
Journal of Theoretical and Applied Information Technology
31st January 2022. Vol.100. No 2

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

480

OPTIMIZED MIN-MIN TASK SCHEDULING ALGORITHM
FOR SCIENTIFIC WORKFLOWS IN A CLOUD

ENVIRONMENT

SALLAR SALAM MURAD1, ROZIN BADEEL 2*, NASHAT SALIH ABDULKARIM ALSANDI3,

RAFI FARAJ ALSHAAYA2 REHAM A. AHMED2, ABDULLAH MUHAMMED2,

MOHD DERAHMAN2.

1Department of Computing, University Tenaga Nasional, Putrajaya, Malaysia

2Department of Communication Technology and Network, University Putra Malaysia.
3 Department of Information Technology, Duhok Private Technical Institute, Duhok Kurdistan Region, Iraq

E-mail: sallarmurad@gmail.com , rozinbabdal1987@gmail.com, Nashat.alsandi@dhk-pti.com

,rafi.shaaya@gmail.com , rehamabdul.ahmed@gmail.com , abdullah@upm.edu.my, mnoord@upm.edu.my

Corresponding authors: gs53825@student.upm.edu.my or rozinbabdal1987@gmail.com.

ABSTRACT

Resource allocation and cloudlets scheduling are fundamental problems in a cloud computing environment.
The scheduled cloudlets must be executed efficiently by using the available resources to improve system
performance. To achieve this, we propose a new noble mechanism called Optimized Min-Min (OMin-Min)
algorithm, inspired by the Min-Min algorithm. The objectives of this work are: i) to provide a
comprehensive review of the cloud and scheduling process; ii) to classify the scheduling strategies and
scientific workflows; iii) to implement our proposed algorithm with various scheduling algorithms (i.e.,
Min-Min, Round-Robin, Max-Min, and Modified Max-Min) for performance comparison, within different
cloudlet sizes (i.e., small, medium, large, and heavy) in three scientific workflows (i.e., Montage,
Epigenomics, and SIPHT); and iv) to investigate the performance of the implemented algorithms by using
CloudSim. The main goal of this study is to obtain optimum results that satisfy the minimum completion
time and achieve better utilization of resources, which lead to increased throughput. The algorithms were
implemented in a Java environment. Results were discussed and analyzed by using formulas and were
compared in percentages. According to the simulation results, the proposed algorithm produces the best
solution among all algorithms in the proposed cases.
Keywords: Cloud computing, Scheduling, Workflow scheduling, Scientific workflow, DAG

1. INTRODUCTION

Cloud computing technology and cloud services are
growing technologies that permits users to pay as
much as their need. It includes hosted applications
that deal with essential factors such as storage and
processing. [1]. Cloud is measured as a web-built
service offered by several network providers-based
consumption of quality of service (QoS), load
balancing (LB) and others [1]. An efficient
algorithm is therefore required to allocate the
correct task to the right resources. Without affecting
cloud service parameters, the available resources
should be used effectively, particularly if the cloud
has a limited resource setting in order to efficiently
and error-freely operate which most cloud systems
on their need, and the cloud has to manage several

factors in cloud planning that directly affects user
Should run, leading to cloud service providers
gaining more reputation when they compete, for
example, with storage available for input and output
operations in the cloud without causing any delay.
The cloud programming process can be classified
into three stages, which are i) the discovery and
filtering of resources, ii) the selection of resources,
and iii) the submission of tasks [1]. The data centre
broker for resource discovery identifies and gathers
the resources available in the network structure.
The targeted resources are selected based on precise
tasks and parameters related to resources
throughout the resource selection process. The tasks
are submitted to the selected resources during the
submission phase, shown below in the research
method through simulation process, section III.

Journal of Theoretical and Applied Information Technology
31st January 2022. Vol.100. No 2

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

481

Tasks are chosen by priority and assigned to
processors that perform a predefined objective
function. There are four main types of cloud
available [2][3]: i) public, ii) private, iii) hybrid and

iv) community cloud. The public cloud refers to a
pay-as-you-go way of having a cloud [4]. The
public cloud has some primary advantages for
cloud-service providers, and no initial network

Figure 1. Cloud Types.

Capital costs or risk transfers to infrastructure
providers. Public clouds, however, are not
thoroughly managed over: i) data, ii) network, and
iii) security settings, which many business
situations hinder their efficiency [5]. In this case, it
is hard to gather all VMs or host data. The private
cloud concept refers to a business or other
organization's internal data centre inaccessible to
the all-purpose public. Community cloud, a variety
of organizations with related objectives, have a
shared cloud network (e.g., Assignments, security
requirements, legislation, and regulation). This is
generally managed on the spot or off-site by
community-based or third-party organizations [3].
Communal clouds have advantages because they
are private and protected networks rather than
public clouds for specific organizations. The
downside is that the cloud is not secure and has to

be handled. However, public cloud benefits from
lower investment in investment capital and a better
deployment pace, a survey by IDG in [6] found that
private clouds are much more common among
businesses. A hybrid cloud system example is
shown in Figure (1). Within a system like this, a
scheduler determines the resource practice of public
and private clouds together if the incoming cloud
users require it. Upon approval of user

requests, the scheduler interprets these requests into
tasks and then moves them to public or private
clouds. The intracloud network, linking a client's
instances and a cloud-based pooled infrastructure, is
a suitable example of a private cloud. Within a
cloud, the network of intra-data centres, as
contrasted with the inter-datacenter network, is
always entirely different [7]. A hybrid cloud

Journal of Theoretical and Applied Information Technology
31st January 2022. Vol.100. No 2

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

482

incorporates private and public cloud models,
which aim to overcome each approach's limitations.
Part of the facility infrastructure in hybrid cloud
turns in private clouds, whereas the rest runs on
public clouds. Hybrid clouds have more excellent
stability than private and public clouds. In
particular, they deliver fitted to control and security
over application data compared to public clouds,
facilitating the growth and reduction of on-demand
services. On the contrary, cross-cloud architecture
involves the most acceptable breakdown between
public and private cloud elements to be identified
carefully [8]. It remains known minimizing transfer
and processing time stays vital to the system when
preparing any intensive data or computing an
application (refer to Figure.8). Because of the
reports and research that have been cone in the
cloud domain, the cloud environment does not have
many standard task planning algorithms. In [9],
Pinedo's description of the scheduling problem is as
follows: "It is a decision-making process that is
used regularly in many manufacturing and services
industries, It deals with the allocation of resources
to tasks over given periods, and its goal is to
optimize one or more objectives. Cloud scheduling
means choosing the most suitable tool or allocating
machines toward all tasks to decrease the
completion time makespan. In general, each task is
designed by prioritizing the list. It is required to
seek the best algorithm to maximize productivity by
seeking the least makespan for using resources in
cloud computing systems where there are
potentially vast numbers of users from different
contexts and technologies and with various
requirements and demands on thousands or millions
of virtual machines waiting for their turn to be
served. It is essential for cloud service providers to
ensure that any available resource is completely
exploited to prevent resources from being idle, thus
incurring unnecessary costs [10][11]. Therefore, the
resources can be sluggish at a certain point in the
system. This provides an opportunity for the
dynamic scheduler to use information that is
changed during jobs execution, thereby updating
the system. To do so, the dynamic scheduler sends a
set of jobs in execution and monitors the system
behavior, collecting information to schedule the
next stage of jobs. This information collection
cannot be accomplished unless the resource is idle
[12]. Furthermore, there are algorithms that take
advantage of idle time. One of those algorithms is
the Heterogeneous Earliest Finish Time (HEFT); it
uses a strategy that considers using the idle time
between two tasks in the processor to schedule a
new task. This will minimize the overall task

completion time if the insertion strategy is feasible.
In Addition, HEFT and Min–Min are efficient
algorithms that belong to static scheduling
processes, which assign resources corresponding to
each job before the function begins; both of these
algorithms mainly concentrate on the overall
completion period as their optimization target.
Nonetheless, these algorithms neglect the effect of
expense. As a rule, the makespan of HEFT and
Min–Min are small in general[13][14].

Due to the number of issues, including the lack of
standards, different and often changing APIs, it is
challenging to overcome limitations or enhance
cloud computing system performance. The
changeable load or daily load is a problem for
algorithms and methods to improve the system
performance. Some works have therefore adopted
historical data to forecast the potential burden of
overcoming this [6], [14], [15]. As loads are
comparatively predicted and controlled compared to
the public cloud, heuristic algorithms [16], for
instance, Particle Swarm Optimization (PSO), and
Ant Colony Optimization (ACO), can be used. The
fundamental issues with the cloud computing
system are resource distribution and cloud planning
[13]. There are also other examples of the general
problem in the literature [17].

The problem is NP-Complete, even though
polynomial-time solutions are available for a few
scenarios [9]. In recent years, traditional optimum
task planning has been well investigated and have
proved to be a non-deterministic time-complete
problem for polynomial (NP). To solve the
problem, many heuristics and metaheuristic
algorithms have been proposed [13]. This is
commonly referred to as a problem with workflow
scheduling. Overall, an NP-complete problem has
been studied extensively in other paradigms [16],
including grid and cluster computing, the workflow
scheduling problem being to reduce the linear
combination of the makespan [18].

In the previous work [19], the authors introduced
Modified MMax-Min, and they produce good
results in terms of (Makespan) than Max-Min and
Round Robin, but the main problem with the
MMax-Min is the precedence between the use of
cloud and resources. Precedence is the condition of
being considered more important than something
else, priority in importance, order, or rank.

In this work, we introduce the OMin-Min algorithm
inspired by the traditional Min-Min algorithm. We
have used three scientific workflows SIPHT,
MONTAGE, AND EPIGONMICS, with different

Journal of Theoretical and Applied Information Technology
31st January 2022. Vol.100. No 2

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

483

sizes for each workflow. We apply different
algorithms Max-Max, Round-Robin, MMax-Min
[19], traditional Min-Min and finally, our proposed
algorithm OMin-Min to achieve less makespan for
each task in different workflow types and different
workflow sizes and to compare the performance for
each algorithm in different scientific workflows to
find the best performance among these algorithms
the proposed OMin-Min algorithm is compared and
evaluated with other existing algorithms in the
cloud computing environment, the performance of
these algorithms in the cloud have been
experimented and measured.
This study aims to develop a new modified version
of the existing algorithm (MIN-MIN), that aims to
provide better performance for task scheduling in a
cloud computing environment.
The current methods and techniques designed for
task scheduling are mostly based on primary and
existing algorithms. However, the versions of Min-
Min algorithms are limited, and not all of them
were dedicated to task scheduling using scientific
workflows, in addition, not all of them were used in
the cloud environment. Moreover, the new
techniques combine more than one algorithm
(hybrid), which means higher complexity in the
system and higher latency. This motivated us to
present the following contributions:
Our main contributions of this work can be
summarized as follows:

• Cloud cloudlets scheduling and resource
allocation in cloud computing are being studied
and introduced.

• To propose an efficient heuristic algorithm
called OMin-Min.

• This work aims to implement, investigate, and
evaluate the proposed OMin-Min Algorithm
against other algorithms executed within three
workflows under specific parameters, the main
goal of proposed method is to deliver minimal
makespan. The work focuses on the
performance in the cloud computing
environment and how efficient it is regarding
task scheduling.

• Several workflows are used, such as Montage,
Sipht and Epigenomics, to evaluate the
proposed algorithm with diverse node sizes for
more accuracy.

• Extensive simulations were done to make a good
comparison of results.

The remaining of this paper will be distributed as
follows: Section 2 is related work, in section 3, the
research methodology has been detailed, the
methodology follows the standard procedure for
analyzing the makespan and how we collect the

data, and the algorithms have been used in this
research. In section 4, the implementation of the
proposed algorithms in the scientific workflow and
the generated results are discussed and presented. In
section 5, the conclusion of this research and the
future work.

2. LITERATURE REVIEW

In this literature, several works have been
completed to solve the problem of workflow
considering the optimization purposes of makespan.
According to the number of users increasingly
growing, virtualization is one of the critical
strategies to increase the usage of physical
resources in cloud environments [22]. These
virtualization strategies involve network
virtualization and enable users to build multiple
virtual machines (VMs) on a single physical server.
Specifically, VMs can be created by raising or
lowering the CPU power or the number of CPUs.
Successful meta-job scheduling algorithms are
required to accurately leverage the virtualized
resources to execute the computing-intensive task
[23]. However, with the adoption of virtualization
techniques in computational cloud systems, new
algorithms are supposed to deal with problems
arising from the cloud infrastructure. The typical
job scheduling problem is that the scheduling of
meta-workers in applications through computation
resources to minimize the jobs accomplished times
while ignoring the actual mutual existence of the
network resource [24]. Various strategies are static
or dynamic scheduling. Through static scheduling
algorithms, all user tasks are assigned that arrive
simultaneously and have independent machine
resources with their availability. The static
algorithm involves basic techniques like First Come
First Serve (FCFS). Round Robin methods (RR),
the FCFS and RR, the static method, get all the user
tasks scheduled in a single time point considering
various parameters [25]. Different assets are used
for determining the specific priority of jobs.
Depending on this priority, the tasks are scheduled
in the cloud, and the activities are categorized based
on the various attributes perceived and assessed by
different users. The most acceptable completion
time is found by assigning tasks to machines,
improving the performance [26].

 Study [25] proposed to us with Ljfr-Sjfr nature's
heuristics for scheduling tasks on computational
grids this at initiating this approach allocate the big
tasks on quickest resource than in next stage, and
this method assigns the minor task to most
temporary resource and the most considerable task

Journal of Theoretical and Applied Information Technology
31st January 2022. Vol.100. No 2

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

484

to the most immediate resource alternately. The
experimental results demonstrate this algorithm
represent good napping instead of just the previous.
But not very much progress was achieved in
formulating an efficient, globally optimized.
Another work in [27], introduced the Macolb
algorithm to boost the cloud tasks scheduling for
load balancing; the Macolb algorithm handles the
device load when attempting to reduce the
makespan of an assigned task set. However,
between tasks are not preemptive, and they cannot
be interrupted or transferred to another processor
throughout their execution. However, in our study,
we do not consider the hardware side

In [28], authors have proposed an automated
resource scheduling algorithm focusses on reaching
the maximum, or part maximum for cloud
scheduling outperforms to increase the productivity
level of computing resources. Yet, they did not
consider additional system parameters, such as I / O
speed, network conditions. Moreover, Study [29],
introduced an improved Max-Min algorithm. The
enhanced algorithm operates on several parameters
instead of one parameter, as in the case of the
conditional Max-Min procedure going to occur.
However, they did not find the workload that could
be sub-divided prior scheduling phase takes place.
While Study [29] presented a new algorithm RASA,
RASA can deliver schedules with a relatively lower
makespan. But, the deadline within each task,
arriving level of the assignments, cost of the task
execution on each of the assets, cost of the
interaction and several other cases that can be a
subject of research are not considered. All of the
above works [26] [30] [31] are associated with
classical task scheduling algorithms like SJF
(shortest job first), FCFS (first come, first serve),
RR (round-robin) concerning Min-Min and Max-
Min algorithms. On the other hands, an algorithm
was introduced in [32], consists of two components.
In the first part, the effectiveness is increased by a
randomized algorithm. A scheduling list algorithm
is being used to reduce the makespan; they
introduced virtual task algorithms to improve
makespan and acceptable efficiency in the
complicated multi-cloud environment. The
furthermost mutual objective encountered in the
distributed systems literature is minimizing the
completion time, or makespan, accomplished by
appropriate allocation of tasks in the available
resources.

 2.1 Min-Min Algorithms Related Literature

Many researchers have conducted different
perspectives and versions on Min-Min algorithm

scheduling and resource allocation based on
algorithm studying and examining the same
approaches in the literature. The following Table
summarizes previous Min-Min versions in the
literature. On the other hand, many studies focused
on schedule using the Min-Min algorithm in [33].
The study introduces a unique algorithm based on
an initial Min-Min algorithm called "QoS directed
min-min algorithm." At the point of scheduling of
tasks, it needs higher throughput than other
algorithms. Whereas, if the necessary throughput
for various tasks varies extremely, the QoS guided
min-min provides a better outcome than Min-Min.
However, if the throughput demand of all tasks is
about the same, the QoS directed min-min
algorithm performs like the Min-Min algorithm.

Moreover, Study [30] implemented a load
balancing algorithm for equal scheduling over Max-
Min. This algorithm attempted to use the best
solution and limit the execution time and expected
price to implement all jobs. Additionally, they
didn't compare these outcomes to other swarm
intelligence algorithms to discover a better
alternative. Another study [31] have discussed and
developed a Min-Min traditional algorithm in which
tasks have relied on the metrics like server loads
and user priority. This approach classifies the users
who assign the tasks to usual and significant users.
The full loaded servers and minimum loaded
servers with make duration are used to allocate
charges depending on these users. This approach
provides better results in resources usage ratio and
offers better user satisfaction.

Many studies have been introduced modified or
Enhanced Min-Min. First of all, [32] introduced
Improved Min-Min, which improves the Min-Min
algorithm based on QoS constraints, and high-
priority tasks can be implemented first on the
condition that high QoS tasks get high QoS
resources in the Grid environment. Moreover, in
[34], they introduced an algorithm that tries to use
the advantages of this basic algorithm and avoids its
drawbacks to reduce completion time and improve
load balancing in a Grid environment. While anther
studies have been done in a cloud environment, in
[35], An Improved Min-Min Algorithm in Cloud
Computing has been introduced. They compared
the improved min-min algorithm with the
traditional min-min algorithm to enhance resource
utilization rate. Another study [36] presented an
efficient rescheduling based task scheduling
algorithm (improved Min-Min Algorithm (I Min-
Min) to improve system performance and load
balancing, and utilization of system resources. All

Journal of Theoretical and Applied Information Technology
31st January 2022. Vol.100. No 2

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

485

the above studies [37][34] [35],[36] introduced or
proposed improved or Enhanced Min-Min
algorithms. Still, none of them used these
algorithms with a scientific workflow such as Sipht
or Montage, while [38] introduced Enhanced Min-
min algorithm in cloud environment To achieve the
best performance and minimize total completion
time, reduce response time finally maximize
resources utilization by using two different
scientific workflows with different sizes
Montage_25 Montage_50 Montage_100
Montage_1000 CyberShake_30 CyberShake_50
CyberShake_100 CyberShake_1000.

In [19], they introduced MMax-Min with different
scientific workflow and com-pared their work
performance with RR and Max-Min's other
algorithms. The proposed algorithm can achieve
better results than other algorithms.

3. SCHEDULING

3.1 Scheduling Process

It is vital to bear in mind the difference between
jobs, tasks and cloudlets. A job might consist of
one task or set of tasks [39], as shown in Figure (2).
A job can have many identical or non-identical
tasks. Whether a job completes successfully or not
depends upon the status of its tasks; for example, if
its tasks do not complete within the timeout
threshold or fail for whatever reason, then the job
will be marked as timed out or for-gotten. A job
will only be marked as completed when all of its
tasks have been completed successfully. On the
other hand, a cloudlet is mentioned in section
IV(B). The scheduling process is summarized as
follows:

• Resource discovery and filtering – the broker
of the data center will dis-cover the resources
available in the network system. It will then
gather the information of status related to
them.

• Selection of resources – Desired Resources is
chosen based on specific parameters and
resource criteria.

• Submission of Task – the jobs are forwarded
toward the designated re-source.

3.2 The Goal Of Scheduling Algorithms

The key goal is to schedule the jobs according to
adaptable time, which involves determining the
correct order in which jobs can be done under
transaction logic restrictions. There are two

primary algorithm groups. 1) Static algorithm and
2) dynamic algorithm. Both have their benefits
and constraints. Dynamic algorithms are more ef-
fective than static algorithms but have more
overheads compared with others.

Figure 2. Jobs And Tasks In Workflow Scheduling

3.3 Workflow Scheduling Problem

The workflow applications are usually modelled
as a directed acyclic graph (DAG). Graph denotes
tasks and graph edges denotes the data
dependencies among tasks with a load on the
nodes that reflect the computational complexity,
and load on the edges represents the
communication volume [18]. The total running
time is generally referred to as the time or
makespan (the processing time). Many scheduling
algorithms were proposed in recent decades,
which are an NP-Hard issue to efficiently manage
and execute business applications [18].
Appropriate heuristics, metaheuristics or
approximation algorithms are necessary to find an
almost optimal solution to the problem in
polynomial time. Some standard workflow
heuristics algorithms are heterogeneous Earliest-
finish-time (HEFT), critical-path-on-a-processor
(CPOP), [40] Min–Min [41], which seek to
achieve execution performance level. So, the
purpose of workflow scheduling techniques is to
reduce the makespan of a parallel application by
appropriate allocations of the tasks to the
processors/resources and configuration of task
execution patterns.

Journal of Theoretical and Applied Information Technology
31st January 2022. Vol.100. No 2

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

486

Figure 3. Different Strategies For Scheduling

3.4 Scheduling Strategies

According to [42][43][44][45][46][47][48][49] a
classification of scheduling strategies was done and
is shown in Figure (3).

3.5 Workflow Scheduling

Workflow implementations are typically conducted
in a series since they are several separate tasks to
achieve a specific result [50]. Task and the
dependent relation of the tasks are shown
respectively in the standard DAG models as node
and edge. DAG is a finite, directed diagram, so
nodes have topological sequences, and edges are
sequences of execution. The collections of business
activities and their effect on one another can be
used for this reason. DAG may also be used as a
consolidated representation of binary choice
sequence data, such as the binary decision diagram.
A DAG should formalize the accessibility
relationship as a partial order with several
applications while scheduling activities that
function similarly to a workflow of business [51].
Since workflow tasks do have the functional
sequence and partial order properties, in this
context, we have set up a simple DAG model which
represents the structure of various workflow tasks,
as il-lustrated in Figure (4). The DAG of the
application workflow contain eight tasks; thus, a
particulate's respective dimension equals eight [51].

Figure 4. A Simple Dag Example Of Workflow
Application.

 Data transmission costs are estimated from two
separate hardware with minimal operating costs for
the relevant activities. The worst (w) value for
finding the node weightiness is the worst rate. The
edge value is calculated as data transmission costs
from two various machines that are responsible for
maximum execution costs of associated tasks.
Simple best value (SB) takes account of the best
performance and communication costs. The worst
value (SW) of performance cost and
communication costs [52].

3.6 Scientific Workflow Types
There are two types of workflows that are discussed
[53][54]:
1.Basic workflow determines the output of any
simple task in the formula of "DAG" as defined in
Figure (8).
2.The scientific workflow contains a vast number of
compound data in the formula of thousands of DAG
tasks [61], which is also discussed shortly in Table
(2), indicates the many real-life descriptions of
workflows based on research applications.[10],
[18], [23], [29], [51], they can be divided into two
major categories: i) data-intensive and ii) compute
intensive workflows. The communication-to-
computation ratio CCR value is used to categorize
these workflows. The CCR value is showing a very
small, then it will be considered as compute-
intensive workflows. Otherwise, it is data-intensive
[23][55], refer to Figure (5). Researchers in [56]
proposed to study the so-called PCP, mainly
attentive to time, cost and energy efficiency,
specifically on data-intensive workflows. They have
developed an algorithm to design the workflow
while fulfilling the QoS constraints. Study [57] has
shown the advantages of the min-min and max-min
by Ibarra and Kim [65] being computationally
intensive algorithms.

Journal of Theoretical and Applied Information Technology
31st January 2022. Vol.100. No 2

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

487

Figure 5. Types Of Scientific Workflows

3.7 NEED FOR IMPLEMENTING
WORKFLOWS IN CLOUD

Application scalability is the main advantage of
moving into Clouds. In comparison to grids, cloud
scalability enables resources to meet the application
requirements in re-al-time. In contrast with the
traditional approach that requires advanced resource
reservations in global multi-user Grid
environments, workflow management systems can
quickly meet application quality of service needs.
Applications of workflow often re-quire very
complex running environments. Such domains on
grid resources are hard to construct. Furthermore,
every grid site has a different setup, and each
application must be ported to a new place with extra
effort. The application developer can create an ap-
plication environment that is fully customized,
scalable and is designed for its application using
Virtual machines (VM)[10], [18], [51].

3.5 Overview Of Scientific Workflows

3.5.1 Montage

The re-projected, revised images are then placed
together into the final mosaic, and all images are
modified to the same level [53]. The montage
application was represented as a workflow in a grid
environment like the TeraGrid [53][58]. The Nasa /
Ipac infrared research archives (Montage:
Astronomical Image Engine) was developed as an
open-access toolkit for personalized mosaics in the
sky with inbox-sized (fits) reference images

[59][60]. The display's geometry is determined
from the geometry of the input images during the
creation of the final mosaic. The inputs will then be
re-planted to the same spatial dimension and
formation—the photos' background pollution.
Montage is known as data-intensive workflow
Figures (6).

3.5.2 Cybershake

The cybershake workflow is being used in the
southern California earthquake Center in order to
identify earthquake dangers in a region by the
Probabilistic Seismic Risk Analysis technique
(PSHA) [61]. A finite-difference simulation for the
production of green strain tensors (SGTS) is carried
out, given the region of focus. The Sgt data was
used to measure synthetic seismograms for each of
the expected ruptures. Phantom Acceleration and
probabilistic hazard curves are generated once this
is done[62]. The Pegasus workflow management
system (Pegasus-Wms) on the tera- grid has been
used to perform cybershake workflows, leading to
over 800,000 jobs. data-intensive work-flow Figure
(7) are recognized as Cybershake

3.5.3 Epigenomics

At present, the use centre Epigenomics is part of the
age-wide mapping of the epigenetic state of human
cells.

Figure 6. Montage Workflow [23].

Journal of Theoretical and Applied Information Technology
31st January 2022. Vol.100. No 2

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

488

Figure 7. Cybershake Workflow [23].

The workflow of Epigenomics is a data processing
pipeline, using the workflow framework of Pegasus
to optimize the efficiency of various genome
sequencing operations [63]. The genetic analyzer
system is divided into several operational chunks
that are parallel to the DNA sequence data produced
by Illumi-na-soleXa ("Illumina."). The data in each
piece is transformed to a file type that is usable by a
Maq system (Maq: mapping and quality assembly).
The remainder of these opera-tions consists of
removing the noisy and contaminating sequences,
moving sequences in a reference genome to the
appropriate spot, producing a global map to classify
the sequence concentration at each point in the
genome. To manage the data on the development of
DNA methylation and histone modification, this
procedure is used by the Epigenomics Centre.
Figure (8) categorize epigenomic workflows into
categories i) da-ta-intensive and ii) compute-
intensive workflow applications.

Figure 8. Epigenomics Workflow [23].

3.5.4 Sipht

An extensive search of small, translated RNAs
(sRNAs) that regulate several processes such as
secretion or virulence in bacteria occurs in the
Harvard University bio-informatics project. In [63],
The sRNAs ID Protocol (Sipht) uses a protocol to
automatically scan for SRNA encoding genes in the
National Biotechnology Information Center (NCBI)
repository for all bacterial replicons. The Kingdom-
wide forecasting and footnote of SRNA genes
include using a range of programs with DAG (DAG
man: Directed Acyclic Graph Manager) [64]
capabilities to carry out the appropriate program-
ming. These include predicting rho-independent
transcriptional terminators, comparing the
intergenetic regions with various replicas and
footnotes of any sRNAs that are present [52] Figure
(9), BLAST (Basic Local Alignment Search tools).

3.5.5 Inspiral (LIGO)

This workflow class applies gravitational physics
for gravitational surfaces twisted by various events
in the area. They require enormous data storage and
computing time. To produce and interpret gravel
shapes from the collected data during the
coalescence of the compact binary system [65], the
workflow of LIGO Inspiral Analysis is used.

Figure 9. Sipht Workflow [23].

This workflow is thus classified as the compute-
intensive workflow. In this study, this workflow is
not used. All scientific workflows are shown, and
Table (1) provides a brief description and
application area [23].

3.6 Makespan

Standard resource utilization is used to estimate the
algorithm's performance. The time lasting from

Journal of Theoretical and Applied Information Technology
31st January 2022. Vol.100. No 2

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

489

submissions to the cloud is the makespan of
workflow until the last function is complete [18],
[55], [56][66].

3.7 Virtualization

Virtualization is a technology that differentiates
physical hardware from computing functions and
implementations. Work on early m44/44x was
carried out in the 1960s by IBM TJ Watson and
MIT [67]. Virtualization is also the backbone of
cloud computing, allowing the integration of
software and hardware among users, processes, and
re-sources. The classical operating systems have not
solved these separation problems well. The program
should be used in the virtual environment with
virtualization to run on the raw hardware. The
virtualization happens depending upon the tier
(layer) [67]. The virtualization techniques in cloud
computing are used to build and control the cloud
computing environment. Because this system is
virtualized, it is easier to run and maintain. This
virtualization architecture contains a data planning
framework that executes the procedures on traffic
that the mobile edge platform has provided, then
route that traffic within applications, local and
external networks. Virtualization technology
allows consumers to pay-per-use for the
installation, setup. The cloud service provider will
combine services (e.g., CPUs, RAM, bandwidth,
and disk) into VM's through virtualization
technologies. CPU's processing power determines
the execution time of tasks on VMs.

In contrast, the bandwidth and the amount of data
transmitted in communication determine the time of
transferring between various VM instances [18],
[51]. It should be remembered that in this step, only
one task can be waited on at a VM. This will only
impact the waiting function of the same VM if the
job runtime of a VM fluctuates. In addition, after
the workflow schedule generates a completion
signal, the input protocol updates the initial
priorities and sub-dates of other activities within the
workflow set. The feedback will also execute the
modified tasks in the assignment process. It will
also alleviate the propagated consequences of the
fluctuating execution time. Each signal received
will continue to activate each processing phase until
all submitted workflows are completed. The
assignment process of capital preserves assignments
ready to be placed in a list with the target not
falling. The next move is to arrange the tasks in the
queue on VMs, where the resource management
process is for the resource manager. The following
section provides more details about the allocation of
resources, including VMs, datacenters and hosts.

The purpose of the simulation is to evaluate the
performance of the min-min algorithm to
benchmark it against the existing algorithms.

Table1. Description Of Scientific Workflows

Scientific
workflow

DESCRIPTION APPLICATION

AREA
Montage A workflow used to create an

image mosaic of sky
Astronomy

Cybershake A workflow used to depict the
earthquake threats in an area

with the help of the
Probabilistic Seismic Hazard

Analysis method

Earthquake

Epigenomics A workflow interprets the
processing of genetic data to

implement the different
genome sequencing operations

Genetic data

SIPHT A workflow that implements
the bioinformatics problems

Bioinformatics

LIGO A workflow used for the
identification of gravitational

waves and to examine the data
attained from compact binary

systems

Gravitational
works

4. EXISTED SCHEDULING ALGORITHMS

4.1 Original Max-Min

The Max-Min algorithm [19] depends on "select a
task with maximum execution time and allocate it
to the resource with minimum execution time". The
Max-Min algorithm priority is given to bigger tasks.
Early implementation of the significant task will
increase the total machine response time. The
critical disadvantage of this algorithm is that this
algorithm takes the most prominent tasks first,
which might increase the response time of the
system, and that issue was solved by improved
Max-Min [50].

4.2 Min-Min

This algorithm functions in the opposite direction to
Max-Min. Whereas first before considering smaller
tasks, Max-Min algorithms select and allocate a
resource with minimum completion time. Min-Min
does the opposite by choosing and assigning small
tasks in resources that can perform the task with
minimum execution time. The objective of the Min-
Min algorithm is to ensure, firstly, and then the
same for Long Jobs [68], that all tasks with a
minimum completion time are completed [7]. The
Min-Min algorithm is displayed in Figure (10).

Journal of Theoretical and Applied Information Technology
31st January 2022. Vol.100. No 2

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

490

FIGURE 10. Original Min-Min Algorithm

4.3 Round-Robin

Round Robin is one of the most widely used
algorithms in allocating resources and processing
tasks. In Round Robin, each job waiting in a queue
to be scheduled by the scheduler is assigned a
specific time slot. So, for more than the time
allocated, no task is assigned to a resource and, if a
task cannot complete the planning within the given
period, another task will be prevented and sent back
in the queue for other tasks.

4.4 Modified Max-Min (Mmax-Min)

The modified Max-Min algorithm is based on
several parameters, including big cloudlets and
small cloudlets. In contrast to the traditional Max-
Min, it is a combination of Max-Min and Min-Min
algorithms. In a precise manner, each cloudlet
calculates completion times to identify the cloudlet
with a minimum completion time and maximum
completion time for all jobs submitted in the
cloudlet list [19]. Table (2) shows a brief
description of algorithms’ advantages and
disadvantages.

TABLE 2. ADVANTAGES AND DISADVANTAGES OF
THE USED ALGORITHMS

Algorithm ADVANTAGE DISADVANT

AGE
Max-Min Cloud computing has

been recognized as a
preferred platform for

data collection and
information

dissemination by the
reliability of that

algorithm.

The
progress
of a task
with the
highest

completi
on time

will
improve

the
system's

total
turnaroun

d time.

Min-Min Make sure all tasks
with minimum

completion time are
performed first in

parallel, then for long
tasks are performed in
the same way [8][43]

It
sometimes
leaves the
big tasks

neglected.

Round Robin A better response time
and no delay for tasks
of waiting for others
tasks (no starvation).

No task will
be allocated

to a
resource for
more than

the
allocated

task.
MMax-Min Same as max-min, in

addition, it achieved
better quality

solutions and better
good values of

Makespan in terms of
performance analysis,
experimentation and
benchmarking [19]

Same as
max-min

plus, it has
an issue for
the priority.

4.5 Proposed Optimized Min-Min Scheduling
Algorithms

There are two main stages when planning the
execution of a workflow in a Cloud environment: i)
the resource provisioning phase, ii) the scheduling
generation phase. The computing resources that will
be used to run the tasks are selected and
provisioned during the first phase. In the second
phase, a schedule is generated, and each task is
mapped onto the best-suited resource. Virtual
Machine (VM) performance is an additional
challenge presented by Cloud platforms. VMs
provided by current Cloud infra-structures do not
exhibit a stable performance in terms of execution
times. Study [69] reported an overall CPU
performance variability of 24% on Amazon's EC2
Cloud. The shared nature of the infrastructure and
virtualization and the heterogeneity of the un-
derlying non-virtualized hardware are some reasons
behind such variability. Many scheduling policies
rely on estimating task runtimes on different VMs
to make a map-ping decision, and this estimation is
done based on the VMs computing capacity. If this
capacity is always assumed to be optimal during the
planning phase, the actual task execution will
probably take longer. The task will be delayed, this
delay will also impact the task's children, and the
effect will continue to escalate until the workflow
finishes executing [70].

In this work, we propose a new Min-Min algorithm
called Optimized Min-Min OMin-Min for
scheduling a scientific workflow application in a

Journal of Theoretical and Applied Information Technology
31st January 2022. Vol.100. No 2

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

491

Cloud environment. To achieve this, both resource
provisioning and scheduling are considered
optimization problems. Our contribution is,
therefore, an algorithm with higher accuracy in
terms of task execution time. Our work is based on
the Min-Min algorithm, which has achieved a low
execution time for tasks. Many problems in
different areas have been successfully addressed by
adapting Min-Min to many domains. For instance,
this algorithm has been used and modified to
evaluate and assist the performance against other
algorithms.

4.6 Implementation

Within this section, the proposed Min-Min
algorithm is explained in detail. It is accomplished

by integrating CloudSim by inserting the workflow
extension in a java environment. CloudSim is a
Java-implemented event driven simulator.
CloudSim's objective-oriented programming feature
enables extensions and policy definitions in all
software stack components, thus creating an
appropriate research instrument that simulates the
complexity of the environment [26]. This approach
was suggested in the technique to accomplish the
intended aim. The CloudSim toolkit supports the
simulation of the system's components such as data
centres, virtual machines (VMs) and re-source
supply policies by using different algorithms.

FIGURE 11. Optimized Min-Min algorithm pseudo-code

Figure 12. Research Method Through Simulation Process

Journal of Theoretical and Applied Information Technology
31st January 2022. Vol.100. No 2

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

492

The CloudSim toolkit supports both design and
behaviour modelling. It incorporates standard
application delivery technology that can currently
be extended with simple and minimal effort. The
Cloud System modelling and simulation are
supported by single and inter-networked clouds
(Domain federation). In addition, the Cloud
Computing Scenarios have tailored frameworks for
executing the rules and applying strategies for
allocating VMs. For their work into the availability
of cloud services and energy-efficient data centre
infrastructure, many scientists use CloudSim. This
saw a relatively rapid reduction in waiting for time
(Min-Min), which led to fewer makespan as more
cloudlets were scheduled [71]. Compared to the
MMax-Min, which selects and assigns the cloudlet
with maximum or minimal execution time, our
approach can choose and allocate minimum time

for a resource first. In addition, we run each
algorithm many times sequentially for better
stability, and then we decided the minimum
makespan to achieve better results. Figure (12)
shows all phases of this research method and details
as follows:

PHASE 1: CREATING WORKFLOW.

The initial creation of scientific workflows. This
provides the basis and the dataset for simulation
purposes.

 PHASE 2: CREATING A DATA CENTRE.

A data centre would be built to run applications,
process and store data (storage platform). The data
centre is a pool of servers that contain a collection
of software or applications which allow users to
operate and access multiple virtual server instances
over the Internet. The establishment of a data centre
ensures cloud availability of resources.

PHASE 3: CREATING CLOUD DATA
CENTRE BROKER.

The Cloud Datacenter Broker can detect resources,
pick the resources that have been seen, send them to
the network system, and gather information and
updates for help.

PHASE 4: RESOURCE DISCOVERING AND
SELECTING.

In resource discovery, the cloud datacenter broker
who addresses it in a network system and collects
status information is provided with a list of all
available resources in the cloud. Information on
available resources is collected, and then the best
resource to comply with the application

requirements for practical resources are selected
during the selection of resources.

PHASE 5: TASK SUBMISSION.

The final step in preparing the task for a resource is
task submission—the broker of the datacenter
submission to the appropriate or unused resources
for scheduling the picked tasks.

PHASE 6: APPLYING SCHEDULING
ALGORITHMS.

The min-min is then used to schedule a task, and all
the other algorithms are then implemented to
measure the performance of the Min-Min algorithm
to compare its and taken as a benchmark.

PHASE 7: SIMULATION AND COMPARISON
OF THE RESULT.

A simulation of this work aims to test the OMax-
Min algorithm’s output to benchmark it against
existing algorithms.

4.7 Design And Implementation Of Cloudsim.

Figure (13), Bw Provider: it is an abstract class that
design the rule on bandwidth delivery for VMs, for
CloudSim is shown as a class design diagram [72].
The critical function of this element is to allocate a
collection of competing VMs to the network
bandwidths in the data centre. Cloud technology
developers and researchers will expand the class to
represent the needs of their applications within their
policy (priority, quality of service). The Bw
Provisioning Simple enables VMs to store the
necessary bandwidth, which is restricted by the
host's overall bandwidth usage. Cloud Coordinator:
This conceptual class expands the union into a
cloud-based data centre. It constantly tracks and
makes complex load shredding decisions on the
internal status of datacenter services. Specific
sensors and policies that should be followed during
load shedding are part of the practical realization of
this aspect. The Datacenter update technique is used
to observe the datacenter resources by sending the
Datacenter query Sensors. In the defined abstract
system datacentre, infrastructure/network discovery
is made to incorporate customized protocols and
structures (multicast, Internet, peer-to-peer). The
discovery of datacentres is carried out. In addition,
the Amazon EC2 Load-Balancer can be extended to
simulate a cloud-based service [72]. Developers
who wish to implement apps throughout different
clouds should enhance their inter-cloud policies to
include this section.

Figure 13 shows the CloudSim design diagram.

Journal of Theoretical and Applied Information Technology
31st January 2022. Vol.100. No 2

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

493

4.8 Cloud Cloudlet

This shapes app services (such as the delivery of
content, social networks and corporate workflow).
In terms of their computation criteria, CloudSim
organizes the complexity of an application. Each
application service does have an overhead of the
pre-assigned length of instruction and transmission
of data (both pre-and post-fetches) which must be
carried out throughout its lifecycle. This class could
also be extended to cover other performance and
composition metrics modelling for applications
such as database-oriented transactions. Figure (13)
shows an example of cloudlets. A Cloudlet is a

small data centre on the edge of the network that
uses virtualization to provide mobile or IoT cloud
computing services, including smartphones, tablets,
cameras, or controls. Cloudlets are designed to
supply hosted services in the proximity of the
devices re-quired, which avoids the need for a wide
area network (WAN) connection to an application
[73]. Cloudlets act as plugins to integrated cloud
facilities that provide an intermediary platform for
interactive and resource-intensive applications [74].
Any other sort of applications are likely to benefit
from the shorter latency levels offered closer
proximity.

Figure 13. Cloudsim Class Design Diagram

Cloudlets are particularly advantageous for
technologies that allow devices to load their
computational processes towards more robust
systems like machine learning, voice recognition,
virtual reality, enhanced perception and language
processing [73] Cloud-based devices can connect to
host applications seamlessly high-bandwidth pri-

vate wireless network with cloudlet. In conjunction
with the proximity, this structure allows
applications that allow real-time interaction to be
supported. Companies can maintain latency levels
for a few milliseconds. By using cloudlets,
companies can optimize transaction rates among
devices and applications so that the capabilities of

Journal of Theoretical and Applied Information Technology
31st January 2022. Vol.100. No 2

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

494

centralized cloud infrastructures are much more
significant. In some instances, cloudlets are more
like private clouds than public clouds, particularly
in self-management; the cloudlets often function as
a buffer from the cloud. The current system runs
parallel on virtual instances to the network nodes
[75].

FIGURE 14. A Cloudlets in cloud

Respectively, cloud and private clouds enable
organizations to launch and sustain their
environments and evaluate services and
applications. Many smartphones can send requests
to the very same server, and other servers could
remain idle. The cloudlet will act as an operations
manager between all the mobile devices and the
Cloud server in this environment [75]. Cloudlets
restrict access to a local wireless network, while
private clouds are accessible via the Internet and
other WANs to promote plenty of users as required.
The private cloud supports users anywhere they
stand, whenever they need and from every device
connected to the apps. Cloudlets vary in much the
same manner from virtual private clouds (VPCs) as
private clouds. Users wouldn't have to be near a
VPC and can communicate from several computer
types over the Internet. However, cloudlets offer
better latency rates and a better consumer
experience as a whole [76]. Cloudlets can
effectively use virtualization to use computing
resources, stabilize workloads, manage operations,
and secure applications, allowing for the provision
of scalable on-demand, logically divided resources
from the underlying hardware elements.

 While researchers have discussed cloudlets for
several years, the industry is still catching up. There
are also generally established principles and
definitions [75]–[80]. Implementing different
regulations expands this abstract class to evaluate
the share of Cloudlets' computing power in a VM.
As mentioned earlier, two forms of delivery
schemes are available: space-shared (Cloud

Scheduler Space Shared) and time-shared (Cloudlet
Scheduler Time hared).

4.9 Cloud Datacenter

This class forms the core network (hardware)
products offered by cloud providers (Amazon,
Azure, Application Engine). It contains a series of
host computers that can be consistent or
heterogeneous with their hardware configurations
(memory, backbone, capability and storage). In
addition, each datacenter part designates a
component to provide generalized applications that
execute many guidelines for assigning bandwidth,
memory and storage to hosts and VMs. Single or
multiple several more centralized DCs are
connected to a core network to host material of a
cloud service provider [76], [81]. In the DCs
network, servers, storage, aggregation circuits, and
other edge routers are included. The contents of the
data centre are transmitted through big core routers
and optical connections to the edge network.

4.10 Atacenter Broker Or Cloud Broker

This class shapes a broker taking responsibility for
facilitating bargaining among SaaS and cloud
suppliers [82], and the QoS requirements guide the
bargaining’s. On behalf of the SaaS providers, the
broker acts. In querying the CIS, it explores
appropriate cloud service providers and performs an
online negotiation process to allocate re-
sources/services to satisfy the application's QoS
requirements. Researchers and system developers
must stretch this class to measure [83] and test
custom brokering regulations. The divergence
between the broker and the cloud coordinator would
be that the first signifies the client (i.e. choices are
taken on such elements to enhance key performance
indicators for users). At the same time, the latter
operates on behalf of the data centre, i.e. it attempts
to optimize the total performance of the data centre
without trying to take the requirements of specific
clients into account. The cloud brokerage and
brokerage services were studied [83],[84] and [85].
Because each broker differs with their service
arrangement, numerous cloud brokers have
advantages: 1) it allows users to define the best
settings based on a variety of functional and non-
functional criteria for their individual needs. This
involves providing assis-tance and budget
recommendations to determine how different
programs can be chosen and implemented through
various hybrid methods.

Journal of Theoretical and Applied Information Technology
31st January 2022. Vol.100. No 2

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

495

Figure 15. Vm, Application And Host Relationship In Cloud Datacenter

 2) standardize cloud-based services available in the
market through the integration of multi-services
cloud provider outputs. 3) provide better deals and
gain additional cloud providers information. 4)
select for particular criteria the finest cloud service
provider. 5) offer good extra workflow acceptance,
enhanced control, enforcement and protection.
However, cloud data centres are highly dynamic
and changeful because 1) customers keep
demanding VMs, unstable resource consumption
patterns, 2) fluctuating use of VM resources, 3)
unpredictable arrival and departure patterns for

users of the datacentre, and 4) the productivity of
hosts can differ tremendously when managing
various loads levels. This can easily cause unequal
loads in cloud datacentres and break down
performance and service level agreements, which
needs a load balancing technique to solve this
problem. However, load balancing in clouds is a
method that optimally balances the excess dynamic
local workload throughout all nodes [86].

4. 11 Datacenter Characteristics

This module provides datacenter configuration
information.

4. 12 Host

This class constructs a physical resource like a
device or a storage server. It holds critical data such
as capacity and storage quantity, a set of computing
cores and size (to demonstrate a multi-core
machine), resource sharing for VMs, and resource
on capacity and bandwidth provisioning to VMs. A
host can host multiple VMs with various potential
assets and different load kinds. Servers hosting
variable and unpredictable workloads
heterogeneous VM can lead to an imbalance in
resource use, resulting in deterioration inefficiency
and infringement of the Service Level Agreements
(SLAs) [107]. In situations such as VM operating a
computation-intensive program with a low memory
requirement, imbalance resource use [87] can be
observed.

 Figure (15) shows the VM, application and host
relationship in cloud datacentres. Introduced first in

Journal of Theoretical and Applied Information Technology
31st January 2022. Vol.100. No 2

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

496

the 1960s and is commonly used for hardware
network restructuring in enterprise datacentres with
innovations such as VMware [88] and Xen [89] in
recent years. The hosts below are the primary
source of requirements such as CPU, memory and
storage. Above host, the virtualization platform
server such as XEN virtualizes the physical
resource and manages hosted VMs. Applications
are running on VMs, and dependence between them
may be predefined. Each host can be assigned with
several VMs, and VMs with several applications are
installed. Study [88] focuses primarily on VM
threshold load balance algorithms to enhance host
efficiency, mostly modelled as a dumpster container
issue and proven an NP-hard problem [80].
Virtualization also strengthens the capacities and
capacities of present infrastructure and resources
and provides an opportunity for the datacenters to
host typical infrastructure applications [80].

4.13 Network Topology

This class gives information for network behaviour
induction (latencies) in the simulation. It collects
topology information collected by the BRITE
topology generator.

4.14 Ram Provisioner

Here is an abstract class that denotes the policy of
primary storage (RAM) allocation to VMs. VM can
only be executed and deployed on a host if the Ram
Provisioner component authorizes that the host has
the requisite amount of free memory. This same
Ram Provisioner Simple does not qualify any
memory restriction that a VM can require. But if the
requirement exceeds the memory capacity
available, it is refused.

4.15 San Storage

This class structures a storage area network that is
widely used to store large pieces of data (such as
Amazon S3 and Azure blob storage) in cloud-based
datacentres. San Storage uses a simple protocol
that simulates the retrieving of any volume of data
subjected to network throughput capacity.
Accessing the SAN files during execution leads to
unnecessary disruptions in the operation of the job
unit due to the extra latencies in the transmission of
the data files via the internal datacenter network.

4.16 SENDOR

The said interface is necessary to install a sensor
unit, which a cloud manager may use to track
specific system performance (energy consumption,
resource usage). Note that the Cloud Manager uses
the complex output information for load balancing

decision making. This interface defines the
techniques: (i) set min, max output parameter
thresholds and (ii) update the calculation from time
to time. This class could be used to design the real-
world services provided by top cloud service
providers such as Amazon's Cloud Watch and
Fabric Controller from Microsoft Azure. A
datacentre could mount one or even more sensors
responsible for tracking the output of a particular
datacenter parameter.

4.17 VM

This class structures a VM controlled and hosted
via a part of a cloud host. Every VM element has
access to the following VM-related characteristics:
1) available memory, 2) CPU, 3) storage space, and
4) the internal provision of the VM, expanded from
the Cloudlet Scheduler abstract element (Cloudlet
Scheduler).

4.18 VM Allocation Policy

This abstract class demonstrates a supply strategy
that a VM Controller uses to allocate VMs to hosts.
The critical function of the VM placement
regulation is to choose the host accessible in a
datacenter that satisfies the storage, space and
availability criteria for a VM implementation. Live
migrations virtual machines indicate that the VM
tends to respond from the user's perspective during
migration. Live migration offers other advantages
than conventional suspend / resume migration[90],
such as energy conservation, load balance and
online maintenance. Study [90] examines the effect
of live VM migration on the efficiency of
applications in the Xen VM and shows that
overhead migration is appropriate but cannot be
ignored entirely. As the new cloud storage
datacenter promotes the live migration of many
virtual machines, living migration is a typical
activity. For cloud computing, the VM merger is
also done for keeping with the resource needs of
VMs. The merger of the VM increases the servers
suspended and allows live migration of the VM. It
will also help to improve fault tolerance by
migration of error VMs.

4.18 VM Scheduler

Here is an abstract class executed by a host
component representing the regulations needed to
assign processors cores for VMs (space sharing,
time-sharing). The features in this class can be
cleverly exceeded to achieve rules for the sharing in
processors in ap-plications. The development phase
for VM can be split into the initial stage for VM de-

Journal of Theoretical and Applied Information Technology
31st January 2022. Vol.100. No 2

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

497

ployment and the live migration phase of VM. In
the initial positioning phase, some work has centred
on the balance of VM load without considering the
live migration [7]. At present, the VM approval
policy specifies the host location to be assigned by
VM, which is a crucial aspect of the scheduling
process. The policy usually takes account of the
host resource availability. The scheduling
procedure's critical elements of the live migration
phase are: VM migration rule allows cloud
datacenters to set priorities as VMs are passed on to
the other hosts. The VM migration rules show when
a VM migration from a host to a different host can
occur. This generally includes a migration threshold
to initiate migration procedures. A data centre’s
administrator makes the decision an entry based on
each host's computational capabilities, such as Red
Hat and VMware [91][92]. For example, a CPU-
intensive host can be installed with significantly
higher CPU usage thresholds, whilst an I / O heavy
host with a comparatively low CPU usage threshold
can be installed. VM policy placement permits the
setting of cloud datacenters' policies to choose
whether the VMs from overstressed hosts must be
transferred. In general, too many VMs are running
an overloaded server. First of all, pick the
overloaded hosts from the VM

allocation regulations. In addition to reducing host
load, VM allocation regulations are designed to
decide which VMs must be migrated to accomplish
other objectives, such as lowering migration
quantities and reducing migration latency [15].

Table 3. Detail Settings For The Workflows

Terms MEANS NODE

COUNT
EpiSma Epigenomics with

Small Cloudlets
24

EpiMe Epigenomics with
Median
Cloudlets

46

EpiLa Epigenomics with
Large Cloudlets

100

EpiHe Epigenomics with
Heavy Cloudlets

997

SiSma Sipht with Small
Cloudlets

30

SiMe Sipht with Median
Cloudlets

60

SiLa Sipht with Large
Cloudlets

100

SiHe Sipht with Heavy
Cloudlets

1000

MoSma Montage with Small
Cloudlets

25

MoMe Montage with
Median
Cloudlets

50

MoLa Montage with Large
Cloudlets

100

MoHe Montage with
Heavy Cloudlets

1000

Table (3) shows the workflows detailed settings,
specific terms for node sizes. VM approval
regulations allow cloud datacenter to build
strategies that VMs from other overloaded hosts are
approved for cooperative load balancing among
hosts via live migration of VMs. The rules for VM
acceptance must gather information, including the
following: (a) remaining hosts resource, (b) the
CPU or memory of a related resource type, (c) a
threshold above or below the remaining amount of
resource. The acceptance policies for VM are then
enforced to decide whether a specific VM is to be
hosted. The following Table (4) shows the
parameters used in the simulation for all algorithms
in all cases, respectively. Therefore, the workflow is
CloudSim based; thus, it operates within the
CloudSim architecture, class diagram, etc.

Table 4. Parameters Used In The Simulation

5. RESULTS AND DISCUSSION

A workflow application W = (T, E) is modelled as a
Directed Acyclic Graph (DAG) where T = {t1, t2,
…, tn} is the set of tasks and E is the set of directed
edges. An edge eij of the form (ti, tj) exists if there
is a data dependency between ti and tj, a case in
which ti is said to be the parent task of ti and tj is
said to be the child task of tj. Based on this defi-
nition, a child task cannot be executed until its
parent tasks are completed. The provider specifies
the unit of time in which the pay-per-use model is
based; any partial utilization of the leased VM is
charged as if the full-time period was consumed.
The following table shows the tasks to resource
mapping, where tn, are the tasks and the R = {r1,
r2, …, rn} are the set of resources (VMs) that need
to be linked. Each resource ri has a VM type VMri
linked to it and estimated linking start time ELSTri
and estimated linking finish time ELFTri. And
according to the following: M\ rjti = (ti, rj, ST ti, ET
ti) for all tasks; where M represents the mapping
and is interpreted as follows: Task (ti) is scheduled
to be run by (rj) and is starting the execution

VM 15
Datacenters 2

Number of runs 50

Journal of Theoretical and Applied Information Technology
31st January 2022. Vol.100. No 2

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

498

process at a time (ST ti) and finish at a time (ET ti).
For comparing and benchmarking the proposed
algorithm (Min-Min) with other previously used
cloud task scheduling algorithms such as Max-Min,
MMax-Min, and Round Robin, a simulation
environment called CloudSim toolkit was used [51].
The simulation was run on Intel® core i5, 1TGB
HDD and 8GB Ram on 64-bit Windows 8 operating
system.

 We considered three workflows, Epigenomics and
Sipht, which differ from each other in terms of
cloudlet size. The procession speediness of each
cloudlet is measured in Million Instructions Per
Second (MIPS). In analyzing the performance, we
used the Makespan as a performance matrix to
measure, compare and evaluate the performance of
the proposed algorithms. Table 3 gives detailed
descriptions of all the cases used in each of the
three workflows used for the simulation. Makespan
is referred to as the total execution time for the
entire workflow [93]. This is mainly used to
measure the efficiency of the algorithms in respect
of time. It is calculated by using equations 1 and 2.

Makespan = Max (Ct Of J(Ti, Mj)) (1)

Ct = Job End Time – Job Start Time (2)

Makespan is used to estimate the performance of
the algorithm. The time elapsed from the task
submission to the cloud until the end of the request
of its last task. To calculate the percentage of
enhancement, the following equations are used:

IP = LM/HM*100 (3)

100% - IP = FP (4)

Where IP is the initial percentage, LM is the lower
makespan value, HM is the higher value of
makespan, and FP is the final percentage.
Percentage calculations of performance comparison
were done in this section.

Figure 16. The Epigenomics Makespan Results Of
Different Scheduling Algorithms, Small And Medium

Node Size, And Large And Heavy Node Size

In table (5), a percentage of enhancements offered
by our proposed algorithm against other existing
algorithms is introduced, including the original
Min-Min algorithm, for all workflows are shown.
Specifically, our proposed algorithm outperforms
the original Min-Min in all workflows as follows:

Figure 17. The Sipht Makespan Results Of Different
Scheduling Algorithms, Small And Medium Node Size,

And Large And Heavy Node Size

Epigenomics workflow: Achieves the best in large
cloudlets by 79%, while the minor rate
enhancement is in small cloudlets by 1.6%,
Montage workflow: Achieves the best in large
cloudlets by 43.7%, while the minor rate

Journal of Theoretical and Applied Information Technology
31st January 2022. Vol.100. No 2

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

499

enhancement is in small cloudlets by 4% Sipht
workflow: Achieves the best in heavy cloudlets by
40%, while the mi-nor rate enhancement is in small
cloudlets by 6.8%.

 The OMin-Min scheduling algorithm has achieved
the minimum (less) Makespan, which means better
performance. In addition, Round Robin has the
worst case of Makespan. In the light of Figure (16),
in Epigenomics workflow results for the algorithms,
the proposed OMin-Min algorithm achieves the best
results compared to all other algorithms.

 The RR achieves the worst among them. Refer to
Figure (17), in Sipht workflow Results for the
algorithms, again OMin-Min achieves the best
result, and the RR achieves the worst for all
workflows and in Figure (18). For calculating the
exact enhancements of our proposed algorithm
against all other used algorithms, we used
Equations 3 and 4. The results are shown in Table 5
where the performance enhancements of our
proposed algorithm in a percentage manner are
compared against other algorithms for
Epigenomics, Montage, and Sipht workflows. The
proposed OMin-Min algorithm outperforms all
other algorithms. Specifically, at the level of node
sizes, the proposed algorithm achieves the best
results with EpiLa for all algorithms in epigenomics
workflow.

On the other hand, for the Montage workflow, the
proposed algorithm achieves the best results with
MoLa for Min-Min and Max-Min. It performs best

with MoHe for MMax-Min, while for Round
Robin, the proposed algorithm achieves very close
results with MoMe and MoLa as the best. It
illustrates that the algorithm output level relies on
the computing time required to accomplish tasks.
Each workflow has a particular architecture and
many cloudlets in size (small, medium, large and
heavy). Given that every workflow is dedicated to
different types of applications, the comparison
results show the algorithms' performance in every
workflow separately, without comparing the output
of the same algorithm with different workflows.

Figure 18. The Montage Makespan Results Of
Different Scheduling Algorithms, Small And Medium

Node Size, And Large And Heavy Node Size

Table 5. Results Of In-Min Performance Comparison To Other Agorithms In Percentag.

Workflow Node size R-R Max-Min MMax-Min Min-Min

E
P

IG
E

N
O

M
IC

S
 EpiSma (24) 94.18% 8.19% 6.65% 1.66%

EpiMe (46) 96.09% 80.99% 59.23% 53.38%

EpiLa (100) 97.77% 96.37% 82.92% 79 %

EpiHe (997) 96.27% 92.78% 76.29% 69.56%

M
O

N
T

A
G

E
 MoSma (25) 81.33% 49.21% 47.13% 4%

MoMe (50) 84.96% 55.97% 38.74% 29%

MoLa (100) 84.90% 70% 46.70% 43.71%

MoHe (1000) 64.97% 63.29% 49.28% 28%

S
IP

H
T

SiSma (30) 69.12% 18.07% 12.08% 6.83%

SiMe (60) 65.82% 36.72% 22.34% 18.54%

SiLa (100) 76.01% 44.79% 31.78% 19.07%

SiHe (1000) 83.81% 70.84% 51.40% 40.01%

Journal of Theoretical and Applied Information Technology
31st January 2022. Vol.100. No 2

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

500

Table 6. Comparison Between Our Work And Oher Minmin Algorithms With Pros And Cons.

Referen
ces

Year

Enviro n
ment

M

ethod
used

Perform

an
ce m

atrices

D

iscerption

N
ode size

W
orkflow

T

ype and num
ber

of nodes

P

ros

C
ons

Our Work

2021

C ould

O
ptim

ized
M

in-M
in

algorithm

M
akespan

O
ur w

ork proposes a new
 noble m

echanism

O
ptim

ize M
in-M

in (O
M

IN
-M

IN
) algorithm

,
and w

e provide a com
prehensive review

 of the
cloud and scheduling process;

M
ontage_25

M
ontage_50

M
ontage_100

M
ontage_1000

E
pigenom

ic 24
E

pigenom
ic 46

E
pigenom

ic 100
E

pigenom
ic 997

Sipht 30
Sipht 60
Sipht 100
Sipht 1000

Three types of
w

orkflow
s’ (

M
ontage

C
ybershake and
E

pigenom
ic)

This algorithm
 selects tasks w

ith
m

inim
um

 execution tim
e on a faster

available m
achine or resource that is

capable of giving m
inim

um

com
pletion tim

e m
oreover, om

in-
M

in can produce reasonable quality
solutions, producing good

m
akespan.

M
oreover, w

e provide a
com

prehensive review
 of the cloud

and scheduling w
hich can be good

for other researcher and developers
in cloud com

puting area

O

ur w
ork considers 3 types

of w
orkflow

s and didn’t
consider all types of
w

orkflow
s such as

cybershake and L
ego.

[95]

2021

C loud

M
ulti-

O
bjective

W
orkflow

O

ptim
ization

Strategy
(M

O
W

O
S)

A
nd

M
axV

M
 and

M
inV

M

selection are
presented in
M

O
W

O
S for

task
allocations.

C
ost

M
akespan

R
esented a novel w

orkflow
 scheduling

algorithm
 nam

ed M
ulti-O

bjective W
orkflow

O

ptim
ization Strategy (M

O
W

O
S) to jointly

reduce execution cost and execution
m

akespan, the other tw
o algorithm

s
A

nd the other tw
o algorithm

, used to
presented in M

O
W

O
S for task allocations.

M
ontage_25

M
ontage_50

M
ontage_100

M
ontage_1000

Sipht30
Sipht 60
Sipht100

Sipht 1000
L

ogo Inspiral 30
L

ogo Inspiral 50
L

ogo Inspiral100
L

ogo Inspiral1000

Three types of

w
orkflow

s C
ybershake,

SIPH
T, and L

IG
O

Inspiral

E

m
ploys tasks splitting m

echanism

to split big tasks into sub-tasks to
reduce their scheduling length.

A
nd to enable the tasks to s m

eet
their deadlines at a less tim

e and low

cost

They didn’t consider all types

f w
orkflow

s
M

oreover, they didn’t
consider

L
oad lancing and Energy

consum
ption.

[38]

2016

Cloud

E
nhanced

M
IN

-M
IN

algorithm

M
akespan

Studied different task scheduling algorithm

s
and an E

nhanced M
in-m

in algorithm
 is

developed.

M
ontage_25

M
ontage_50

M
ontage_100

M
ontage_1000

C
yberShake_30

C
yberShake_50

C
yberShake_100

C
yberShake_1000

Tw

o types of w
orkflow

s’
M

ontage and
C

ybershake

The current algorithm
 selects tasks

w
ith m

axim
um

 execution tim
e on a

faster available m
achine or resource

that is capable of giving m
inim

um

com
pletion tim

e m
oreover, it

achieved better quality solutions and
better good values of M

akespan in
term

s of perform
ance analysis,

experim
entation and benchm

arking

O

nly consider m
ontage and

cybershake

Journal of Theoretical and Applied Information Technology
31st January 2022. Vol.100. No 2

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

501

Table 6. Count…

R e fe r e nce s

Y e a r

E nv ir o nm e
n t

M

ethod
used

Perform

a
nce

m
atrices

D

iscerption

N
ode size

W
orkflow

Type and

num
ber of

nodes

Pros

C

ons

[96]

201 5

C lo ud

Enhanced
load balance

M
in-M

in

M
akespan

This algorithm

 selects the task w
ith

m
axim

um
 com

pletion tim
e then assign it

to the appropriate resource to produce the
best m

akespan and utilize resource
efficiently.

N

o w
orkflow used

N
ode size =0

N

o w
orkflow

U
sed

U
sing the unutilized resources

effectively, the algorithm
 selects

the task with m
axim

um
com

pletion tim
e. It assigns it to

the appropriate resource to
produce less m

akespan
Scheduling in two phases as it

uses the advantages of two
algorithm

s (M
ax-M

in A
nd M

in-
M

in), Such as good com
pletion

tim
e .

It covers the disadvantages

of both M
ax-M

in and
M

in-M
in, such as poor

load balancing and less
consideration for QoS.

[35]

2 01 3

C lo u d

A
n Im

proved
M

in-M
in

A
lgorithm in

Cloud
Com

puting

Resource
utilization

rate

Introduce a com
parison simulation for

com
paring the im

proved m
in-m

in
algorithm

 w
ith the traditional m

in-min
algorithm

.

N
o w

orkflow used
N

ode size =0

N
o w

orkflow used
Enhance resource utilization

rate, m
ore prolonged activities

m
ay be com

pleted in an
acceptable am

ount of tim
e, and

users' expectations are m
et

Som

e priority constraints.

[36]

2 01 3

C lo ud

Im
proved

M
in-M

in
A

lgorithm

Load
balancing

and
utilization of

system

resources

A
n efficient rescheduling based task

scheduling algorithm
 (improved M

IN-
M

IN
 A

lgorithm
 (I M

IN-M
IN

) in order to
enhance system

 perform
ance .

N
o w

orkflow used
N

ode size =0

N
o w

orkflow used
M

inim
izes the m

akespan w
ith

load balancing
A

nd guarantees the high system

availability in system

perform
ance.

They didn’t consider the

priority of the task.

[37]

2 010

G rid

Im
proved

M
IN

-M
IN

Total

execution
tim

e

Priority m
odel which im

proves the M
in-

m
in algorithm

 based on QoS constraints
is introduced and H

igh-priority tasks can
be im

plem
ented first on the condition that

H
igh Q

oS tasks get high QoS resources,

N
o w

orkflow used
N

ode size =0
N

o w
orkflow

U
sed

H
igh-Q

oS resources
D

oes not take into
account. The level of task

providers and
The deadtim

e for
com

pleting the task into
account.

Journal of Theoretical and Applied Information Technology
31st January 2022. Vol.100. No 2

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

502

7. CONCLUSION

In this work, we have shown various kinds of cloud
systems, the scheduling strategies, the critical
phases of the simulation, and a classification of
scientific workflows. Reviewed several
characteristics and features from literature for
distributed systems. We have provided details about
the importance of cloudlets, VMs and data centres
in designing and implementing the scheduling
process in the cloud environment.

This research seeks to perform task scheduling
better and resource allocation than previous
research works in a cloud computing environment.
Performance analysis, experimentation, and
benchmarking of the results indicate that our
approach using OMin-Min can produce reasonable
quality solutions, producing good makespan value
compared to the standard Max-Min, Min-Min,
Round-Robin and (Modified Max-Min (MMax

Min)) algorithms. We simulated our approach using
the CloudSim toolkit, which saw a frequent
reduction in waiting time, leading to less makespan
as more and more cloudlets arrived to be scheduled.
It can be seen that (in-Min) leads to better
performance since it achieved less makespan
comparing with other algorithms in three types of
workflows (Epigenomics, Sipht and Montage),
Min-Min has achieved less Makespan in three
different workflows as well, in (data-intensive)
scientific workflows and (computational) scientific
workflow. For future work, balancing load
effectively and cost can be considered with more
algorithms that could be used to evaluate more
system parameters and more workflows that may
further improve the performance. In addition,
deployment of task scheduling (TS) and resource
allocation (RA) in other systems where resource
allocation is essential, such as Li-Fi and Li-Fi/RF
hybrid network systems, can be investigated.

REFERENCES

[1] A. Abraham, R. Buyya, and B. Nath,

“Nature ’ s Heuristics for Scheduling Jobs
on Computational Grids,” pp. 1–8.

[2] B. K. Rani, B. P. Rani, and A. V. Babu,
“Cloud Computing and Inter-Clouds –
Types, Topologies and Research Issues,”
Procedia Comput. Sci., vol. 50, pp. 24–29,
2015, doi:
https://doi.org/10.1016/j.procs.2015.04.006.

[3] P. Mell, T. Grance, and others, “The NIST
definition of cloud computing,” 2011.

[4] A. Fox et al., “Above the clouds: A
berkeley view of cloud computing,” Dept.
Electr. Eng. Comput. Sci. Univ. California,
Berkeley, Rep. UCB/EECS, vol. 28, no. 13,
p. 2009, 2009.

[5] L. Zhao, S. Sakr, A. Liu, and A.
Bouguettaya, Cloud data management.
Springer, 2014.

[6] W.-T. Wen, C.-D. Wang, D.-S. Wu, and Y.-
Y. Xie, “An ACO-based scheduling
strategy on load balancing in cloud
computing environment,” in 2015 Ninth
International Conference on Frontier of
Computer Science and Technology, 201s5,
pp. 364–369.

[7] A. Li, X. Yang, S. Kandula, and M. Zhang,
“CloudCmp: comparing public cloud
providers,” in Proceedings of the 10th
ACM SIGCOMM conference on Internet
measurement, 2010, pp. 1–14.

[8] Q. Zhang, L. Cheng, and R. Boutaba,
“Cloud computing: state-of-the-art and
research challenges,” J. internet Serv.
Appl., vol. 1, no. 1, pp. 7–18, 2010.

[9] M. Pinedo and K. Hadavi, “Scheduling:
theory, algorithms and systems
development,” in Operations Research
Proceedings 1991, Springer, 1992, pp. 35–
42.

[10] M. Mao and M. Humphrey, “Auto-scaling
to minimize cost and meet application
deadlines in cloud workflows,” in 2011
International Conference for High
Performance Computing, Networking,
Storage and Analysis (SC), 2011, pp. 1–12.

[11] M. Choudhary and S. K. Peddoju, “A
dynamic optimization algorithm for task
scheduling in cloud environment,” Int. J.
Eng. Res. Appl., vol. 2, no. 3, pp. 2564–
2568, 2012.

[12] F. de O. Lucchese, E. J. H. Yero, F. S.
Sambatti, and M. A. A. Henriques, “An
adaptive scheduler for Grids,” J. Grid
Comput., vol. 4, no. 1, pp. 1–17, 2006.

[13] R. Xu, Y. Wang, W. Huang, D. Yuan, Y.
Xie, and Y. Yang, “Near-optimal dynamic
priority scheduling strategy for instance-
intensive business workflows in cloud
computing,” Concurr. Comput. Exp., vol.
29, no. 18, Sep. 2017, doi:
10.1002/cpe.4167.

[14] L. F. Bittencourt, R. Sakellariou, and E. R.
M. Madeira, “Dag scheduling using a
lookahead variant of the heterogeneous
earliest finish time algorithm,” in 2010 18th
Euromicro Conference on Parallel,
Distributed and Network-based Processing,
2010, pp. 27–34.

Journal of Theoretical and Applied Information Technology
31st January 2022. Vol.100. No 2

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

503

[15] J. Hu, J. Gu, G. Sun, and T. Zhao, “A
scheduling strategy on load balancing of
virtual machine resources in cloud
computing environment,” in 2010 3rd
International symposium on parallel
architectures, algorithms and programming,
2010, pp. 89–96.

[16] O. H. Ibarra and C. E. Kim, “Heuristic
algorithms for scheduling independent tasks
on nonidentical processors,” J. ACM, vol.
24, no. 2, pp. 280–289, 1977.

[17] B. Scholz-Reiter, J. Heger, and T.
Hildebrandt, “Analysis and comparison of
dispatching rule-based scheduling in dual-
resource constrained shop-floor scenarios,”
in Proceedings of the World Congress on
Engineering and Computer Science, 2009,
vol. 2, pp. 20–22.

[18] J. Zhou, T. Wang, P. Cong, P. Lu, T. Wei,
and M. Chen, “Cost and makespan-aware
workflow scheduling in hybrid clouds,” J.
Syst. Archit., vol. 100, p. 101631, 2019.

[19] J. K. O. K. Konjaang, F. H. Ayob, and A.
Muhammed, “AN OPTIMIZED MAX-MIN
SCHEDULING ALGORITHM IN CLOUD
COMPUTING,” vol. 95, no. 9, pp. 1916–
1926, 2017.

[20] J. Livny, H. Teonadi, M. Livny, and M. K.
Waldor, “High-throughput, kingdom-wide
prediction and annotation of bacterial non-
coding RNAs,” PLoS One, vol. 3, no. 9, p.
e3197, 2008.

[21] C. Team, “Dagman (directed acyclic graph
manager),” See website http//www. cs.
wisc. edu/condor/dagman, 2005.

[22] F. Baroncelli, B. Martini, and P. Castoldi,
“Network virtualization for cloud
computing,” Ann. Telecommun. des
télécommunications, vol. 65, no. 11, pp.
713–721, 2010.

[23] S. Bharathi and M. Rey, “Characterization
of Scientific Workflows.” In 2008 third
workshop on workflows in support of large-
scale science, pp. 1-10. IEEE, 2008.

[24] S. S. Brar and S. Rao, “Optimizing
workflow scheduling using Max-Min
algorithm in cloud environment,” Int. J.
Comput. Appl., vol. 124, no. 4, 2015.

[25] T. D. Braun et al., “A comparison of eleven
static heuristics for mapping a class of
independent tasks onto heterogeneous
distributed computing systems,” J. Parallel
Distrib. Comput., vol. 61, no. 6, pp. 810–
837, 2001.

[26] X. Wu, M. Deng, R. Zhang, B. Zeng, and S.
Zhou, “A task scheduling algorithm based
on QoS-driven in cloud computing,”

Procedia Comput. Sci., vol. 17, pp. 1162–
1169, 2013.

[27] A. B. El-Sisi, M. A. Tawfeek, and others,
“Cloud Task Scheduling for Load
Balancing based on Intelligent Strategy.,”
Int. J. Intell. Syst. \& Appl., vol. 6, no. 5,
2014.

[28] H. Zhong, K. Tao, and X. Zhang, “An
Approach to Optimized Resource
Scheduling Algorithm for Open-source
Cloud Systems,” pp. 0–5, 2010, doi:
10.1109/ChinaGrid.2010.37.

[29] N. Kaur and K. Kaur, “Improved Max-Min
Scheduling Algorithm,” vol. 17, no. 3, pp.
42–49, 2015, doi: 10.9790/0661-17314249.

[30] S. S. Chauhan, “QoS Guided Heuristic
Algorithms for Grid Task Scheduling,” vol.
2, no. 9, pp. 24–31, 2010.

[31] H. Chen, F. Wang, N. Helian, and G.
Akanmu, “User-priority guided Min-Min
scheduling algorithm for load balancing in
cloud computing,” in 2013 National
Conference on Parallel computing
technologies (PARCOMPTECH), 2013, pp.
1–8.

[32] A. Girault, E. Saule, and D. Trystram,
“Reliability versus performance for critical
applications,” J. Parallel Distrib. Comput.,
vol. 69, no. 3, pp. 326–336, 2009.

[33] X. He, X. Sun, and G. Von Laszewski,
“QoS guided min-min heuristic for grid task
scheduling,” J. Comput. Sci. Technol., vol.
18, no. 4, pp. 442–451, 2003.

[34] C. N. Yang, “Message from the UMAS
2013 chair,” Lect. Notes Comput. Sci.
(including Subser. Lect. Notes Artif. Intell.
Lect. Notes Bioinformatics), vol. 7861
LNCS, no. May 2013, pp. 102–113, 2013,
doi: 10.1007/978-3-642-38027-3.

[35] G. Liu, J. Li, and J. Xu, “An improved min-
min algorithm in cloud computing,” Adv.
Intell. Syst. Comput., vol. 191 AISC, no. 1,
pp. 47–52, 2013, doi: 10.1007/978-3-642-
33030-8_8.

[36] R. kaur and P. Kumar Patra, “Resource
Allocation with improved Min-Min
Algorithm,” Int. J. Comput. Appl., vol. 76,
no. 15, pp. 61–67, 2013, doi:
10.5120/13327-0918.

[37] J. Liu and G. Li, “An improved MIN-MIN
grid tasks scheduling algorithm based on
QoS constraints,” OPEE 2010 - 2010 Int.
Conf. Opt. Photonics Energy Eng., vol. 1,
pp. 281–283, 2010, doi:
10.1109/OPEE.2010.5508132.

[38] M. Haladu and J. Samual, “Optimizing
Task Scheduling and Resource allocation in
Cloud Data Center, using Enhanced Min-

Journal of Theoretical and Applied Information Technology
31st January 2022. Vol.100. No 2

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

504

Min Algorithm,” IOSR J. Comput. Eng.,
vol. 18, no. 04, pp. 18–25, 2016, doi:
10.9790/0661-1804061825.

[39] W. Chen, M. Rey, and M. Rey,
“WorkflowSim : A Toolkit for Simulating
Scientific Workflows in Distributed
Environments,” 2012.

[40] H. Topcuoglu, S. Hariri, and M.-Y. Wu,
“Performance-effective and low-complexity
task scheduling for heterogeneous
computing,” IEEE Trans. parallel Distrib.
Syst., vol. 13, no. 3, pp. 260–274, 2002.

[41] M. Maheswaran, S. Ali, H. J. Siegel, D.
Hensgen, and R. F. Freund, “Dynamic
mapping of a class of independent tasks
onto heterogeneous computing systems,” J.
Parallel Distrib. Comput., vol. 59, no. 2, pp.
107–131, 1999.

[42] H. Cao, H. Jin, X. Wu, S. Wu, and X. Shi,
“DAGMap: efficient and dependable
scheduling of DAG workflow job in Grid,”
J. Supercomput., vol. 51, no. 2, pp. 201–
223, 2010.

[43] Y. Chawla and M. Bhonsle, “A study on
scheduling methods in cloud computing,”
Int. J. Emerg. Trends \& Technol. Comput.
Sci., vol. 1, no. 3, pp. 12–17, 2012.

[44] Y. Xu, K. Li, L. He, L. Zhang, and K. Li,
“A hybrid chemical reaction optimization
scheme for task scheduling on
heterogeneous computing systems,” IEEE
Trans. parallel Distrib. Syst., vol. 26, no.
12, pp. 3208–3222, 2014.

[45] R. Vijayalakshmi and V. Vasudevan,
“Static batch mode heuristic algorithm for
mapping independent tasks in
computational grid,” 2015.

[46] S. Nesmachnow, H. Cancela, and E. Alba,
“A parallel micro evolutionary algorithm
for heterogeneous computing and grid
scheduling,” Appl. Soft Comput., vol. 12,
no. 2, pp. 626–639, 2012.

[47] S. Ravichandran and E. R. Naganathan,
“Dynamic scheduling of data using genetic
algorithm in cloud computing,” Int. J.
Comput. Algorithm, vol. 2, no. 01, pp. 127–
133, 2013.

[48] S. Patel and U. Bhoi, “Priority based job
scheduling techniques in cloud computing:
a systematic review,” Int. J. Sci. \&
Technol. Res., vol. 2, no. 11, pp. 147–152,
2013.

[49] T. L. Casavant and J. G. Kuhl, “A
taxonomy of scheduling in general-purpose
distributed computing systems,” IEEE
Trans. Softw. Eng., vol. 14, no. 2, pp. 141–
154, 1988.

[50] N. Kaur and K. Kaur, “Improved max-min
scheduling algorithm,” IOSR J. Comput.
Eng., vol. 17, no. 3, pp. 42–49, 2015.

[51] R. Duan, R. Prodan, and X. Li, “Multi-
Objective Game Theoretic Schedulingof
Bag-of-Tasks Workflows on Hybrid
Clouds,” IEEE Trans. Cloud Comput., vol.
2, no. 1, pp. 29–42, 2014, doi:
10.1109/TCC.2014.2303077.

[52] S. Meraji and M. R. Salehnamadi, “A batch
mode scheduling algorithm for grid
computing,” J. Basic Appl. Sci. Res., vol. 3,
no. 4, pp. 173–181, 2013.

[53] M. Masdari, S. ValiKardan, Z. Shahi, and
S. I. Azar, “Towards workflow scheduling
in cloud computing: A comprehensive
analysis,” J. Netw. Comput. Appl., vol. 66,
pp. 64–82, 2016, doi:
https://doi.org/10.1016/j.jnca.2016.01.018.

[54] A. Belgacem, K. Beghdad-Bey, and H.
Nacer, “Task scheduling in cloud
computing environment: A comprehensive
analysis,” in International Conference on
Computer Science and its Applications,
2018, pp. 14–26.

[55] M. Maciej, G. Juve, and others, “Cost-and
deadline-constrained provisioning for
scientific workflow ensembles in IaaS
clouds,” in Proceedings of the International
Conference on High Performance
Computing, Networking, Storage and
Analysis. IEEE Computer Society Press,
2012.

[56] S. Abrishami, M. Naghibzadeh, and D. H. J.
Epema, “Cost-driven scheduling of grid
workflows using partial critical paths,”
IEEE Trans. Parallel Distrib. Syst., vol. 23,
no. 8, pp. 1400–1414, 2011.

[57] R. F. Freund et al., “Scheduling resources
in multi-user, heterogeneous, computing
environments with SmartNet,” in
Proceedings Seventh Heterogeneous
Computing Workshop (HCW’98), 1998,
pp. 184–199.

[58] S. Pars and R.-R. Maleki, “A new task
scheduling algorithm in grid environment,”
Int. J. Digit. Content Technol. its Appl., vol.
3, no. 4, pp. 152–160, 2009.

[59] G. B. Berriman and J. C. Good, “The
application of the montage image mosaic
engine to the visualization of astronomical
images,” Publ. Astron. Soc. Pacific, vol.
129, no. 975, p. 58006, 2017.

[60] G. B. Berriman and J. Good, “TOASTing
Your Images With Montage,” in American
Astronomical Society Meeting Abstracts\#
229, 2017, vol. 229, pp. 209–236.

Journal of Theoretical and Applied Information Technology
31st January 2022. Vol.100. No 2

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

505

[61] E. Deelman et al., “Managing large-scale
workflow execution from resource
provisioning to provenance tracking: The
cybershake example,” in 2006 Second IEEE
International Conference on e-Science and
Grid Computing (e-Science’06), 2006, p.
14.

[62] S. Callaghan et al., “Reducing time-to-
solution using distributed high-throughput
mega-workflows-experiences from SCEC
CyberShake,” in 2008 IEEE Fourth
International Conference on eScience,
2008, pp. 151–158.

[63] E. Deelman et al., “Pegasus, a workflow
management system for science
automation,” Futur. Gener. Comput. Syst.,
vol. 46, pp. 17–35, 2015, doi:
https://doi.org/10.1016/j.future.2014.10.008
.

[64] M. E. A. Budimir, P. M. Atkinson, and H.
G. Lewis, “Seismically induced landslide
hazard and exposure modelling in Southern
California based on the 1994 Northridge,
California earthquake event,” Landslides,
vol. 12, no. 5, pp. 895–910, 2015.

[65] D. A. Brown, P. R. Brady, A. Dietz, J. Cao,
B. Johnson, and J. McNabb, “A case study
on the use of workflow technologies for
scientific analysis: Gravitational wave data
analysis,” in Workflows for e-Science,
Springer, 2007, pp. 39–59.

[66] A. Verma and S. Kaushal, “Cost-Time
Efficient Scheduling Plan for Executing
Workflows in the Cloud,” J. GRID
Comput., vol. 13, no. 4, pp. 495–506, Dec.
2015, doi: 10.1007/s10723-015-9344-9.

[67] I. Gupta, M. S. Kumar, and P. K. Jana,
“Compute-intensive workflow scheduling
in multi-cloud environment,” in 2016
International Conference on Advances in
Computing, Communications and
Informatics (ICACCI), 2016, pp. 315–321,
doi: 10.1109/ICACCI.2016.7732066.

[68] J. Yu and R. Buyya, “A taxonomy of
workflow management systems for grid
computing,” J. Grid Comput., vol. 3, no. 3–
4, pp. 171–200, 2005.

[69] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz,
“Runtime measurements in the cloud:
observing, analyzing, and reducing
variance,” Proc. VLDB Endow., vol. 3, no.
1–2, pp. 460–471, 2010.

[70] M. A. Rodriguez and R. Buyya, “Deadline
Based Resource Provisioningand
Scheduling Algorithm for Scientific
Workflows on Clouds,” IEEE Trans. Cloud
Comput., vol. 2, no. 2, pp. 222–235, 2014,
doi: 10.1109/TCC.2014.2314655.

[71] T. D. Braun et al., “A comparison study of
static mapping heuristics for a class of
meta-tasks on heterogeneous computing
systems,” in Proceedings. Eighth
Heterogeneous Computing Workshop
(HCW’99), 1999, pp. 15–29.

[72] R. N. Calheiros, R. Ranjan, A. Beloglazov,
and A. F. De Rose, “CloudSim : a toolkit
for modeling and simulation of cloud
computing environments and evaluation of
resource provisioning algorithms,” no.
August 2010, pp. 23–50, 2011, doi:
10.1002/spe.

[73] 大里齊, “Research and development of
microwave dielectric ceramics for wireless
communications,” J. Ceram. Soc. Japan,
vol. 113, no. 1323, pp. 703–711, 2005.

[74] M. Satyanarayanan et al., “An open
ecosystem for mobile-cloud convergence,”
IEEE Commun. Mag., vol. 53, no. 3, pp.
63–70, 2015.

[75] U. Shaukat, E. Ahmed, Z. Anwar, and F.
Xia, “Cloudlet deployment in local wireless
networks: Motivation, architectures,
applications, and open challenges,” J. Netw.
Comput. Appl., vol. 62, pp. 18–40, 2016.

[76] G. I. Klas, “Fog computing and mobile
edge cloud gain momentum open fog
consortium, etsi mec and cloudlets,”
Google Sch., 2015.

[77] Q. Shi, L. Liu, W. Xu, and R. Zhang, “Joint
transmit beamforming and receive power
splitting for MISO SWIPT systems,” IEEE
Trans. Wirel. Commun., vol. 13, no. 6, pp.
3269–3280, 2014, doi:
10.1109/TWC.2014.041714.131688.

[78] P. M. Kalaivaanan et al., “Measuring
Contention and Congestion on Ad-Hoc
Multicast Network towards Satellite on Ka-
Band and LiFi Communication under
Tropical Environment Region,” IEEE
Access, vol. 8, pp. 108942–108951, 2020,
doi: 10.1109/ACCESS.2020.3001619.

[79] Y. Xu et al., “Joint Beamforming and
Power-Splitting Control in Downlink
Cooperative SWIPT NOMA Systems,”
IEEE Trans. Signal Process., vol. 65, no.
18, pp. 4874–4886, 2017, doi:
10.1109/TSP.2017.2715008.

[80] E. G. C. man Jr, M. R. Garey, and D. S.
Johnson, “Approximation algorithms for
bin packing: A survey,” Approx. algorithms
NP-hard Probl., pp. 46–93, 1996.

[81] F. Jalali, K. Hinton, R. Ayre, T. Alpcan,
and R. S. Tucker, “Fog computing may help
to save energy in cloud computing,” IEEE
J. Sel. Areas Commun., vol. 34, no. 5, pp.
1728–1739, 2016.

Journal of Theoretical and Applied Information Technology
31st January 2022. Vol.100. No 2

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

506

[82] L. M. BIJU, S. S. Kumar, R. M. Biju, M. L.
Madhavu, and others, “A Survey on
Various Cloud Aspects.,” Int. J. Adv. Res.
Comput. Sci., vol. 7, no. 5, 2016.

[83] F. Fowley, C. Pahl, and L. Zhang, “A
comparison framework and review of
service brokerage solutions for cloud
architectures,” in International Conference
on Service-Oriented Computing, 2013, pp.
137–149.

[84] F. Fowley, C. Pahl, P. Jamshidi, D. Fang,
and X. Liu, “A classification and
comparison framework for cloud service
brokerage architectures,” IEEE Trans.
Cloud Comput., vol. 6, no. 2, pp. 358–371,
2016.

[85] D. M. Elango, F. Fowley, and C. Pahl,
“Using a cloud broker API to evaluate
cloud service provider performance,” in
Joint Pre-Proceedings of the Workshops
Associated with ESOCC 2017, 2017, p. 63.

[86] M. Randles, D. Lamb, and A. Taleb-
Bendiab, “A comparative study into
distributed load balancing algorithms for
cloud computing,” in 2010 IEEE 24th
International Conference on Advanced
Information Networking and Applications
Workshops, 2010, pp. 551–556.

[87] A. Kerr, G. Diamos, and S. Yalamanchili,
“A characterization and analysis of GPGPU
kernels,” 2009.

[88] M. Xu, W. Tian, and R. Buyya, “A survey
on load balancing algorithms for virtual
machines placement in cloud computing,”
Concurr. Comput. Pract. Exp., vol. 29, no.
12, p. e4123, 2017.

[89] A. Singh, M. Korupolu, and D. Mohapatra,
“Server-storage virtualization: integration
and load balancing in data centers,” in
SC’08: Proceedings of the 2008
ACM/IEEE conference on Supercomputing,
2008, pp. 1–12.

[90] Y. Grunenberger, I. Tinnirello, P. Gallo, E.
Goma, and G. Bianchi, “Wireless card
virtualization: From virtual NICs to virtual
MAC machines,” in 2012 Future Network
\& Mobile Summit (FutureNetw), 2012, pp.
1–10.

[91] K.-M. Cho, P.-W. Tsai, C.-W. Tsai, and C.-
S. Yang, “A hybrid meta-heuristic
algorithm for VM scheduling with load
balancing in cloud computing,” Neural
Comput. Appl., vol. 26, no. 6, pp. 1297–
1309, 2015.

[92] W. Xiaojun, W. Yun, H. Zhe, and D. Juan,
“The research on resource scheduling based
on fuzzy clustering in cloud computing,” in
2015 8th International Conference on

Intelligent Computation Technology and
Automation (ICICTA), 2015, pp. 1025–
1028.

[93] A. Choudhary, I. Gupta, V. Singh, and P. K.
Jana, “A {GSA} based hybrid algorithm for
bi-objective workflow scheduling in cloud
computing,” Futur. Gener. Comput. Syst.,
vol. 83, pp. 14–26, 2018, doi:
https://doi.org/10.1016/j.future.2018.01.005
.

[94] G. B. Berriman et al., “Montage: a grid-
enabled engine for delivering custom
science-grade mosaics on demand,” in
Optimizing Scientific Return for
Astronomy through Information
Technologies, 2004, vol. 5493, pp. 221–
232.

[95] Konjaang, J. Kok, and Lina Xu. "Multi-
objective workflow optimization strategy
(MOWOS) for cloud computing." Journal
of Cloud Computing 10, no. 1 (2021): 1-19.

[96] G. Patel, R. Mehta, and U. Bhoi,
“Enhanced Load Balanced Min-min
Algorithm for Static Meta Task Scheduling
in Cloud Computing,” Procedia Comput.
Sci., vol. 57, pp. 545–553, 2015, doi:
10.1016/j.procs.2015.07.385.

