

Avg 
bpp 

JCT-VC 
Class B BasketballDrive 0.961 0.006 0.813 0.1 0.72 0.1 

  BQTerrace 0.97 0.13 0.993 0.11 0.99 0.11 

  Cactus 0.978 0.21 0.481 0.17 0.991 0.11 

  Kimono 0.978 0.21 0.941 0.12 0.95 0.12 

  ParkScene 0.985 0.4 0.396 0.13 0.951 0.13 
 

Table 8: MS-SSIM on JCT-VC Class C 
 

Data Set Video Data 1(19) Data 2(32) Proposed DRAE 

    
Avg MS-

SSIM 
Avg 
bpp 

Avg MS-
SSIM 

Avg 
bpp 

Avg MS-
SSIM 

Avg 
bpp 

JCT-VC 
Class C BasketballDrill - - 0.986 0.12 0.99 0.12 

  BQMall - - 0.977 0.1 0.98 0.1 

  PartyScene - - 0.984 0.15 0.985 0.15 

  RaceHorses - - 0.703 0.12 0.629 0.12 
 

Table 9: MS-SSIM on JCT-VC Class D 
 

Data Set Video Data 1(19) Data 2(32) Proposed DRAE 

    
Avg MS-

SSIM 
Avg 
bpp 

Avg MS-
SSIM 

Avg 
bpp 

Avg MS-
SSIM 

Avg 
bpp 

JCT-VC 
Class D BasketballPass 0.961 0.004 0.89 0.1 0.79 0.1 

  BlowingBubbles 0.972 0.12 0.28 0.12 0.78 0.1 

  BQSquare 0.981 0.19 0.99 0.11 0.99 0.1 

  RaceHorses 0.987 0.32 0.69 0.11 0.989 0.11 
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Table 10: MSE on UVG (PSNR Metric) 

Data Set Video MSE 

UVG Beauty 8.4 

 
Bosphorus 0.001 

 
HoneyBee 0.002 

 
Jockey 0.001 

 
ReadySetGo 0.002 

 
ShakeNDry 0.002 

  YachtRide 0.001 
 

Table 11: MSE on JCT-VC Class B  
(PSNR Metric) 

Data Set Video MSE 
JCT-VC Class 

B BasketballDrive 0.001 

 
BQTerrace 0.001 

 
Cactus 0.001 

 
Kimono 0.001 

  ParkScene 0.001 
 

Table 12: MSE on JCT-VC Class C  
(PSNR Metric) 

Data Set Video MSE 
JCT-VC Class 

C BasketballDrill 0.001 

 
BQMall 0.001 

 
PartyScene 0.001 

  RaceHorses 0.001 
 

Table 13: MSE on JCT-VC Class D 
(PSNR Metric) 

Data Set Video MSE 
JCT-VC Class 

D BasketballPass 7.15 

 
BlowingBubbles 0.001 

 
BQSquare 0.001 

  RaceHorses 0.001 
 

Table 14: MSE on UVG  
(MS-SSIM Metric) 

Data Set Video MSE 

UVG Beauty 0,09 

 
Bosphorus 0.12 

 
HoneyBee 0.07 

 
Jockey 0.07 

 
ReadySetGo 0.09 

 
ShakeNDry 0.06 

  YachtRide 0.13 
 
 

Table 15: MSE on JCT-VC Class B 
(MS-SSIM Metric) 

Data Set Video MSE 
JCT-VC Class 

B BasketballDrive 0.03 

 
BQTerrace 0.10 

 
Cactus 0.09 

 
Kimono 0.08 

  ParkScene 0.08 
 

Table 16: MSE on JCT-VC Class C 
(MS-SSIM Metric) 

Data Set Video MSE 
JCT-VC Class 

C BasketballDrill 0.03 

 
BQMall 0.05 

 
PartyScene 0.05 

  RaceHorses 0.06 
 

Table 17: MSE on JCT-VC Class D 
(MS-SSIM Metric) 

 

Data Set Video MSE 
JCT-VC Class 

D BasketballPass 0.03 

 
BlowingBubbles 0.07 

 
BQSquare 0.17 

  RaceHorses 0.06 
 
 
6. CONCLUSION  
 
This paper has proposed a Deep Recurrent Auto 
Encoders (DRAE) video compression approach. 
Specifically, we proposed Deep Recurrent Auto 
Encoders to compress motion and residual, fully 
exploring the temporal correlation in video 
frames. The proposed Deep Recurrent Auto 
Encoders model significantly expands the range 
of reference frames, which has not been achieved 
in previously learned as well as handcrafted 
standards. The experiments validate that the 
proposed approach outperforms all previous 
learned approaches in terms of both PSNR and 
MS-SSIM. Moreover, the proposed method can 
inspire traditional codecs, particularly the 
methods that integrate deep networks in 
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traditional codecs, to adopt recurrent networks to 
improve their performance.  
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