
Journal of Theoretical and Applied Information Technology
31st January 2022. Vol.100. No 2

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

518

MACHINE LEARNING-BASED AUGMENTED REALITY FOR
IMPROVED TEXT GENERATION THROUGH RECURRENT

NEURAL NETWORKS

1ANASSE HANAFI, 2MOHAMED BOUHORMA, 3LOTFI ELAACHAK
1Research Student/Assistant Professor, Abdelmalek Essaidi University, Department of LIST, Tangier,

Morocco
2Professor. Abdelmalek Essaidi University, Department of LIST, Tangier, Morocco
3Professor, Abdelmalek Essaidi University, Department of LIST, Tangier, Morocco

E-mail : 1anasse.hanafi94@gmail.com, 2bouhorma@gmail.com, 3lotfi1002@gmail.com

ABSTRACT

Machine learning (ML) is a large field of study that overlaps with and inherits ideas from many related
fields such as artificial intelligence (AI). The main focus of the field is learning from previous experiences.
Classification in ML is a supervised learning method, in which the computer program learns from the data
given to it and make new classifications. There are many different types of classification tasks in ML and
dedicated approaches to modeling that may be used for each. For example, classification predictive
modeling involves assigning a class label to input samples, binary classification refers to predicting one of
two classes and multi-class classification involves predicting one of more than two categories. Recurrent
Neural Networks (RNNs) are very powerful sequence models for classification problems. However, in this
paper, we will use RNNs as generative models, which means they can learn the sequences of a problem and
then generate entirely a new sequence for the problem domain, also, we propose an architecture of a
learning application that benefits from the advantages of both machine learning and augmented reality to
provide a better learning experience and help teachers build adaptive educational content using the
proposed model.

Keywords: Artificial Intelligence, Machine Learning, Classification, Recurrent Neural Networks,
Sequence Models, Generative Models.

1. INTRODUCTION

Text classification is one of the important and
common everyday jobs in controlled machine
learning. It is about assigning a category or a class
to documents, articles, books, papers, reviews,
tweets or anything that contains text. It is a core
task in natural language processing [1]. Many
applications appeared to use text classification as
the main task, examples include spam filtering,
sentiment analysis, speech tagging, language
detection, and many more. The aim of this paper is
to present the use of a classification methodology as
a generative model based on RNN algorithms,
trained on textual dataset and able to generate
entirely a new sequence of text for the problem
domain. Thus, this paper presents an architecture of
a mobile application that integrate the proposed
generative model.

Generative models are one of the most promising
approaches towards our goal. Actually, generative
modeling is used in unsupervised machine learning
to describe phenomena in data and enable
computers to understand the real world. This AI
understanding can be used to predict all manner of
probabilities on a subject from modeled data [2].

An illustration of a generative model might be one
that is trained on a set of images from the real world
in order to generate similar ones. The model might
take observations from a 500-gigabyte set of images
and reduce them into 100-megabyte of weights.
Weights can be thought of as reinforced neural
connections. Through increased training, an
algorithm comes to produce more realistic images.

To train a generative model, we first collect a large
amount of data in some domain (e.g., think millions
of images, sentences, or sounds, etc.) and then train
the model to generate data like it. The trick is that

Journal of Theoretical and Applied Information Technology
31st January 2022. Vol.100. No 2

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

519

the neural networks we use as generative models
have a number of parameters significantly smaller
than the amount of the data we train them on, so the
models are forced to discover and efficiently
internalize the essence of the data in order to
generate it. Generative models have many short-
term applications. But in the long run, they hold the
potential to automatically learn the natural features
of a dataset, whether categories or dimensions or
something else entirely.

2. STATE OF ART

With the rapid increase in computing
capacities of computers and the evolution of
learning techniques, the use of neural networks is
becoming popular in various computer science
field, especially within the image processing,
automated translation and speech processing
communities. In recent years, two types of neural
networks have marked a technological
breakthrough in the field of speech processing: so-
called "deep" networks and recurrent networks.

The Artificial Neural Network (ANN) was
introduced as a rudimentary model of information
processing in the human brain. Thus, the basic
structure of an ANN is a network of small
computing nodes linked together by guided and
balanced links (Figure 1).

Fig. 1: Representations of an artificial neural network
(ANN) in the form of a network of computation nodes

connected by links directed and weighted by the
coefficients.

The nodes represent the neurons and the weighted
links represent the strength of the synaptic
connections linking the neurons between them. In
this representation, the neuron can be a summator
of the potentials of the synaptic signals which reach
it, and which in turn transmits information based on
this sum via a non-linear transfer function. An
ANN is activated by injecting data at all or part of
the nodes and then propagating the information by
following weighted links. Once the information is

propagated, we can collect the activation levels of
all or part of the nodes and use them as a prediction
or a classification.

Many types of neural networks with very different
properties have been developed since the
emergence of formal neurons in the 1940s [1].
More specifically, we distinguish two types of
networks: those whose connection graph has at
least one cycle and those that do not. The first ones
are said to be recurrent and the latter are said to be
acyclic. Among acyclic networks we find networks
of the perceptron type [2], convolutional [3], Radial
Basis Function [4] or the Kohonen maps [5]. But
the most frequently used variant is the multilayer
perceptron (MLP).

We therefore begin by presenting the most classic
of neural networks, the multi-layered perceptron
which is an acyclic neural network (Feed-Forward
Neural Network - FFNN) structured in layers. A
multi-layered perceptron is thus composed of an
input layer, one or more intermediate layers called
hidden layers and an output layer. For each of the
layers, all of its nodes are connected to all the nodes
of the previous layer (Figure 2).

Fig. 2: Layered structured neural network commonly
known as a multi-layered perceptron (MLP).

The origin of the multi-layered perceptron goes
back to F. Rosenblatt who in 1957 was inspired by
the work on formal neurons [1] and by Hebb's rule
[6] to develop the model of the perceptron.

This model has only one layer but has already
solved simple tasks of classifying geometric
symbols. It is however impossible with the method
formulated by F. Rosenblatt to train a system
having several layers which turns out to be very
restrictive a few years later. Indeed, in 1969 M.
Minsky and S. Papert demonstrate by rigorous
analysis that the perceptron is unable to learn
functions if they are not linearly separable (like for
example, the Boolean XOR function). They even

Journal of Theoretical and Applied Information Technology
31st January 2022. Vol.100. No 2

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

520

go a little further by demonstrating that it is
necessary to have at least one additional layer of
neurons to be able to solve this problem. But there
is then no method to train a multi-layered
perceptron.

It took more than ten years for researchers to
develop a learning technique that allows to adjust
the parameters of a multi-layered perceptron.
Indeed, it was P. Werbos who first proposed the
idea of applying to ANN the error gradient back-
propagation technique developed over the years
1960. During his thesis that he defended in 1974
[7], he analyzed the relevance of this method but,
given the lack of interest in the scientific
community for ANN following the publication of
M. Minsky and S. Papert, he did not publish any
result on the subject before 1982 [8]. It was finally
in the mid-1980s that this method was rediscovered
by several research teams [8–13] and that it ended
up being popularized.

In 1986, D. umelhart, G. Hinton and R. Williams
show in [9] that using the back-propagation of the
error gradient applied to a multi-layered perceptron
can finally exceed the limits of the perceptron
which were raised by M. Minsky and S. Papert in
1969. In particular, the multi-layered perceptron
makes it possible to treat complex nonlinear
problems, with only one hidden layer and a
sufficient number of neurons, any nonlinear and
continuous function over a compact space with
arbitrary precision [10]. The multi-layered
perceptron is thus called a universal approximator
of functions.

In the case of many sequences’ classification tasks,
to make a decision at a given moment, it is
interesting to know the past and all or part of the
future of the sequence. For example, in automatic
speech processing task, to be able to determine
which phoneme is being pronounced at time t, it is
very useful to know which phonemes follow it as
well as which precede it. The RNNs we described
in the previous section process sequences in
temporal order and therefore do not have access to
future information.

To tackle this problem, we can add future
information to the input data or introduce a delay
between an input vector and its target so that the
RNN has time to process some future information
before having to make a decision. However, these
different approaches add constraints on learning

either by increasing the number of parameters in
the input layer, or by forcing the RNN to learn the
chosen delay to give its response at the right time.
And in both cases, we do not solve the problem
because we introduce hyperparameters (number of
input vectors to aggregate or response time) which
can be difficult to adjust. In addition, the
asymmetry between the past and the future in terms
of the exploitable context is not in any way
eliminated.

In 1997, Schuster and Paliwal introduced in [11] an
elegant solution called bidirectional Recurrent
Neural Network (BiRNN) which consists in
presenting each sequence to be processed to two
RNNs of the same type but with different
parameters:

 The first one processes the sequence in the

natural order
 The second one processes the sequence in

reverse order.

The two sequences obtained at the output of the two
RNNs are then concatenated before being put at the
input of a multi-layer perception (MLP) which for
each initial input vector then produces an output
which is based on all the context passed via the exit
of the first RNN and all the future context via the
exit of the second. It is thus possible to fully exploit
the capabilities of the RNNs over the entire
sequence for each time step.

3. THEORICAL BACKGROUND

3.1 Recurrent Neural networks

Recurrent neural networks (RNNs) are the
cutting-edge algorithm for sequential data. This is
because it is the first algorithm that remembers its
input, due to its internal memory, which makes it
ideally suited for machine learning problems that
involve sequential data. It is one of the algorithms
behind the scenes of the incredible achievements of
Deep Learning (DL) in recent years.

In order to understand how RNNs works, we
absolutely need to have a general understanding of
a normal feed-forward neural network and also
understand what are sequential data. The simplest
definition of sequential data is any kind of data
where the order is important. For example, the
DNA sequence can be considered as a sequential
data.

Journal of Theoretical and Applied Information Technology
31st January 2022. Vol.100. No 2

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

521

The techniques used to transfer data by RNN’s and
feed forward neural network allowed these two
neural networks to get their names. The data pass
only in a single direction, from the input layer to
the output layer, passing by all the hidden layers,
and never touch a node twice. Because feed
forward neural networks can’t store their inputs,
they are considered weak at predicting next inputs
they could obtain. Also, inputs are not ordered and
all previous stats are forgotten and cannot be
memorized.

In a recurrent neural network, the information pass
through a circle. When there is a taken decision or a
prediction, it contemplates the current input and
also what it has learned from the inputs it received
before. Figure 3 demonstrate the variance in
information flow among a recurrent neural network
and a feed-forward neural network.

Fig. 3: RNN & feed-forward neural networks information
flows

An example is the best manner to demonstrate the
notion of a RNN memory, let’s set the string
“chemistry” as an input to our feed forward neural
network, the algorithm will process that string
character by character. When it processes the
character "m" it has already forgotten about "c", "h"
and "e". So, it’s almost impossible for this neural
network to make a prediction on the upcoming
characters.

However, thanks to the internal memory storage of
recurrent neural network, this kind of networks has
the ability to remember the previous inputs. The
produced output or result will be copied and looped
back into the network as a new input. The strong
point of RNN algorithms is that they have the
ability to maintain critical and relevant information
on future data, thanks to inputs from network
nodes.

A feed-forward neural networks use a matrix of
weights that will be applied to the inputs to produce

the outputs. This is also the case for recurrent
neural networks. In addition, these networks have
the capacity to readapt this weight matrix through a
backpropagation through time (BPTT) and a
gradient descent.

For a better understanding of the idea of
backpropagation through time, we will need to
understand the two notions of forward and
backpropagation. Mostly, in neural networks,
forward propagation allows to have an output of the
model and check if this output is correct. While the
backward propagation makes it possible to find the
deviation of the error by comparing it with the
weight, which will subsequently allow this value to
be subtracted from the weight.

These deviations are then processed by gradient
descent, an algorithm that makes it possible to
iteratively minimize a given function. Then it
regulates the weights, in order to minimize the
error. By these two notions, the neural network is
capable to learn during the training phase. Figure 4
demonstrates the tow notions in a feedback neural

network:

Fig. 4: Forward and backpropagation propagations in a

feedback neural network.

3.2 Issues of standard RNN’s

There are two main difficulties that RNNs
have confronted, to understand those difficulties we
need to explain what is a gradient.
A gradient is a fractional derivation compared to its
input. In other words, the gradient calculates the
percentage of the output’s changes of a function
when inputs are changed.

 Exploding gradients:
Sometimes, with no significant reason, the
algorithm allocates a wrong high importance to the

Journal of Theoretical and Applied Information Technology
31st January 2022. Vol.100. No 2

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

522

wights, in this situation, we have an exploded
gradient. This issue can be easily solved by
squashing or truncating the gradients.

 Vanishing gradients:

From time to time, we could get small values for
the gradient, which cause the model to stop learning
or take too long time to give a significant result.
This issue was harder to solve than the first one, but
thanks to LSTM algorithms, this issue was solved.

3.3 Long Short Time Memory

Long Short-Term Memory (LSTM) is an
artificial recurrent neural network. Different than
the standard feed forward neural networks, they
extend memory which make them capable to store
significant information. The layers of a recurrent
neural network compose the building units of
LSTM algorithms and are called LSTM network.
Using the LSTM in any sequential task will
guarantee that long-term information and context
are maintained.

In comparison with the standard type of RNN,
LSTM units are not interconnected, but are
considered as a block of memory that are connected
in layers, each block is responsible of managing its
state, its output and the flow of the information
thanks to the gateways. Regarding the weight of the
stored information, the LSTM blocks can choose
whether to update or remove that information.

All LSTM blocks are composed of tree gates (input
gate, output gate and forget gate), all these gates
decide together whether to accept the new input, let
it update the output or swape the memory of the
block (Figure 5).

Fig. 5: Illustration of a recurrent neural network with
three gates: input, output and forget

4. METHODOLOGY

In this section we explain our contribution,
by demonstrating in details the steps followed. To
the best of our knowledge, no related work has
been reported addressing such a type of
methodology with accurate prediction.

Before going through this section, here is a brief
description of what we want to accomplish. Our
contribution consists of implementing a prototype
of an augmented reality application playing the role
of a learning assistant through an intelligent 3D
avatar, this Avatar will have the ability to respond
to questions in the field of chemistry / biology
through a learning model. This learning model is a
generative model for generating human-
understandable sequences of characters. The
sequences or the character chains generated will be
represented in the augmented reality application by
the avatar.

4.1 Data collection, cleaning and analysis

Since we are working in the context of
learning in Moroccan universities, we have chosen
the second official language of Morocco (which is
the French language) as the language of the data
that will be used during the training phase of the
model. Then, we started by looking for university
courses, scientific books, communications, articles,
documents, any textual data related to the field of
chemistry and biology.

Tab. 1: Collected data fields and description

Field Discipline Description
Chemistry Organics This discipline

interest in
structure,

properties and
also reactions of

organic
composites

Inorganique This discipline
is the opposite
of the first one
and it’s aims to

study properties,
formation and
synthesis of

composites that
don’t contain

carbon-
hydrogen bonds

Analytique This discipline
is interested
essentially in
identifying

Journal of Theoretical and Applied Information Technology
31st January 2022. Vol.100. No 2

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

523

matters
Physical This discipline

tries to apply
physics concepts
on macroscopic
phenomena in
chemistry such
as motion and

force
Biology Anatomy

morphology
Description of
the inner and
outer form of
living things

Psychology Behaviors of
living beings

taken
individually and

among
themselves

Embryology Development,
living things

Psychology Analysis of the
functions and
functioning of
living beings

Botany,
zoology,

anthropology

Classification of
living things

Ecology,
Ethology,

Sociologies

Analysis and
study of

societies and
organization of
living beings

We classified the collected data by its theme (or
sub-discipline). Table 1 represents the 10 sub-
disciplines of the collected data. We obtained a text
file for each discipline (e.g., organic.txt,
psychology.txt).

In order to describe the data collected, we have
carried out word processing for each text file. Table
2 represents the results of the treatments carried
out.

Tab. 2: Statistics on collected data

File name Number
of lines

Total
number
of used
characters

Total
number
of used
words

Organique.txt 636 53757 8031
psychology.txt 957 75671 10351
Ecology ethology
socilogi.txt

532 35954 6942

Textual data which is not processed and cleaned
can’t revel its insight. in our case, it’s difficult to

represent this textual data in graphs because it’s not
numerical. in order to give a graphical description
of the collected data, we researched tools and
techniques for visualizing textual data, and we
found a way to graphically represent this type of
data using a python library named “Word Cloud”.

Word cloud is a technique that use the frequency of
a word and associate it to the size and opacity of
that word to create an image in order to visualize
the textual data. Figure 6 shows the graphical
representation of the collected data

Fig. 6: Textual data visualization: generated image using
word cloud python library

As you can see, the most frequent words are words
in the category of pronouns and determinants. With
the given dataset, Word cloud does not give a clear
view on the most frequent words that interest us. To
try fix this problem, we used another tool called
“TextKit” which will allow us to manipulate our
data word by word.

Thanks to TextKit, we were able to perform the
following 3 treatments in the order listed:

 Convert “organique.txt” text file into a token
document where each token is a word.

 Take away stop words, in natural language
processing, stop words are words so common
that they provide little information about a
document, and so are often removed.

 Filter words that are less than a certain number
of characters long

Find bellow TextKit command line used to execute
these treatments:

textkit text2words atome-fr.txt | textkit filterwords |
textkit filterlengths -m 5 > output.txt

Journal of Theoretical and Applied Information Technology
31st January 2022. Vol.100. No 2

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

524

From the command above, the result was redirected
to a new text file (output.txt). This output file was
then used as an input to the word cloud library.
Figure 7 shows a graphical representation of the
dataset after cleaning.

Fig. 7: Textual data visualization: generated image using

word cloud python library

4.2 Model architecture

Fig. 8: Proposed model architecture

The architecture of proposed model consists of
a sequence of 4 layers (Figure 8). The LSTM layers
are the main layers of our model, they are the ones
that will allow the model to learn thanks to their
internal memory. The idea behind using dropout
layer is to prevent the overfitting effect. For
example, if the dropout is set to 0.2, then for each
iteration within each epoch, each node in that layer
has a 20 percent probability of being removed from
the network. In this way, the model is capable to
learn deeper and create important links.

The dense layer is entirely connected by nodes of
the layer. Each node of each layer receives in its
input all other nodes of the previous layer, they’re
densely associated. In that way, the learning will be
more efficient, meaning that the model will learn all
possible features from all the associations of the
features of the previous layer.

Regarding the distribution of the collected and
cleaned data into learning and validation dataset,
we chose a method called cross-validation, this
method has proved its effectiveness since it uses all
the available data in an optimal way. In general, a
large training and a small validation set in each
iteration. For the construction of our model, we
chose 80 percent of the data for training and 20
percent for validation.

While constructing the model, there are
hyperparameters that have to be setup correctly and
adjusted so that we can get an accurate prediction
when back testing the model. This paper [14] have
stimulated us on how we could organize
experimental trials to find the best hyperparameters
that will lead to higher accuracy and decrease the
chance of overfitting the data, related to if no
experimental trials was done to our model and data.

When performing the experimental trials, we will
construct our LSTM model with default
hyperparameters that fit our case best according to
diverse papers that we find extremely valuable. We
will then take each hyperparameter and attempt to
detect an ideal value to that hyperparameter.

The best value for a hyperparameter is found by
evaluating the LSTM model by back testing it with
the test data. We will then calculate the
“Categorical Cross Entropy (CCE)” loss function.

Cross entropy is generally used in multi-class
classification tasks and it’s used to measure the
variance between two probability distributions. In
the context of machine learning, it is the quantity of
error for categorical multi-class classification
problems

After all potential values for that specific
hyperparameter has been evaluated we will plot on
the “X” axis the hyperparameter value and on the
“Y” axis the CCE value. We can then see that the
hyperparameter value with lowest CCE is the most
optimal one.

Figure 9 shows that 0.3 is the suitable value to
choose for the dropout layer in our case because
that value has the smallest categorical cross
entropy.

Journal of Theoretical and Applied Information Technology
31st January 2022. Vol.100. No 2

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

525

Fig. 9: Evaluation of the categorical cross entropy with
different values of dropout hyperparameter

Each LSTM layer has a number of memory blocks
or cells, to find the most optimal number of cells
for those two layers. We trained the network with
different values, from the figure 10, we can see that
the more we use of cells, the more the CCE
decreases (256 was chosen as the value of the
number of cells of the two LSTM layers. We
noticed, the more we increase this parameter, the
more time the model needs to learn).

Fig. 10: Evaluation of the categorical cross entropy with
different number of cells in each LSTM layer

To sum up (see Figure 11), the proposed model is a
sequential model which is a linear stack of layers.
The first layer is an LSTM layer with 256 memory
block and it returns sequences. This is done to
guarantee that the succeeding LSTM layer obtain
sequences and not just randomly dispersed data. A
dropout layer is applied after the first LSTM layer
to avoid overfitting of the model by ignoring
randomly selected neurons during training, and
hence decreases the sensitivity to the specific
weights of individual neurons. 30 percent is used as
a good compromise between maintaining model

accuracy and avoiding overfitting. Finally, we have
the last layer as a fully connected layer with a
“softmax” activation and neurons equal to the
number of unique characters.

Fig. 11: The proposed model layers output shapes

Now that we have a clear understanding on how we
built our model, the next step is the training phase.
In order to improve this phase, we started by doing
more cleaning processes on the dataset, the first
thing was to reduce the number of words by
eliminating upper-case characters and rare
characters, such as punctuations, and replacing
successive white spaces with one space character.
We consider now that our dataset is clean enough,
but we can’t model characters directly, so we
decided to translate characters to numbers (assign
an integer to each character) and the samples will
be based on those integers. The next step was the
construction of the sequences, all inputs of all
samples will share the same length
“sequence_length”, and the outputs would be
always one single character.

To have a good understanding on how we
constructed the sequences, let's do a demonstration.
First let’s assign the number 10 to the variable
“sequence_length”, and secondly let’s take the
following dataset: “chaque atome est composé de”
(it would be represented by integers in the
algorithm, just for the purpose of explaining we
decided to simplify and use characters directly).
Here are the tree first sample that will be generated
based on the previous chosen dataset: (“chaque
ato“, “m”), (“haque atom”, “e”) and (“aque atome”,
“ ”). Note that each sample is composed of one
input and one output. In that way we increase the
number of samples and the model will be able to
give convenable prediction with the minimum
possible errors.

5. RESULTS

To be able to generate new text
understandable by the human being, the model
must learn on several samples. Showing to it many
samples to learn features between inputs and

Journal of Theoretical and Applied Information Technology
31st January 2022. Vol.100. No 2

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

526

outputs. Each sample is composed of two things,
the first one is a chain of characters (the input), and
the second one is the next character (the output)
that give sense to the hole characters combined
together or that correct the phrase grammatically.

The model is now ready and the samples are
created, we move to the next step which is the
training phase. While the training process is
running, in order to assess the performance of the
model, we logged the values of loss and accuracy
functions, Figure 12 represents the evolution of
those two functions during the training process.

Fig. 12: Evolution of the loss and accuracy metrics over
epochs (blue trait represents the loss function. The

orange trait represents the accuracy function)

 The loss function lets you know how the model
behaves on the test and validation datasets.
Technically it’s the sum of the errors identified
in that dataset.

 The accuracy metric let you know assess the
performance of the model, technically it’s the
number of correct predictions divided by the
total number of predictions.

The above two metrics are not fully sufficient to
assess the performance of the model, there are other
metrics that we can rely on, precision and recall
functions. We definitely need to calculate these two
metrics, but before that, what are these two metrics
and how they work:

 Precision is a metric which allows to calculate
the number of positively correct predictions,
this metric is very important because it helps to
know the performance of the model when there
are false positives. For example, assuming we

are making predictions about a dangerous
disease, if the value of that metric is low, then
many patients will be identified as sick with a
false diagnosis.

 The recall metrics gives the sum of true
positives that were found or identified,
different than the precision metric, the recall
acts only on correct positives predicted out of
all positive predictions. It gives some
knowledge on the coverage of all positive
predictions.

Figure 13 is an explanatory graph of the values of
these two metrics obtained during the model
training phase.

Fig. 13: Evolution of the recall and precision metrics
over epochs (blue trait represents the recall function. The

orange trait represents the precision function)

We can combine the above two metrics (precision
and recall) and get a new useful metric. It’s called
F1 and it measures the accuracy of the model.

When the false positives and the false negatives are
few, F1 has a value close to 1, in this case the
model is considered as perfect. In case the F1 score
is close to 0, the model is a total letdown.

Bellow an example of calculation of this metric
(calculated for the last epoch):

The F1 score is close to 1, the prediction made by
our model are very accurate.

Journal of Theoretical and Applied Information Technology
31st January 2022. Vol.100. No 2

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

527

Now that we built, trained and evaluated the model,
we move to the next step which is the generation of
the text. The two figures below (Figures 14 & 15)
represent the algorithm used during this phase of
text generation.

Fig. 14: Text generation algorithm – part 1

Fig. 15: Text generation algorithm – part 2

We first started by finding a sentence, that will be
the start of the text which will generate
subsequently. We consider this sentence as a seed
of the final text. This seed allowed us to create the
first sequence of model node inputs to predict the
next character. We predict the next character on the
sequence which will be shifted at each iteration by
removing the first character and adding the last
predicted character at the end of the sequence, we
were able to generate text using the model.

Here is an interesting generated text:

“Autre par la force atomique, les électrons dans
cette couche sont appelés électrons de valence le
nombre d'électrons de valence forment un groupe
qui est aligné dans la même colonne du tableau la
force plus forte qui est médiée par les gluons les
protons et les neutrons sont leurs tour hliym

jusqu'au noyau plus l'antiproton est un equibt
chargé négativement d'une absorption sur du
rayonnement de”

Note the above observations about the generated
text:

 That is clearly French but as you may notice,
most of the sentences doesn't make sense.

 It generally conforms to the line format
observed in the original text.

 Almost all the words in sequence make sense
(e.g., “les électrons dans cette couche sont
appelés “), and fewer do not (e.g., “hliym,
equibt “).

 In general, the text looks realistic, but is still
quite nonsensical.

6. PROTOTYPE

As described briefly in the beginning of the
methodology section, we dedicate this part to
provide a prototype of an architecture that can
handle both machine learning and augmented
reality capabilities. Our aim is to help students or
learners through an augmented reality application
to understand the subject they are trying to study.
We believe that augmented reality is an innovative
way to help learners, as the application will interact
with the learner via a virtual avatar that can
generate content with the help of machine learning.

There are several development kits that allow the
creation of augmented reality applications, this was
not a problem for our goal. But the real challenge
was how we could create an application with
augmented reality capabilities while integrating the
use of the generative model that we implemented
and discussed in the previous parts.

It was absolutely necessary that we first prepare a
technical architecture that will allow us to define
the components of our application, taking into
account the diversity of technologies in the
development kits.

6.1 Architecture

The architecture of our prototype is based on
three main components:

 an augmented reality mobile application
 a web server-based application

Journal of Theoretical and Applied Information Technology
31st January 2022. Vol.100. No 2

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

528

 a python script that will use the model we
implemented

The first component is the mobile application with
augmented reality capabilities, which is based on
the AR Core Framework developed by google.
Using this Framework gives the developers
flexibility to designate their application as they
wish since it relies on the architecture of an android
application. Thus, we can target a very large
number of users since the android platform is the
most used operating system in the majority of
mobile terminals.

The mobile application will be able to detect real
scene objects and generate 3D virtual models and
avatars that the user can interact with. 3D models
will also be able to respond to the user by
automatically generating text. Thus, we can get the
help of the operating system services to transform
the generated text into a speech that will be
launched by the speakers of the mobile providing a
better experience regarding the human machine
interaction.

The second component is a web server-based
application that will be installed on a server and
runs on the background. The purpose behind this
component is to receive requests “using HTTP
protocol” that will be sent from the mobile
application. These requests will carry information
on the language, the domain, the size, …etc., of the
text to be generated, roughly the generative model
to be used.

This web application will be able to process these
requests and get the help of the third component of
this architecture. The third component is a script
based on the Python language, which will finally
use the generative model to generate new text.

7. DISCUSSION

Deep learning models such as LSTM have
proven to be effective in the tasks of translation,
handwriting generation, image generation using
attention models, image caption and video to text,
however, in this paper, we proposed a model based
on LSTM and we used it in generating new
understandable text based on the text itself. We
investigated a deep learning approach on textual
data, we predict a character based on a string of
characters to generate new text. So that this text is
understandable by humans, we’ve tried to train the
model several times, taking into consideration
different metrics, and datasets.

The values obtained from the calculated metrics
and those chosen for the hyperparameters show
clearly that our model makes good predictions. In
fact, more than 97 percent of the generated words
are correct. We believe that this is the main
advantage of the proposed methodology.

Based on the proposed prototype, and in order to
highlight our work, we present an interesting use
case:

In the context of learning, several courses require a
basic learning support, whether for learning a new
concept or to improve one's knowledge on a
specific subject. Unfortunately, in a study class, the
support may not be adapted to the learning
capacities of all learners (different skill levels,
learner motivation and interest level). All these
challenges are faced by teachers and demand more
effort in their work. The proposed model can be
used to automatically generate educational content
and facilitate the construction of an adaptative
educational support. Moreover, the proposed
prototype architecture can easily handle the
diversity of technologies and offers an innovative
way to improve the learning experience with the
help of machine learning and augmented reality
capabilities.

We present now some of the methods to generate
text that have been already discussed.

Recent research conducted by [17], aims to
generate meaningful and diverse questions from
natural language sentences, based on a neural
encoder-decoder model. the role of the encoder is to
produce an input representation taking the response
into account, which is passed to the decoder to
generate a response-driven question. The proposed
model is a sequence-to-sequence model which
enrich the encoder with response and lexical
functionalities to generate response-oriented
questions. while the decoder is based on the
attention mechanism. The authors performed a
preliminary study on generating neural questions
from text with the SQuAD dataset, the results of
experience found that their method can produce
fluid and diverse questions. Regarding the proposed
method, our major concern lies in one aspect, the
attention mechanism can only deal with fixed-
length text strings. The text has to be split into a
certain number of segments or chunks before being
fed into the system as input, while the chunking of
text causes context fragmentation. For example, if a
sentence is split from the middle, then a significant

Journal of Theoretical and Applied Information Technology
31st January 2022. Vol.100. No 2

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

529

amount of context is lost. In other words, the text is
split without respecting the sentence or any other
semantic boundary.

Another study, led by Mitkov and Ha [15] aims to
provide an alternative to the long and demanding
activity of developing multiple choice tests and
proposes a new NLP (Natural Language
Processing) approach to generate questions from
narrative texts (e.g., manuals, encyclopedias). The
proposed methodology is based on premises and the
system is built on separate components, which
perform the following tasks: extracting terms,
selecting distractors and generating questions. More
specifically, the model is based on well-defined
rules, for example, the generation of a question in
the following form “what do/does/did the subject
verb?” from a sentence in the form of a subject
followed by a verb and an object. However, in
another study [16], led by the same authors, the
automatically generated questions were revised and
the authors confirm that the model is not efficient
without a manual correction. Regarding this
methodology, our main concern lies in the
complexity of the proposed model and the
requirement of the dataset premises.

8. CONCLUSION & RECOMMENDATION

We now have a good understanding of
how a neural network works, which allows us to
adopt the right algorithm to use for a given machine
learning problem. More specifically, we learned
what the difference between a Feed-Forward Neural
Network and a recurrent neural network is, when
should we use a Recurrent Neural Network, how
back-propagation and forward-propagation work
over time, what are the key problems with recurrent
neural network and how an LSTM solve these
issues.

We’ve described in details the steps followed to
create the model for text generation, we provided
an architecture prototype of a mobile application
which uses the proposed model and benefits from
the advantages of augmented reality to highlight
our work.

We also talked about generative models. As we
continue to advance these models and scale up the
training and the datasets, we can expect to
eventually generate samples that represent entirely
comprehensible sentences.

However, the deeper promise of this work is that, in
the process of training generative models, we will

endow the computer with an understanding of the
textual information and what it is made up of.

In order to further improve the generated model, we
can:

 minimize the vocabulary scope by eliminating
rare characters.

 create the model with additional LSTM and
dropout layers with more LSTM units, or even
add bidirectional layers.

 adjust some hyper parameters such as batch
size, optimizer and even sequence length.

 use a larger dataset.
 train on more epochs.

REFRENCES

[1] W. S. McCulloch and W. Pitts, “A logical
calculus of the ideas immanent in nervous
activity,” The bulletin of mathematical
biophysics, vol. 5, no. 4, pp. 115– 133, 1943.
7

[2] F. Rosenblatt, “The perceptron, a perceiving
and recognizing automaton,” Cornell
Aeronautical Laboratory, 1957. 7

[3] Y. LeCun, L. Bottou, Y. Bengio, and P.
Haffner, “Gradient-based learning applied to
document recognition,” Proceedings of the
IEEE, vol. 86, no. 11, pp. 2278–2324, 1998. 7

[4] D. Lowe and D. Broomhead, “Multivariable
functional interpolation and adaptive
networks,” Complex systems, vol. 2, no. 3,
pp. 321–355, 1988. 7

[5] T. Kohonen, “Self-organized formation of
topologically correct feature maps,”
Biological cybernetics, vol. 43, no. 1, pp. 59–
69, 1982. 7

[6] D. O. Hebb, “The organization of behavior: A
neuropsychological theory,” Psychology
Press, 1949. 7

[7] P. Werbos, “Beyond regression: New tools for
prediction and analysis in the behavioral
sciences,” Harvard University, 1974. 8

[8] P. J. Werbos, “Applications of advances in
nonlinear sensitivity analysis,” in System
modeling and optimization, pp. 762–770,
Springer, 1982. 8

[9] D. B. Parker, “Learning logic,” MIT, 1985. 8
[10] Y. LeCun, “Une procédure d’apprentissage

pour réseau a seuil asymmetrique (a learning
scheme for asymmetric threshold networks),”
in Proceedings of Cognitiva 85, Paris, France,
1985.

[11] D. E. Rumelhart, G. E. Hinton, and R. J.
Williams, “Learning representations by back-

Journal of Theoretical and Applied Information Technology
31st January 2022. Vol.100. No 2

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

530

propagating errors,” Nature, vol. 323, no.
6088, pp. 533–538, 1986. 8

[12] D. E. Rumelhart, G. E. Hinton, and R. J.
Williams, “Learning internal representations
by error propagation,” tech. rep., DTIC
Document, 1986. 8, 12

[13] K. Hornik, M. Stinchcombe, and H. White,
“Multilayer feedforward networks are
universal approximators,” Neural networks,
vol. 2, no. 5, pp. 359–366, 1989. 8

[14] N. Reimers, I. Gurevych “Reporting Score
Distributions Makes a Difference:
Performance Study of LSTM-networks for
Sequence Tagging “Association for
Computational Linguistics, pp. 338–348,
2017. 9

[15] Mitkov, R. and Ha, L. A. (2003). Computer-
aided generation of multiple-choice tests. In
Proc. of the HLT-NAACL workshop on
Building educational applications using
natural language processing.

[16] Mitkov, R., Ha, L. A., and Karamanis, N.
(2006). A computer-aided environment for
generating multiple-choice test items. Natural
Language Engineering, 12(2).

[17] Zhou Q., Yang N., Wei F., Tan C., Bao H.,
Zhou M. (2018) Neural Question Generation
from Text: A Preliminary Study. In: Huang
X., Jiang J., Zhao D., Feng Y., Hong Y. (eds)
Natural Language Processing and Chinese
Computing. NLPCC 2017. Lecture Notes in
Computer Science, vol 10619. Springer,
Cham. https://doi.org/10.1007/978-3-319-
73618-1_56

