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ABSTRACT 
 

Machine learning (ML) is a large field of study that overlaps with and inherits ideas from many related 
fields such as artificial intelligence (AI). The main focus of the field is learning from previous experiences. 
Classification in ML is a supervised learning method, in which the computer program learns from the data 
given to it and make new classifications. There are many different types of classification tasks in ML and 
dedicated approaches to modeling that may be used for each. For example, classification predictive 
modeling involves assigning a class label to input samples, binary classification refers to predicting one of 
two classes and multi-class classification involves predicting one of more than two categories. Recurrent 
Neural Networks (RNNs) are very powerful sequence models for classification problems. However, in this 
paper, we will use RNNs as generative models, which means they can learn the sequences of a problem and 
then generate entirely a new sequence for the problem domain, also, we propose an architecture of a 
learning application that benefits from the advantages of both machine learning and augmented reality to 
provide a better learning experience and help teachers build adaptive educational content using the 
proposed model. 

Keywords: Artificial Intelligence, Machine Learning, Classification, Recurrent Neural Networks, 
Sequence Models, Generative Models. 

 
1. INTRODUCTION  
 

Text classification is one of the important and 
common everyday jobs in controlled machine 
learning. It is about assigning a category or a class 
to documents, articles, books, papers, reviews, 
tweets or anything that contains text. It is a core 
task in natural language processing [1]. Many 
applications appeared to use text classification as 
the main task, examples include spam filtering, 
sentiment analysis, speech tagging, language 
detection, and many more. The aim of this paper is 
to present the use of a classification methodology as 
a generative model based on RNN algorithms, 
trained on textual dataset and able to generate 
entirely a new sequence of text for the problem 
domain. Thus, this paper presents an architecture of 
a mobile application that integrate the proposed 
generative model. 

 

Generative models are one of the most promising 
approaches towards our goal. Actually, generative 
modeling is used in unsupervised machine learning 
to describe phenomena in data and enable 
computers to understand the real world. This AI 
understanding can be used to predict all manner of 
probabilities on a subject from modeled data [2]. 

An illustration of a generative model might be one 
that is trained on a set of images from the real world 
in order to generate similar ones. The model might 
take observations from a 500-gigabyte set of images 
and reduce them into 100-megabyte of weights. 
Weights can be thought of as reinforced neural 
connections. Through increased training, an 
algorithm comes to produce more realistic images. 

To train a generative model, we first collect a large 
amount of data in some domain (e.g., think millions 
of images, sentences, or sounds, etc.) and then train 
the model to generate data like it. The trick is that 
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the neural networks we use as generative models 
have a number of parameters significantly smaller 
than the amount of the data we train them on, so the 
models are forced to discover and efficiently 
internalize the essence of the data in order to 
generate it. Generative models have many short-
term applications. But in the long run, they hold the 
potential to automatically learn the natural features 
of a dataset, whether categories or dimensions or 
something else entirely. 

2. STATE OF ART 

With the rapid increase in computing 
capacities of computers and the evolution of 
learning techniques, the use of neural networks is 
becoming popular in various computer science 
field, especially within the image processing, 
automated translation and speech processing 
communities. In recent years, two types of neural 
networks have marked a technological 
breakthrough in the field of speech processing: so-
called "deep" networks and recurrent networks. 
 
The Artificial Neural Network (ANN) was 
introduced as a rudimentary model of information 
processing in the human brain. Thus, the basic 
structure of an ANN is a network of small 
computing nodes linked together by guided and 
balanced links (Figure 1). 

 
Fig. 1: Representations of an artificial neural network 
(ANN) in the form of a network of computation nodes 

connected by links directed and weighted by the 
coefficients. 

The nodes represent the neurons and the weighted 
links represent the strength of the synaptic 
connections linking the neurons between them. In 
this representation, the neuron can be a summator 
of the potentials of the synaptic signals which reach 
it, and which in turn transmits information based on 
this sum via a non-linear transfer function. An 
ANN is activated by injecting data at all or part of 
the nodes and then propagating the information by 
following weighted links. Once the information is 

propagated, we can collect the activation levels of 
all or part of the nodes and use them as a prediction 
or a classification. 
 
Many types of neural networks with very different 
properties have been developed since the 
emergence of formal neurons in the 1940s [1]. 
More specifically, we distinguish two types of 
networks: those whose connection graph has at 
least one cycle and those that do not. The first ones 
are said to be recurrent and the latter are said to be 
acyclic. Among acyclic networks we find networks 
of the perceptron type [2], convolutional [3], Radial 
Basis Function [4] or the Kohonen maps [5]. But 
the most frequently used variant is the multilayer 
perceptron (MLP). 
 
We therefore begin by presenting the most classic 
of neural networks, the multi-layered perceptron 
which is an acyclic neural network (Feed-Forward 
Neural Network - FFNN) structured in layers. A 
multi-layered perceptron is thus composed of an 
input layer, one or more intermediate layers called 
hidden layers and an output layer. For each of the 
layers, all of its nodes are connected to all the nodes 
of the previous layer (Figure 2).  

 

Fig. 2: Layered structured neural network commonly 
known as a multi-layered perceptron (MLP). 

The origin of the multi-layered perceptron goes 
back to F. Rosenblatt who in 1957 was inspired by 
the work on formal neurons [1] and by Hebb's rule 
[6] to develop the model of the perceptron. 

This model has only one layer but has already 
solved simple tasks of classifying geometric 
symbols. It is however impossible with the method 
formulated by F. Rosenblatt to train a system 
having several layers which turns out to be very 
restrictive a few years later. Indeed, in 1969 M. 
Minsky and S. Papert demonstrate by rigorous 
analysis that the perceptron is unable to learn 
functions if they are not linearly separable (like for 
example, the Boolean XOR function). They even 
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go a little further by demonstrating that it is 
necessary to have at least one additional layer of 
neurons to be able to solve this problem. But there 
is then no method to train a multi-layered 
perceptron. 

It took more than ten years for researchers to 
develop a learning technique that allows to adjust 
the parameters of a multi-layered perceptron. 
Indeed, it was P. Werbos who first proposed the 
idea of applying to ANN the error gradient back-
propagation technique developed over the years 
1960. During his thesis that he defended in 1974 
[7], he analyzed the relevance of this method but, 
given the lack of interest in the scientific 
community for ANN following the publication of 
M. Minsky and S. Papert, he did not publish any 
result on the subject before 1982 [8]. It was finally 
in the mid-1980s that this method was rediscovered 
by several research teams [8–13] and that it ended 
up being popularized. 

In 1986, D. umelhart, G. Hinton and R. Williams 
show in [9] that using the back-propagation of the 
error gradient applied to a multi-layered perceptron 
can finally exceed the limits of the perceptron 
which were raised by M. Minsky and S. Papert in 
1969. In particular, the multi-layered perceptron 
makes it possible to treat complex nonlinear 
problems, with only one hidden layer and a 
sufficient number of neurons, any nonlinear and 
continuous function over a compact space with 
arbitrary precision [10]. The multi-layered 
perceptron is thus called a universal approximator 
of functions. 

In the case of many sequences’ classification tasks, 
to make a decision at a given moment, it is 
interesting to know the past and all or part of the 
future of the sequence. For example, in automatic 
speech processing task, to be able to determine 
which phoneme is being pronounced at time t, it is 
very useful to know which phonemes follow it as 
well as which precede it. The RNNs we described 
in the previous section process sequences in 
temporal order and therefore do not have access to 
future information.  

To tackle this problem, we can add future 
information to the input data or introduce a delay 
between an input vector and its target so that the 
RNN has time to process some future information 
before having to make a decision. However, these 
different approaches add constraints on learning 

either by increasing the number of parameters in 
the input layer, or by forcing the RNN to learn the 
chosen delay to give its response at the right time. 
And in both cases, we do not solve the problem 
because we introduce hyperparameters (number of 
input vectors to aggregate or response time) which 
can be difficult to adjust. In addition, the 
asymmetry between the past and the future in terms 
of the exploitable context is not in any way 
eliminated. 
 
In 1997, Schuster and Paliwal introduced in [11] an 
elegant solution called bidirectional Recurrent 
Neural Network (BiRNN) which consists in 
presenting each sequence to be processed to two 
RNNs of the same type but with different 
parameters: 
 
 The first one processes the sequence in the 

natural order 
 The second one processes the sequence in 

reverse order. 
 
The two sequences obtained at the output of the two 
RNNs are then concatenated before being put at the 
input of a multi-layer perception (MLP) which for 
each initial input vector then produces an output 
which is based on all the context passed via the exit 
of the first RNN and all the future context via the 
exit of the second. It is thus possible to fully exploit 
the capabilities of the RNNs over the entire 
sequence for each time step. 
 
3. THEORICAL BACKGROUND 

3.1 Recurrent Neural networks 

Recurrent neural networks (RNNs) are the 
cutting-edge algorithm for sequential data. This is 
because it is the first algorithm that remembers its 
input, due to its internal memory, which makes it 
ideally suited for machine learning problems that 
involve sequential data. It is one of the algorithms 
behind the scenes of the incredible achievements of 
Deep Learning (DL) in recent years. 

In order to understand how RNNs works, we 
absolutely need to have a general understanding of 
a normal feed-forward neural network and also 
understand what are sequential data. The simplest 
definition of sequential data is any kind of data 
where the order is important. For example, the 
DNA sequence can be considered as a sequential 
data. 
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The techniques used to transfer data by RNN’s and 
feed forward neural network allowed these two 
neural networks to get their names. The data pass 
only in a single direction, from the input layer to 
the output layer, passing by all the hidden layers, 
and never touch a node twice. Because feed 
forward neural networks can’t store their inputs, 
they are considered weak at predicting next inputs 
they could obtain. Also, inputs are not ordered and 
all previous stats are forgotten and cannot be 
memorized. 

In a recurrent neural network, the information pass 
through a circle. When there is a taken decision or a 
prediction, it contemplates the current input and 
also what it has learned from the inputs it received 
before. Figure 3 demonstrate the variance in 
information flow among a recurrent neural network 
and a feed-forward neural network. 
 

Fig. 3: RNN & feed-forward neural networks information 
flows 

An example is the best manner to demonstrate the 
notion of a RNN memory, let’s set the string 
“chemistry” as an input to our feed forward neural 
network, the algorithm will process that string 
character by character. When it processes the 
character "m" it has already forgotten about "c", "h" 
and "e". So, it’s almost impossible for this neural 
network to make a prediction on the upcoming 
characters. 

However, thanks to the internal memory storage of 
recurrent neural network, this kind of networks has 
the ability to remember the previous inputs. The 
produced output or result will be copied and looped 
back into the network as a new input. The strong 
point of RNN algorithms is that they have the 
ability to maintain critical and relevant information 
on future data, thanks to inputs from network 
nodes. 

A feed-forward neural networks use a matrix of 
weights that will be applied to the inputs to produce 

the outputs. This is also the case for recurrent 
neural networks. In addition, these networks have 
the capacity to readapt this weight matrix through a 
backpropagation through time (BPTT) and a 
gradient descent. 

For a better understanding of the idea of 
backpropagation through time, we will need to 
understand the two notions of forward and 
backpropagation. Mostly, in neural networks, 
forward propagation allows to have an output of the 
model and check if this output is correct. While the 
backward propagation makes it possible to find the 
deviation of the error by comparing it with the 
weight, which will subsequently allow this value to 
be subtracted from the weight. 

These deviations are then processed by gradient 
descent, an algorithm that makes it possible to 
iteratively minimize a given function. Then it 
regulates the weights, in order to minimize the 
error. By these two notions, the neural network is 
capable to learn during the training phase. Figure 4 
demonstrates the tow notions in a feedback neural 

network: 
 
Fig. 4: Forward and backpropagation propagations in a 

feedback neural network. 
 
 
3.2 Issues of standard RNN’s 
 

There are two main difficulties that RNNs 
have confronted, to understand those difficulties we 
need to explain what is a gradient. 
A gradient is a fractional derivation compared to its 
input. In other words, the gradient calculates the 
percentage of the output’s changes of a function 
when inputs are changed. 
 
 Exploding gradients: 
Sometimes, with no significant reason, the 
algorithm allocates a wrong high importance to the 
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wights, in this situation, we have an exploded 
gradient. This issue can be easily solved by 
squashing or truncating the gradients. 
 
 Vanishing gradients: 
 
From time to time, we could get small values for 
the gradient, which cause the model to stop learning 
or take too long time to give a significant result. 
This issue was harder to solve than the first one, but 
thanks to LSTM algorithms, this issue was solved. 
 
3.3 Long Short Time Memory  

Long Short-Term Memory (LSTM) is an 
artificial recurrent neural network. Different than 
the standard feed forward neural networks, they 
extend memory which make them capable to store 
significant information. The layers of a recurrent 
neural network compose the building units of 
LSTM algorithms and are called LSTM network. 
Using the LSTM in any sequential task will 
guarantee that long-term information and context 
are maintained. 

In comparison with the standard type of RNN, 
LSTM units are not interconnected, but are 
considered as a block of memory that are connected 
in layers, each block is responsible of managing its 
state, its output and the flow of the information 
thanks to the gateways. Regarding the weight of the 
stored information, the LSTM blocks can choose 
whether to update or remove that information. 

All LSTM blocks are composed of tree gates (input 
gate, output gate and forget gate), all these gates 
decide together whether to accept the new input, let 
it update the output or swape the memory of the 
block (Figure 5). 

Fig. 5: Illustration of a recurrent neural network with 
three gates: input, output and forget 

4. METHODOLOGY 

In this section we explain our contribution, 
by demonstrating in details the steps followed. To 
the best of our knowledge, no related work has 
been reported addressing such a type of 
methodology with accurate prediction. 

Before going through this section, here is a brief 
description of what we want to accomplish. Our 
contribution consists of implementing a prototype 
of an augmented reality application playing the role 
of a learning assistant through an intelligent 3D 
avatar, this Avatar will have the ability to respond 
to questions in the field of chemistry / biology 
through a learning model. This learning model is a 
generative model for generating human-
understandable sequences of characters. The 
sequences or the character chains generated will be 
represented in the augmented reality application by 
the avatar. 

4.1 Data collection, cleaning and analysis 

Since we are working in the context of 
learning in Moroccan universities, we have chosen 
the second official language of Morocco (which is 
the French language) as the language of the data 
that will be used during the training phase of the 
model. Then, we started by looking for university 
courses, scientific books, communications, articles, 
documents, any textual data related to the field of 
chemistry and biology. 

Tab. 1: Collected data fields and description 

Field Discipline Description 
Chemistry Organics This discipline 

interest in 
structure, 

properties and 
also reactions of 

organic 
composites 

Inorganique This discipline 
is the opposite 
of the first one 
and it’s aims to 

study properties, 
formation and 
synthesis of 

composites that 
don’t contain 

carbon-
hydrogen bonds 

Analytique This discipline 
is interested 
essentially in 
identifying 
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matters 
Physical This discipline 

tries to apply 
physics concepts 
on macroscopic 
phenomena in 
chemistry such 
as motion and 

force 
Biology Anatomy 

morphology 
Description of 
the inner and 
outer form of 
living things 

Psychology Behaviors of 
living beings 

taken 
individually and 

among 
themselves 

Embryology Development, 
living things 

Psychology Analysis of the 
functions and 
functioning of 
living beings 

Botany, 
zoology, 

anthropology 

Classification of 
living things 

Ecology, 
Ethology, 

Sociologies 

Analysis and 
study of 

societies and 
organization of 
living beings 

We classified the collected data by its theme (or 
sub-discipline). Table 1 represents the 10 sub-
disciplines of the collected data. We obtained a text 
file for each discipline (e.g., organic.txt, 
psychology.txt).  

In order to describe the data collected, we have 
carried out word processing for each text file. Table 
2 represents the results of the treatments carried 
out. 

Tab. 2: Statistics on collected data  

File name Number 
of lines 

Total 
number 
of used 
characters 

Total 
number 
of used 
words 

Organique.txt 636 53757 8031 
psychology.txt 957 75671 10351 
Ecology ethology 
socilogi.txt 

532 35954 6942 

Textual data which is not processed and cleaned 
can’t revel its insight. in our case, it’s difficult to 

represent this textual data in graphs because it’s not 
numerical. in order to give a graphical description 
of the collected data, we researched tools and 
techniques for visualizing textual data, and we 
found a way to graphically represent this type of 
data using a python library named “Word Cloud”. 

Word cloud is a technique that use the frequency of 
a word and associate it to the size and opacity of 
that word to create an image in order to visualize 
the textual data. Figure 6 shows the graphical 
representation of the collected data  

 

Fig. 6: Textual data visualization: generated image using 
word cloud python library 

As you can see, the most frequent words are words 
in the category of pronouns and determinants. With 
the given dataset, Word cloud does not give a clear 
view on the most frequent words that interest us. To 
try fix this problem, we used another tool called 
“TextKit” which will allow us to manipulate our 
data word by word. 

Thanks to TextKit, we were able to perform the 
following 3 treatments in the order listed: 

 Convert “organique.txt” text file into a token 
document where each token is a word. 

 Take away stop words, in natural language 
processing, stop words are words so common 
that they provide little information about a 
document, and so are often removed.  

 Filter words that are less than a certain number 
of characters long 

Find bellow TextKit command line used to execute 
these treatments: 

textkit text2words atome-fr.txt | textkit filterwords | 
textkit filterlengths -m 5 > output.txt 
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From the command above, the result was redirected 
to a new text file (output.txt). This output file was 
then used as an input to the word cloud library. 
Figure 7 shows a graphical representation of the 
dataset after cleaning. 

 
Fig. 7: Textual data visualization: generated image using 

word cloud python library 

 
4.2 Model architecture 

 

Fig. 8: Proposed model architecture 

The architecture of proposed model consists of 
a sequence of 4 layers (Figure 8). The LSTM layers 
are the main layers of our model, they are the ones 
that will allow the model to learn thanks to their 
internal memory. The idea behind using dropout 
layer is to prevent the overfitting effect. For 
example, if the dropout is set to 0.2, then for each 
iteration within each epoch, each node in that layer 
has a 20 percent probability of being removed from 
the network. In this way, the model is capable to 
learn deeper and create important links.  

The dense layer is entirely connected by nodes of 
the layer. Each node of each layer receives in its 
input all other nodes of the previous layer, they’re 
densely associated. In that way, the learning will be 
more efficient, meaning that the model will learn all 
possible features from all the associations of the 
features of the previous layer. 

Regarding the distribution of the collected and 
cleaned data into learning and validation dataset, 
we chose a method called cross-validation, this 
method has proved its effectiveness since it uses all 
the available data in an optimal way. In general, a 
large training and a small validation set in each 
iteration. For the construction of our model, we 
chose 80 percent of the data for training and 20 
percent for validation. 

While constructing the model, there are 
hyperparameters that have to be setup correctly and 
adjusted so that we can get an accurate prediction 
when back testing the model. This paper [14] have 
stimulated us on how we could organize 
experimental trials to find the best hyperparameters 
that will lead to higher accuracy and decrease the 
chance of overfitting the data, related to if no 
experimental trials was done to our model and data. 

When performing the experimental trials, we will 
construct our LSTM model with default 
hyperparameters that fit our case best according to 
diverse papers that we find extremely valuable. We 
will then take each hyperparameter and attempt to 
detect an ideal value to that hyperparameter. 

The best value for a hyperparameter is found by 
evaluating the LSTM model by back testing it with 
the test data. We will then calculate the 
“Categorical Cross Entropy (CCE)” loss function. 

Cross entropy is generally used in multi-class 
classification tasks and it’s used to measure the 
variance between two probability distributions. In 
the context of machine learning, it is the quantity of 
error for categorical multi-class classification 
problems 

After all potential values for that specific 
hyperparameter has been evaluated we will plot on 
the “X” axis the hyperparameter value and on the 
“Y” axis the CCE value. We can then see that the 
hyperparameter value with lowest CCE is the most 
optimal one. 

Figure 9 shows that 0.3 is the suitable value to 
choose for the dropout layer in our case because 
that value has the smallest categorical cross 
entropy. 
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Fig. 9: Evaluation of the categorical cross entropy with 
different values of dropout hyperparameter 

Each LSTM layer has a number of memory blocks 
or cells, to find the most optimal number of cells 
for those two layers. We trained the network with 
different values, from the figure 10, we can see that 
the more we use of cells, the more the CCE 
decreases (256 was chosen as the value of the 
number of cells of the two LSTM layers. We 
noticed, the more we increase this parameter, the 
more time the model needs to learn). 

Fig. 10: Evaluation of the categorical cross entropy with 
different number of cells in each LSTM layer 

To sum up (see Figure 11), the proposed model is a 
sequential model which is a linear stack of layers. 
The first layer is an LSTM layer with 256 memory 
block and it returns sequences. This is done to 
guarantee that the succeeding LSTM layer obtain 
sequences and not just randomly dispersed data. A 
dropout layer is applied after the first LSTM layer 
to avoid overfitting of the model by ignoring 
randomly selected neurons during training, and 
hence decreases the sensitivity to the specific 
weights of individual neurons. 30 percent is used as 
a good compromise between maintaining model 

accuracy and avoiding overfitting. Finally, we have 
the last layer as a fully connected layer with a 
“softmax” activation and neurons equal to the 
number of unique characters. 

Fig. 11: The proposed model layers output shapes 

Now that we have a clear understanding on how we 
built our model, the next step is the training phase. 
In order to improve this phase, we started by doing 
more cleaning processes on the dataset, the first 
thing was to reduce the number of words by 
eliminating upper-case characters and rare 
characters, such as punctuations, and replacing 
successive white spaces with one space character. 
We consider now that our dataset is clean enough, 
but we can’t model characters directly, so we 
decided to translate characters to numbers (assign 
an integer to each character) and the samples will 
be based on those integers. The next step was the 
construction of the sequences, all inputs of all 
samples will share the same length 
“sequence_length”, and the outputs would be 
always one single character. 

To have a good understanding on how we 
constructed the sequences, let's do a demonstration. 
First let’s assign the number 10 to the variable 
“sequence_length”, and secondly let’s take the 
following dataset: “chaque atome est composé de” 
(it would be represented by integers in the 
algorithm, just for the purpose of explaining we 
decided to simplify and use characters directly). 
Here are the tree first sample that will be generated 
based on the previous chosen dataset: (“chaque 
ato“, “m”), (“haque atom”, “e”) and (“aque atome”, 
“ ”). Note that each sample is composed of one 
input and one output. In that way we increase the 
number of samples and the model will be able to 
give convenable prediction with the minimum 
possible errors. 

5. RESULTS 

To be able to generate new text 
understandable by the human being, the model 
must learn on several samples. Showing to it many 
samples to learn features between inputs and 
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outputs. Each sample is composed of two things, 
the first one is a chain of characters (the input), and 
the second one is the next character (the output) 
that give sense to the hole characters combined 
together or that correct the phrase grammatically. 

The model is now ready and the samples are 
created, we move to the next step which is the 
training phase. While the training process is 
running, in order to assess the performance of the 
model, we logged the values of loss and accuracy 
functions, Figure 12 represents the evolution of 
those two functions during the training process. 

Fig. 12: Evolution of the loss and accuracy metrics over 
epochs (blue trait represents the loss function. The 

orange trait represents the accuracy function) 

 The loss function lets you know how the model 
behaves on the test and validation datasets. 
Technically it’s the sum of the errors identified 
in that dataset. 

 The accuracy metric let you know assess the 
performance of the model, technically it’s the 
number of correct predictions divided by the 
total number of predictions. 

The above two metrics are not fully sufficient to 
assess the performance of the model, there are other 
metrics that we can rely on, precision and recall 
functions. We definitely need to calculate these two 
metrics, but before that, what are these two metrics 
and how they work: 

 Precision is a metric which allows to calculate 
the number of positively correct predictions, 
this metric is very important because it helps to 
know the performance of the model when there 
are false positives. For example, assuming we 

are making predictions about a dangerous 
disease, if the value of that metric is low, then 
many patients will be identified as sick with a 
false diagnosis. 

 The recall metrics gives the sum of true 
positives that were found or identified, 
different than the precision metric, the recall 
acts only on correct positives predicted out of 
all positive predictions. It gives some 
knowledge on the coverage of all positive 
predictions. 

Figure 13 is an explanatory graph of the values of 
these two metrics obtained during the model 
training phase. 

Fig. 13: Evolution of the recall and precision metrics 
over epochs (blue trait represents the recall function. The 

orange trait represents the precision function) 

We can combine the above two metrics (precision 
and recall) and get a new useful metric. It’s called 
F1 and it measures the accuracy of the model. 

When the false positives and the false negatives are 
few, F1 has a value close to 1, in this case the 
model is considered as perfect. In case the F1 score 
is close to 0, the model is a total letdown. 

Bellow an example of calculation of this metric 
(calculated for the last epoch):  

 

The F1 score is close to 1, the prediction made by 
our model are very accurate.  
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Now that we built, trained and evaluated the model, 
we move to the next step which is the generation of 
the text. The two figures below (Figures 14 & 15) 
represent the algorithm used during this phase of 
text generation. 

Fig. 14:  Text generation algorithm – part 1 
 

Fig. 15:  Text generation algorithm – part 2 

We first started by finding a sentence, that will be 
the start of the text which will generate 
subsequently. We consider this sentence as a seed 
of the final text. This seed allowed us to create the 
first sequence of model node inputs to predict the 
next character. We predict the next character on the 
sequence which will be shifted at each iteration by 
removing the first character and adding the last 
predicted character at the end of the sequence, we 
were able to generate text using the model. 

Here is an interesting generated text: 

“Autre par la force atomique, les électrons dans 
cette couche sont appelés électrons de valence le 
nombre d'électrons de valence forment un groupe 
qui est aligné dans la même colonne du tableau la 
force plus forte qui est médiée par les gluons les 
protons et les neutrons sont leurs tour hliym 

jusqu'au noyau plus l'antiproton est un equibt 
chargé négativement d'une absorption sur du 
rayonnement de” 

Note the above observations about the generated 
text: 

 That is clearly French but as you may notice, 
most of the sentences doesn't make sense. 

 It generally conforms to the line format 
observed in the original text. 

 Almost all the words in sequence make sense 
(e.g., “les électrons dans cette couche sont 
appelés “), and fewer do not (e.g., “hliym, 
equibt “). 

 In general, the text looks realistic, but is still 
quite nonsensical. 

 
6. PROTOTYPE 

As described briefly in the beginning of the 
methodology section, we dedicate this part to 
provide a prototype of an architecture that can 
handle both machine learning and augmented 
reality capabilities. Our aim is to help students or 
learners through an augmented reality application 
to understand the subject they are trying to study. 
We believe that augmented reality is an innovative 
way to help learners, as the application will interact 
with the learner via a virtual avatar that can 
generate content with the help of machine learning. 

There are several development kits that allow the 
creation of augmented reality applications, this was 
not a problem for our goal. But the real challenge 
was how we could create an application with 
augmented reality capabilities while integrating the 
use of the generative model that we implemented 
and discussed in the previous parts. 

It was absolutely necessary that we first prepare a 
technical architecture that will allow us to define 
the components of our application, taking into 
account the diversity of technologies in the 
development kits. 

6.1 Architecture 

The architecture of our prototype is based on 
three main components: 

 an augmented reality mobile application 
 a web server-based application 
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 a python script that will use the model we 
implemented 

The first component is the mobile application with 
augmented reality capabilities, which is based on 
the AR Core Framework developed by google. 
Using this Framework gives the developers 
flexibility to designate their application as they 
wish since it relies on the architecture of an android 
application. Thus, we can target a very large 
number of users since the android platform is the 
most used operating system in the majority of 
mobile terminals. 

The mobile application will be able to detect real 
scene objects and generate 3D virtual models and 
avatars that the user can interact with. 3D models 
will also be able to respond to the user by 
automatically generating text. Thus, we can get the 
help of the operating system services to transform 
the generated text into a speech that will be 
launched by the speakers of the mobile providing a 
better experience regarding the human machine 
interaction. 

The second component is a web server-based 
application that will be installed on a server and 
runs on the background. The purpose behind this 
component is to receive requests “using HTTP 
protocol” that will be sent from the mobile 
application. These requests will carry information 
on the language, the domain, the size, …etc., of the 
text to be generated, roughly the generative model 
to be used. 

This web application will be able to process these 
requests and get the help of the third component of 
this architecture. The third component is a script 
based on the Python language, which will finally 
use the generative model to generate new text. 

7. DISCUSSION 

Deep learning models such as LSTM have 
proven to be effective in the tasks of translation, 
handwriting generation, image generation using 
attention models, image caption and video to text, 
however, in this paper, we proposed a model based 
on LSTM and we used it in generating new 
understandable text based on the text itself. We 
investigated a deep learning approach on textual 
data, we predict a character based on a string of 
characters to generate new text. So that this text is 
understandable by humans, we’ve tried to train the 
model several times, taking into consideration 
different metrics, and datasets. 

The values obtained from the calculated metrics 
and those chosen for the hyperparameters show 
clearly that our model makes good predictions. In 
fact, more than 97 percent of the generated words 
are correct. We believe that this is the main 
advantage of the proposed methodology. 

Based on the proposed prototype, and in order to 
highlight our work, we present an interesting use 
case: 

In the context of learning, several courses require a 
basic learning support, whether for learning a new 
concept or to improve one's knowledge on a 
specific subject. Unfortunately, in a study class, the 
support may not be adapted to the learning 
capacities of all learners (different skill levels, 
learner motivation and interest level). All these 
challenges are faced by teachers and demand more 
effort in their work. The proposed model can be 
used to automatically generate educational content 
and facilitate the construction of an adaptative 
educational support. Moreover, the proposed 
prototype architecture can easily handle the 
diversity of technologies and offers an innovative 
way to improve the learning experience with the 
help of machine learning and augmented reality 
capabilities. 

We present now some of the methods to generate 
text that have been already discussed. 

Recent research conducted by [17], aims to 
generate meaningful and diverse questions from 
natural language sentences, based on a neural 
encoder-decoder model. the role of the encoder is to 
produce an input representation taking the response 
into account, which is passed to the decoder to 
generate a response-driven question. The proposed 
model is a sequence-to-sequence model which 
enrich the encoder with response and lexical 
functionalities to generate response-oriented 
questions. while the decoder is based on the 
attention mechanism. The authors performed a 
preliminary study on generating neural questions 
from text with the SQuAD dataset, the results of 
experience found that their method can produce 
fluid and diverse questions. Regarding the proposed 
method, our major concern lies in one aspect, the 
attention mechanism can only deal with fixed-
length text strings. The text has to be split into a 
certain number of segments or chunks before being 
fed into the system as input, while the chunking of 
text causes context fragmentation. For example, if a 
sentence is split from the middle, then a significant 
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amount of context is lost. In other words, the text is 
split without respecting the sentence or any other 
semantic boundary. 

Another study, led by Mitkov and Ha [15] aims to 
provide an alternative to the long and demanding 
activity of developing multiple choice tests and 
proposes a new NLP (Natural Language 
Processing) approach to generate questions from 
narrative texts (e.g., manuals, encyclopedias). The 
proposed methodology is based on premises and the 
system is built on separate components, which 
perform the following tasks: extracting terms, 
selecting distractors and generating questions. More 
specifically, the model is based on well-defined 
rules, for example, the generation of a question in 
the following form “what do/does/did the subject 
verb?” from a sentence in the form of a subject 
followed by a verb and an object. However, in 
another study [16], led by the same authors, the 
automatically generated questions were revised and 
the authors confirm that the model is not efficient 
without a manual correction. Regarding this 
methodology, our main concern lies in the 
complexity of the proposed model and the 
requirement of the dataset premises. 

8. CONCLUSION & RECOMMENDATION 

We now have a good understanding of 
how a neural network works, which allows us to 
adopt the right algorithm to use for a given machine 
learning problem. More specifically, we learned 
what the difference between a Feed-Forward Neural 
Network and a recurrent neural network is, when 
should we use a Recurrent Neural Network, how 
back-propagation and forward-propagation work 
over time, what are the key problems with recurrent 
neural network and how an LSTM solve these 
issues. 

We’ve described in details the steps followed to 
create the model for text generation, we provided 
an architecture prototype of a mobile application 
which uses the proposed model and benefits from 
the advantages of augmented reality to highlight 
our work. 

We also talked about generative models. As we 
continue to advance these models and scale up the 
training and the datasets, we can expect to 
eventually generate samples that represent entirely 
comprehensible sentences. 

However, the deeper promise of this work is that, in 
the process of training generative models, we will 

endow the computer with an understanding of the 
textual information and what it is made up of. 

In order to further improve the generated model, we 
can: 

 minimize the vocabulary scope by eliminating 
rare characters. 

 create the model with additional LSTM and 
dropout layers with more LSTM units, or even 
add bidirectional layers. 

 adjust some hyper parameters such as batch 
size, optimizer and even sequence length. 

 use a larger dataset. 
 train on more epochs. 
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