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ABSTRACT 
 

Resource allocation and cloudlets scheduling are fundamental problems in a cloud computing environment. 
The scheduled cloudlets must be executed efficiently by using the available resources to improve system 
performance. To achieve this, we propose a new noble mechanism called Optimized Min-Min (OMin-Min) 
algorithm, inspired by the Min-Min algorithm. The objectives of this work are: i) to provide a 
comprehensive review of the cloud and scheduling process; ii) to classify the scheduling strategies and 
scientific workflows; iii) to implement our proposed algorithm with various scheduling algorithms (i.e., 
Min-Min, Round-Robin, Max-Min, and Modified Max-Min) for performance comparison, within different 
cloudlet sizes (i.e., small, medium, large, and heavy) in three scientific workflows (i.e., Montage, 
Epigenomics, and SIPHT); and iv) to investigate the performance of the implemented algorithms by using 
CloudSim. The main goal of this study is to obtain optimum results that satisfy the minimum completion 
time and achieve better utilization of resources, which lead to increased throughput. The algorithms were 
implemented in a Java environment. Results were discussed and analyzed by using formulas and were 
compared in percentages. According to the simulation results, the proposed algorithm produces the best 
solution among all algorithms in the proposed cases. 
Keywords:  Cloud computing, Scheduling, Workflow scheduling, Scientific workflow, DAG 
 
 
1. INTRODUCTION  
 

Cloud computing technology and cloud services are 
growing technologies that permits users to pay as 
much as their need. It includes hosted applications 
that deal with essential factors such as storage and 
processing. [1]. Cloud is measured as a web-built 
service offered by several network providers-based 
consumption of quality of service (QoS), load 
balancing (LB) and others [1]. An efficient 
algorithm is therefore required to allocate the 
correct task to the right resources. Without affecting 
cloud service parameters, the available resources 
should be used effectively, particularly if the cloud 
has a limited resource setting in order to efficiently 
and error-freely operate which most cloud systems 
on their need, and the cloud has to manage several  

 

factors in cloud planning that directly affects user 
Should run, leading to cloud service providers 
gaining more reputation when they compete, for 
example, with storage available for input and output 
operations in the cloud without causing any delay. 
The cloud programming process can be classified 
into three stages, which are i) the discovery and 
filtering of resources, ii) the selection of resources, 
and iii) the submission of tasks [1]. The data centre 
broker for resource discovery identifies and gathers 
the resources available in the network structure. 
The targeted resources are selected based on precise 
tasks and parameters related to resources 
throughout the resource selection process. The tasks 
are submitted to the selected resources during the 
submission phase, shown below in the research 
method through simulation process, section III. 
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Tasks are chosen by priority and assigned to 
processors that perform a predefined objective 
function. There are four main types of cloud 
available [2][3]: i) public, ii) private, iii) hybrid and 

iv) community cloud. The public cloud refers to a 
pay-as-you-go way of having a cloud [4]. The 
public cloud has some primary advantages for 
cloud-service providers, and no initial network  

Figure 1. Cloud Types. 

Capital costs or risk transfers to infrastructure 
providers. Public clouds, however, are not 
thoroughly managed over: i) data, ii) network, and 
iii) security settings, which many business 
situations hinder their efficiency [5]. In this case, it 
is hard to gather all VMs or host data. The private 
cloud concept refers to a business or other 
organization's internal data centre inaccessible to 
the all-purpose public. Community cloud, a variety 
of organizations with related objectives, have a 
shared cloud network (e.g., Assignments, security 
requirements, legislation, and regulation). This is 
generally managed on the spot or off-site by 
community-based or third-party organizations [3]. 
Communal clouds have advantages because they 
are private and protected networks rather than 
public clouds for specific organizations. The 
downside is that the cloud is not secure and has to 

be handled. However, public cloud benefits from 
lower investment in investment capital and a better 
deployment pace, a survey by IDG in [6] found that 
private clouds are much more common among 
businesses. A hybrid cloud system example is 
shown in Figure (1). Within a system like this, a 
scheduler determines the resource practice of public 
and private clouds together if the incoming cloud 
users require it. Upon approval of user  

requests, the scheduler interprets these requests into 
tasks and then moves them to public or private 
clouds. The intracloud network, linking a client's 
instances and a cloud-based pooled infrastructure, is 
a suitable example of a private cloud. Within a 
cloud, the network of intra-data centres, as 
contrasted with the inter-datacenter network, is 
always entirely different [7]. A hybrid cloud 
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incorporates private and public cloud models, 
which aim to overcome each approach's limitations. 
Part of the facility infrastructure in hybrid cloud 
turns in private clouds, whereas the rest runs on 
public clouds. Hybrid clouds have more excellent 
stability than private and public clouds. In 
particular, they deliver fitted to control and security 
over application data compared to public clouds, 
facilitating the growth and reduction of on-demand 
services. On the contrary, cross-cloud architecture 
involves the most acceptable breakdown between 
public and private cloud elements to be identified 
carefully [8]. It remains known minimizing transfer 
and processing time stays vital to the system when 
preparing any intensive data or computing an 
application (refer to Figure.8). Because of the 
reports and research that have been cone in the 
cloud domain, the cloud environment does not have 
many standard task planning algorithms.  In [9], 
Pinedo's description of the scheduling problem is as 
follows: "It is a decision-making process that is 
used regularly in many manufacturing and services 
industries, It deals with the allocation of resources 
to tasks over given periods, and its goal is to 
optimize one or more objectives.   Cloud scheduling 
means choosing the most suitable tool or allocating 
machines toward all tasks to decrease the 
completion time makespan. In general, each task is 
designed by prioritizing the list. It is required to 
seek the best algorithm to maximize productivity by 
seeking the least makespan for using resources in 
cloud computing systems where there are 
potentially vast numbers of users from different 
contexts and technologies and with various 
requirements and demands on thousands or millions 
of virtual machines waiting for their turn to be 
served. It is essential for cloud service providers to 
ensure that any available resource is completely 
exploited to prevent resources from being idle, thus 
incurring unnecessary costs [10][11]. Therefore, the 
resources can be sluggish at a certain point in the 
system. This provides an opportunity for the 
dynamic scheduler to use information that is 
changed during jobs execution, thereby updating 
the system. To do so, the dynamic scheduler sends a 
set of jobs in execution and monitors the system 
behavior, collecting information to schedule the 
next stage of jobs. This information collection 
cannot be accomplished unless the resource is idle 
[12]. Furthermore, there are algorithms that take 
advantage of idle time. One of those algorithms is 
the Heterogeneous Earliest Finish Time (HEFT); it 
uses a strategy that considers using the idle time 
between two tasks in the processor to schedule a 
new task. This will minimize the overall task 

completion time if the insertion strategy is feasible. 
In Addition, HEFT and Min–Min are efficient 
algorithms that belong to static scheduling 
processes, which assign resources corresponding to 
each job before the function begins; both of these 
algorithms mainly concentrate on the overall 
completion period as their optimization target. 
Nonetheless, these algorithms neglect the effect of 
expense. As a rule, the makespan of HEFT and 
Min–Min are small in general[13][14]. 

Due to the number of issues, including the lack of 
standards, different and often changing APIs, it is 
challenging to overcome limitations or enhance 
cloud computing system performance. The 
changeable load or daily load is a problem for 
algorithms and methods to improve the system 
performance. Some works have therefore adopted 
historical data to forecast the potential burden of 
overcoming this [6], [14], [15]. As loads are 
comparatively predicted and controlled compared to 
the public cloud, heuristic algorithms [16], for 
instance, Particle Swarm Optimization (PSO), and 
Ant Colony Optimization (ACO), can be used. The 
fundamental issues with the cloud computing 
system are resource distribution and cloud planning 
[13]. There are also other examples of the general 
problem in the literature [17]. 

The problem is NP-Complete, even though 
polynomial-time solutions are available for a few 
scenarios [9]. In recent years, traditional optimum 
task planning has been well investigated and have 
proved to be a non-deterministic time-complete 
problem for polynomial (NP). To solve the 
problem, many heuristics and metaheuristic 
algorithms have been proposed [13]. This is 
commonly referred to as a problem with workflow 
scheduling. Overall, an NP-complete problem has 
been studied extensively in other paradigms [16], 
including grid and cluster computing, the workflow 
scheduling problem being to reduce the linear 
combination of the makespan [18]. 

In the previous work [19], the authors introduced 
Modified MMax-Min, and they produce good 
results in terms of (Makespan) than Max-Min and 
Round Robin, but the main problem with the 
MMax-Min is the precedence between the use of 
cloud and resources. Precedence is the condition of 
being considered more important than something 
else, priority in importance, order, or rank. 

In this work, we introduce the OMin-Min algorithm 
inspired by the traditional Min-Min algorithm. We 
have used three scientific workflows SIPHT, 
MONTAGE, AND EPIGONMICS, with different 
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sizes for each workflow. We apply different 
algorithms Max-Max, Round-Robin, MMax-Min 
[19], traditional Min-Min and finally, our proposed 
algorithm OMin-Min to achieve less makespan for 
each task in different workflow types and different 
workflow sizes and to compare the performance for 
each algorithm in different scientific workflows to 
find the best performance among these algorithms 
the proposed OMin-Min algorithm is compared and 
evaluated with other existing algorithms in the 
cloud computing environment, the performance of 
these algorithms in the cloud have been 
experimented and measured. 
This study aims to develop a new modified version 
of the existing algorithm (MIN-MIN), that aims to 
provide better performance for task scheduling in a 
cloud computing environment. 
The current methods and techniques designed for 
task scheduling are mostly based on primary and 
existing algorithms. However, the versions of Min-
Min algorithms are limited, and not all of them 
were dedicated to task scheduling using scientific 
workflows, in addition, not all of them were used in 
the cloud environment. Moreover, the new 
techniques combine more than one algorithm 
(hybrid), which means higher complexity in the 
system and higher latency. This motivated us to 
present the following contributions: 
Our main contributions of this work can be 
summarized as follows: 

• Cloud cloudlets scheduling and resource 
allocation in cloud computing are being studied 
and introduced. 

• To propose an efficient heuristic algorithm 
called OMin-Min. 

• This work aims to implement, investigate, and   
evaluate the proposed OMin-Min Algorithm 
against other algorithms executed within three 
workflows under specific parameters, the main 
goal of proposed method is to deliver minimal 
makespan. The work focuses on the 
performance in the cloud computing 
environment and how efficient it is regarding 
task scheduling. 

• Several workflows are used, such as Montage, 
Sipht and Epigenomics, to evaluate the 
proposed algorithm with diverse node sizes for 
more accuracy. 

• Extensive simulations were done to make a good 
comparison of results. 

The remaining of this paper will be distributed as 
follows: Section 2 is related work, in section 3, the 
research methodology has been detailed, the 
methodology follows the standard procedure for 
analyzing the makespan and how we collect the 

data, and the algorithms have been used in this 
research. In section 4, the implementation of the 
proposed algorithms in the scientific workflow and 
the generated results are discussed and presented. In 
section 5, the conclusion of this research and the 
future work. 
 
2. LITERATURE REVIEW  

In this literature, several works have been 
completed to solve the problem of workflow 
considering the optimization purposes of makespan. 
According to the number of users increasingly 
growing, virtualization is one of the critical 
strategies to increase the usage of physical 
resources in cloud environments [22]. These 
virtualization strategies involve network 
virtualization and enable users to build multiple 
virtual machines (VMs) on a single physical server. 
Specifically, VMs can be created by raising or 
lowering the CPU power or the number of CPUs. 
Successful meta-job scheduling algorithms are 
required to accurately leverage the virtualized 
resources to execute the computing-intensive task 
[23]. However, with the adoption of virtualization 
techniques in computational cloud systems, new 
algorithms are supposed to deal with problems 
arising from the cloud infrastructure. The typical 
job scheduling problem is that the scheduling of 
meta-workers in applications through computation 
resources to minimize the jobs accomplished times 
while ignoring the actual mutual existence of the 
network resource [24]. Various strategies are static 
or dynamic scheduling. Through static scheduling 
algorithms, all user tasks are assigned that arrive 
simultaneously and have independent machine 
resources with their availability. The static 
algorithm involves basic techniques like First Come 
First Serve (FCFS). Round Robin methods (RR), 
the FCFS and RR, the static method, get all the user 
tasks scheduled in a single time point considering 
various parameters [25]. Different assets are used 
for determining the specific priority of jobs. 
Depending on this priority, the tasks are scheduled 
in the cloud, and the activities are categorized based 
on the various attributes perceived and assessed by 
different users. The most acceptable completion 
time is found by assigning tasks to machines, 
improving the performance [26]. 

 Study [25] proposed to us with Ljfr-Sjfr nature's 
heuristics for scheduling tasks on computational 
grids this at initiating this approach allocate the big 
tasks on quickest resource than in next stage, and 
this method assigns the minor task to most 
temporary resource and the most considerable task 
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to the most immediate resource alternately. The 
experimental results demonstrate this algorithm 
represent good napping instead of just the previous. 
But not very much progress was achieved in 
formulating an efficient, globally optimized. 
Another work in [27], introduced the Macolb 
algorithm to boost the cloud tasks scheduling for 
load balancing; the Macolb algorithm handles the 
device load when attempting to reduce the 
makespan of an assigned task set. However, 
between tasks are not preemptive, and they cannot 
be interrupted or transferred to another processor 
throughout their execution. However, in our study, 
we do not consider the hardware side 

In [28], authors have proposed an automated 
resource scheduling algorithm focusses on reaching 
the maximum, or part maximum for cloud 
scheduling outperforms to increase the productivity 
level of computing resources. Yet, they did not 
consider additional system parameters, such as I / O 
speed, network conditions. Moreover, Study [29], 
introduced an improved Max-Min algorithm. The 
enhanced algorithm operates on several parameters 
instead of one parameter, as in the case of the 
conditional Max-Min procedure going to occur. 
However, they did not find the workload that could 
be sub-divided prior scheduling phase takes place.  
While Study [29] presented a new algorithm RASA, 
RASA can deliver schedules with a relatively lower 
makespan. But, the deadline within each task, 
arriving level of the assignments, cost of the task 
execution on each of the assets, cost of the 
interaction and several other cases that can be a 
subject of research are not considered. All of the 
above works [26] [30] [31] are associated with 
classical task scheduling algorithms like SJF 
(shortest job first), FCFS (first come, first serve), 
RR (round-robin) concerning Min-Min and Max-
Min algorithms. On the other hands, an algorithm 
was introduced in [32], consists of two components. 
In the first part, the effectiveness is increased by a 
randomized algorithm. A scheduling list algorithm 
is being used to reduce the makespan; they 
introduced virtual task algorithms to improve 
makespan and acceptable efficiency in the 
complicated multi-cloud environment. The 
furthermost mutual objective encountered in the 
distributed systems literature is minimizing the 
completion time, or makespan, accomplished by 
appropriate allocation of tasks in the available 
resources. 

 2.1 Min-Min Algorithms Related Literature 

Many researchers have conducted different 
perspectives and versions on Min-Min algorithm 

scheduling and resource allocation based on 
algorithm studying and examining the same 
approaches in the literature. The following Table 
summarizes previous Min-Min versions in the 
literature. On the other hand, many studies focused 
on schedule using the Min-Min algorithm in [33]. 
The study introduces a unique algorithm based on 
an initial Min-Min algorithm called "QoS directed 
min-min algorithm."  At the point of scheduling of 
tasks, it needs higher throughput than other 
algorithms. Whereas, if the necessary throughput 
for various tasks varies extremely, the QoS guided 
min-min provides a better outcome than Min-Min. 
However, if the throughput demand of all tasks is 
about the same, the QoS directed min-min 
algorithm performs like the Min-Min algorithm. 

Moreover, Study [30] implemented a load 
balancing algorithm for equal scheduling over Max-
Min. This algorithm attempted to use the best 
solution and limit the execution time and expected 
price to implement all jobs. Additionally, they 
didn't compare these outcomes to other swarm 
intelligence algorithms to discover a better 
alternative. Another study [31] have discussed and 
developed a Min-Min traditional algorithm in which 
tasks have relied on the metrics like server loads 
and user priority. This approach classifies the users 
who assign the tasks to usual and significant users. 
The full loaded servers and minimum loaded 
servers with make duration are used to allocate 
charges depending on these users. This approach 
provides better results in resources usage ratio and 
offers better user satisfaction.  

Many studies have been introduced modified or 
Enhanced Min-Min. First of all, [32] introduced 
Improved Min-Min, which improves the Min-Min 
algorithm based on QoS constraints, and high-
priority tasks can be implemented first on the 
condition that high QoS tasks get high QoS 
resources in the Grid environment. Moreover, in 
[34], they introduced an algorithm that tries to use 
the advantages of this basic algorithm and avoids its 
drawbacks to reduce completion time and improve 
load balancing in a Grid environment. While anther 
studies have been done in a cloud environment, in 
[35], An Improved Min-Min Algorithm in Cloud 
Computing has been introduced. They compared 
the improved min-min algorithm with the 
traditional min-min algorithm to enhance resource 
utilization rate. Another study [36] presented an 
efficient rescheduling based task scheduling 
algorithm (improved Min-Min Algorithm (I Min-
Min) to improve system performance and load 
balancing, and utilization of system resources. All 
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the above studies [37][34] [35],[36] introduced or 
proposed improved or Enhanced Min-Min 
algorithms. Still, none of them used these 
algorithms with a scientific workflow such as Sipht 
or Montage, while [38] introduced Enhanced Min-
min algorithm in cloud environment To achieve the 
best performance and minimize total completion 
time, reduce response time finally maximize 
resources utilization by using two different 
scientific workflows with different sizes  
Montage_25 Montage_50 Montage_100 
Montage_1000 CyberShake_30 CyberShake_50 
CyberShake_100 CyberShake_1000. 

In [19], they introduced MMax-Min with different 
scientific workflow and com-pared their work 
performance with RR and Max-Min's other 
algorithms. The proposed algorithm can achieve 
better results than other algorithms. 

3. SCHEDULING 

3.1 Scheduling Process 

It is vital to bear in mind the difference between 
jobs, tasks and cloudlets.  A job might consist of 
one task or set of tasks [39], as shown in Figure (2). 
A job can have many identical or non-identical 
tasks. Whether a job completes successfully or not 
depends upon the status of its tasks; for example, if 
its tasks do not complete within the timeout 
threshold or fail for whatever reason, then the job 
will be marked as timed out or for-gotten. A job 
will only be marked as completed when all of its 
tasks have been completed successfully. On the 
other hand, a cloudlet is mentioned in section 
IV(B). The scheduling process is summarized as 
follows: 

• Resource discovery and filtering – the broker 
of the data center will dis-cover the resources 
available in the network system. It will then 
gather the information of status related to 
them.        

• Selection of resources – Desired Resources is 
chosen based on specific parameters and 
resource criteria. 

• Submission of Task – the jobs are forwarded 
toward the designated re-source. 

 

3.2 The Goal Of Scheduling Algorithms 

The key goal is to schedule the jobs according to 
adaptable time, which involves determining the 
correct order in which jobs can be done under 
transaction logic restrictions. There are two 

primary algorithm groups. 1) Static algorithm and 
2) dynamic algorithm. Both have their benefits 
and constraints. Dynamic algorithms are more ef-
fective than static algorithms but have more 
overheads compared with others. 

 

 

Figure 2.  Jobs And Tasks In Workflow Scheduling 

 

3.3 Workflow Scheduling Problem 

The workflow applications are usually modelled 
as a directed acyclic graph (DAG). Graph denotes 
tasks and graph edges denotes the data 
dependencies among tasks with a load on the 
nodes that reflect the computational complexity, 
and load on the edges represents the 
communication volume [18]. The total running 
time is generally referred to as the time or 
makespan (the processing time). Many scheduling 
algorithms were proposed in recent decades, 
which are an NP-Hard issue to efficiently manage 
and execute business applications [18]. 
Appropriate heuristics, metaheuristics or 
approximation algorithms are necessary to find an 
almost optimal solution to the problem in 
polynomial time. Some standard workflow 
heuristics algorithms are heterogeneous Earliest-
finish-time (HEFT), critical-path-on-a-processor 
(CPOP), [40] Min–Min [41], which seek to 
achieve execution performance level. So, the 
purpose of workflow scheduling techniques is to 
reduce the makespan of a parallel application by 
appropriate allocations of the tasks to the 
processors/resources and configuration of task 
execution patterns. 
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Figure 3.  Different Strategies For Scheduling 

 

3.4 Scheduling Strategies 

According to [42][43][44][45][46][47][48][49] a 
classification of scheduling strategies was done and 
is shown in Figure (3).  

3.5 Workflow Scheduling 

Workflow implementations are typically conducted 
in a series since they are several separate tasks to 
achieve a specific result [50]. Task and the 
dependent relation of the tasks are shown 
respectively in the standard DAG models as node 
and edge. DAG is a finite, directed diagram, so 
nodes have topological sequences, and edges are 
sequences of execution. The collections of business 
activities and their effect on one another can be 
used for this reason. DAG may also be used as a 
consolidated representation of binary choice 
sequence data, such as the binary decision diagram. 
A DAG should formalize the accessibility 
relationship as a partial order with several 
applications while scheduling activities that 
function similarly to a workflow of business [51]. 
Since workflow tasks do have the functional 
sequence and partial order properties, in this 
context, we have set up a simple DAG model which 
represents the structure of various workflow tasks, 
as il-lustrated in Figure (4). The DAG of the 
application workflow contain eight tasks; thus, a 
particulate's respective dimension equals eight [51]. 

 

 

Figure 4. A Simple Dag Example Of Workflow 
Application. 

 
 Data transmission costs are estimated from two 
separate hardware with minimal operating costs for 
the relevant activities. The worst (w) value for 
finding the node weightiness is the worst rate. The 
edge value is calculated as data transmission costs 
from two various machines that are responsible for 
maximum execution costs of associated tasks. 
Simple best value (SB) takes account of the best 
performance and communication costs. The worst 
value (SW) of performance cost and 
communication costs [52]. 
 
3.6 Scientific Workflow Types 
There are two types of workflows that are discussed 
[53][54]: 
1.Basic workflow determines the output of any 
simple task in the formula of "DAG" as defined in 
Figure (8). 
2.The scientific workflow contains a vast number of 
compound data in the formula of thousands of DAG 
tasks [61], which is also discussed shortly in Table 
(2), indicates the many real-life descriptions of 
workflows based on research applications.[10], 
[18], [23], [29], [51], they can be divided into two 
major categories: i) data-intensive and ii) compute 
intensive workflows.  The communication-to-
computation ratio CCR value is used to categorize 
these workflows. The CCR value is showing a very 
small, then it will be considered as compute-
intensive workflows. Otherwise, it is data-intensive 
[23][55], refer to Figure (5). Researchers in [56] 
proposed to study the so-called PCP, mainly 
attentive to time, cost and energy efficiency, 
specifically on data-intensive workflows. They have 
developed an algorithm to design the workflow 
while fulfilling the QoS constraints. Study [57] has 
shown the advantages of the min-min and max-min 
by Ibarra and Kim [65] being computationally 
intensive algorithms.  
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Figure 5.  Types Of Scientific Workflows 
 

3.7 NEED FOR IMPLEMENTING 
WORKFLOWS IN CLOUD 

Application scalability is the main advantage of 
moving into Clouds. In comparison to grids, cloud 
scalability enables resources to meet the application 
requirements in re-al-time. In contrast with the 
traditional approach that requires advanced resource 
reservations in global multi-user Grid 
environments, workflow management systems can 
quickly meet application quality of service needs. 
Applications of workflow often re-quire very 
complex running environments. Such domains on 
grid resources are hard to construct. Furthermore, 
every grid site has a different setup, and each 
application must be ported to a new place with extra 
effort. The application developer can create an ap-
plication environment that is fully customized, 
scalable and is designed for its application using 
Virtual machines (VM)[10], [18], [51]. 

 

3.5 Overview Of Scientific Workflows  

3.5.1  Montage 

The re-projected, revised images are then placed 
together into the final mosaic, and all images are 
modified to the same level [53]. The montage 
application was represented as a workflow in a grid 
environment like the TeraGrid [53][58]. The Nasa / 
Ipac infrared research archives (Montage: 
Astronomical Image Engine) was developed as an 
open-access toolkit for personalized mosaics in the 
sky with inbox-sized (fits) reference images 

[59][60]. The display's geometry is determined 
from the geometry of the input images during the 
creation of the final mosaic. The inputs will then be 
re-planted to the same spatial dimension and 
formation—the photos' background pollution. 
Montage is known as data-intensive workflow 
Figures (6). 

3.5.2 Cybershake 

The cybershake workflow is being used in the 
southern California earthquake Center in order to 
identify earthquake dangers in a region by the 
Probabilistic Seismic Risk Analysis technique 
(PSHA) [61]. A finite-difference simulation for the 
production of green strain tensors (SGTS) is carried 
out, given the region of focus. The Sgt data was 
used to measure synthetic seismograms for each of 
the expected ruptures. Phantom Acceleration and 
probabilistic hazard curves are generated once this 
is done[62]. The Pegasus workflow management 
system (Pegasus-Wms) on the tera- grid has been 
used to perform cybershake workflows, leading to 
over 800,000 jobs.  data-intensive work-flow Figure 
(7) are recognized as Cybershake 

3.5.3 Epigenomics 

At present, the use centre Epigenomics is part of the 
age-wide mapping of the epigenetic state of human 
cells. 

 

 

Figure 6.  Montage Workflow [23]. 
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Figure 7.  Cybershake Workflow [23]. 

The workflow of Epigenomics is a data processing 
pipeline, using the workflow framework of Pegasus 
to optimize the efficiency of various genome 
sequencing operations [63]. The genetic analyzer 
system is divided into several operational chunks 
that are parallel to the DNA sequence data produced 
by Illumi-na-soleXa ("Illumina."). The data in each 
piece is transformed to a file type that is usable by a 
Maq system (Maq: mapping and quality assembly). 
The remainder of these opera-tions consists of 
removing the noisy and contaminating sequences, 
moving sequences in a reference genome to the 
appropriate spot, producing a global map to classify 
the sequence concentration at each point in the 
genome. To manage the data on the development of 
DNA methylation and histone modification, this 
procedure is used by the Epigenomics Centre. 
Figure (8) categorize epigenomic workflows into 
categories i) da-ta-intensive and ii) compute-
intensive workflow applications. 

 

Figure 8.  Epigenomics Workflow [23]. 

 

 

3.5.4  Sipht 

An extensive search of small, translated RNAs 
(sRNAs) that regulate several processes such as 
secretion or virulence in bacteria occurs in the 
Harvard University bio-informatics project. In [63], 
The sRNAs ID Protocol (Sipht)  uses a protocol to 
automatically scan for SRNA encoding genes in the 
National Biotechnology Information Center (NCBI) 
repository for all bacterial replicons. The Kingdom-
wide forecasting and footnote of SRNA genes 
include using a range of programs with DAG (DAG 
man: Directed Acyclic Graph Manager) [64] 
capabilities to carry out the appropriate program-
ming. These include predicting rho-independent 
transcriptional terminators, comparing the 
intergenetic regions with various replicas and 
footnotes of any sRNAs that are present [52] Figure 
(9), BLAST (Basic Local Alignment Search tools). 

3.5.5  Inspiral (LIGO) 

This workflow class applies gravitational physics 
for gravitational surfaces twisted by various events 
in the area. They require enormous data storage and 
computing time. To produce and interpret gravel 
shapes from the collected data during the 
coalescence of the compact binary system [65], the 
workflow of LIGO Inspiral Analysis is used. 

  

Figure 9.  Sipht Workflow [23]. 

 

This workflow is thus classified as the compute-
intensive workflow. In this study, this workflow is 
not used.  All scientific workflows are shown, and 
Table (1) provides a brief description and 
application area [23]. 

3.6 Makespan 

Standard resource utilization is used to estimate the 
algorithm's performance. The time lasting from 
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submissions to the cloud is the makespan of 
workflow until the last function is complete [18], 
[55], [56][66]. 

3.7 Virtualization 

Virtualization is a technology that differentiates 
physical hardware from computing functions and 
implementations. Work on early m44/44x was 
carried out in the 1960s by IBM TJ Watson and 
MIT [67]. Virtualization is also the backbone of 
cloud computing, allowing the integration of 
software and hardware among users, processes, and 
re-sources. The classical operating systems have not 
solved these separation problems well. The program 
should be used in the virtual environment with 
virtualization to run on the raw hardware. The 
virtualization happens depending upon the tier 
(layer) [67]. The virtualization techniques in cloud 
computing are used to build and control the cloud 
computing environment. Because this system is 
virtualized, it is easier to run and maintain. This 
virtualization architecture contains a data planning 
framework that executes the procedures on traffic 
that the mobile edge platform has provided, then 
route that traffic within applications, local and 
external networks.  Virtualization technology 
allows consumers to pay-per-use for the 
installation, setup. The cloud service provider will 
combine services (e.g., CPUs, RAM, bandwidth, 
and disk) into VM's through virtualization 
technologies. CPU's processing power determines 
the execution time of tasks on VMs. 

In contrast, the bandwidth and the amount of data 
transmitted in communication determine the time of 
transferring between various VM instances [18], 
[51]. It should be remembered that in this step, only 
one task can be waited on at a VM. This will only 
impact the waiting function of the same VM if the 
job runtime of a VM fluctuates. In addition, after 
the workflow schedule generates a completion 
signal, the input protocol updates the initial 
priorities and sub-dates of other activities within the 
workflow set. The feedback will also execute the 
modified tasks in the assignment process. It will 
also alleviate the propagated consequences of the 
fluctuating execution time. Each signal received 
will continue to activate each processing phase until 
all submitted workflows are completed. The 
assignment process of capital preserves assignments 
ready to be placed in a list with the target not 
falling. The next move is to arrange the tasks in the 
queue on VMs, where the resource management 
process is for the resource manager. The following 
section provides more details about the allocation of 
resources, including VMs, datacenters and hosts. 

The purpose of the simulation is to evaluate the 
performance of the min-min algorithm to 
benchmark it against the existing algorithms. 

Table1. Description Of Scientific Workflows 

Scientific 
workflow 

DESCRIPTION APPLICATION 

AREA 
Montage A workflow used to create an 

image mosaic of sky 
Astronomy 

Cybershake A workflow used to depict the 
earthquake threats in an area 

with the help of the 
Probabilistic Seismic Hazard 

Analysis method 

Earthquake 

Epigenomics A workflow interprets the 
processing of genetic data to 

implement the different 
genome sequencing operations 

Genetic data 

SIPHT A workflow that implements 
the bioinformatics problems 

Bioinformatics 

LIGO A workflow used for the 
identification of gravitational 

waves and to examine the data 
attained from compact binary 

systems 

Gravitational 
works 

 

 

4. EXISTED SCHEDULING ALGORITHMS 

4.1 Original Max-Min 

The Max-Min algorithm [19] depends on "select a 
task with maximum execution time and allocate it 
to the resource with minimum execution time". The 
Max-Min algorithm priority is given to bigger tasks.    
Early implementation of the significant task will 
increase the total machine response time. The 
critical disadvantage of this algorithm is that this 
algorithm takes the most prominent tasks first, 
which might increase the response time of the 
system, and that issue was solved by improved 
Max-Min [50].   

4.2 Min-Min 

This algorithm functions in the opposite direction to 
Max-Min. Whereas first before considering smaller 
tasks, Max-Min algorithms select and allocate a 
resource with minimum completion time. Min-Min 
does the opposite by choosing and assigning small 
tasks in resources that can perform the task with 
minimum execution time. The objective of the Min-
Min algorithm is to ensure, firstly, and then the 
same for Long Jobs [68], that all tasks with a 
minimum completion time are completed [7]. The 
Min-Min algorithm is displayed in Figure (10). 
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FIGURE 10.  Original Min-Min Algorithm 

4.3 Round-Robin 

Round Robin is one of the most widely used 
algorithms in allocating resources and processing 
tasks. In Round Robin, each job waiting in a queue 
to be scheduled by the scheduler is assigned a 
specific time slot. So, for more than the time 
allocated, no task is assigned to a resource and, if a 
task cannot complete the planning within the given 
period, another task will be prevented and sent back 
in the queue for other tasks. 

4.4 Modified Max-Min (Mmax-Min) 

The modified Max-Min algorithm is based on 
several parameters, including big cloudlets and 
small cloudlets. In contrast to the traditional Max-
Min, it is a combination of Max-Min and Min-Min 
algorithms. In a precise manner, each cloudlet 
calculates completion times to identify the cloudlet 
with a minimum completion time and maximum 
completion time for all jobs submitted in the 
cloudlet list [19]. Table (2) shows a brief 
description of algorithms’ advantages and 
disadvantages. 

TABLE 2. ADVANTAGES AND DISADVANTAGES OF 
THE USED ALGORITHMS 

Algorithm ADVANTAGE DISADVANT

AGE 
Max-Min Cloud computing has 

been recognized as a 
preferred platform for 

data collection and 
information 

dissemination by the 
reliability of that 

algorithm. 

The 
progress 
of a task 
with the 
highest 

completi
on time 

will 
improve 

the 
system's 

total 
turnaroun

d time. 

Min-Min Make sure all tasks 
with minimum 

completion time are 
performed first in 

parallel, then for long 
tasks are performed in 
the same way [8][43] 

It 
sometimes 
leaves the 
big tasks 

neglected. 
 

Round Robin A better response time 
and no delay for tasks 
of waiting for others 
tasks (no starvation). 

No task will 
be allocated 

to a 
resource for 
more than 

the 
allocated 

task. 
MMax-Min Same as max-min, in 

addition, it achieved 
better quality 

solutions and better 
good values of 

Makespan in terms of 
performance analysis, 
experimentation and 
benchmarking [19] 

Same as 
max-min 

plus, it has 
an issue for 
the priority. 

 

4.5 Proposed Optimized Min-Min Scheduling 
Algorithms 

There are two main stages when planning the 
execution of a workflow in a Cloud environment: i) 
the resource provisioning phase, ii) the scheduling 
generation phase. The computing resources that will 
be used to run the tasks are selected and 
provisioned during the first phase. In the second 
phase, a schedule is generated, and each task is 
mapped onto the best-suited resource. Virtual 
Machine (VM) performance is an additional 
challenge presented by Cloud platforms. VMs 
provided by current Cloud infra-structures do not 
exhibit a stable performance in terms of execution 
times. Study [69] reported an overall CPU 
performance variability of 24% on Amazon's EC2 
Cloud. The shared nature of the infrastructure and 
virtualization and the heterogeneity of the un-
derlying non-virtualized hardware are some reasons 
behind such variability. Many scheduling policies 
rely on estimating task runtimes on different VMs 
to make a map-ping decision, and this estimation is 
done based on the VMs computing capacity. If this 
capacity is always assumed to be optimal during the 
planning phase, the actual task execution will 
probably take longer. The task will be delayed, this 
delay will also impact the task's children, and the 
effect will continue to escalate until the workflow 
finishes executing [70]. 

In this work, we propose a new Min-Min algorithm 
called Optimized Min-Min OMin-Min for 
scheduling a scientific workflow application in a 
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Cloud environment. To achieve this, both resource 
provisioning and scheduling are considered 
optimization problems.  Our contribution is, 
therefore, an algorithm with higher accuracy in 
terms of task execution time. Our work is based on 
the Min-Min algorithm, which has achieved a low 
execution time for tasks. Many problems in 
different areas have been successfully addressed by 
adapting Min-Min to many domains. For instance, 
this algorithm has been used and modified to 
evaluate and assist the performance against other 
algorithms. 

4.6  Implementation 

Within this section, the proposed Min-Min 
algorithm is explained in detail. It is accomplished  

by integrating CloudSim by inserting the workflow 
extension in a java environment. CloudSim is a 
Java-implemented event driven simulator. 
CloudSim's objective-oriented programming feature 
enables extensions and policy definitions in all 
software stack components, thus creating an 
appropriate research instrument that simulates the 
complexity of the environment [26]. This approach 
was suggested in the technique to accomplish the 
intended aim. The CloudSim toolkit supports the 
simulation of the system's components such as data 
centres, virtual machines (VMs) and re-source 
supply policies by using different algorithms.

 

FIGURE 11. Optimized Min-Min algorithm pseudo-code 

Figure 12.  Research Method Through Simulation Process 
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The CloudSim toolkit supports both design and 
behaviour modelling. It incorporates standard 
application delivery technology that can currently 
be extended with simple and minimal effort. The 
Cloud System modelling and simulation are 
supported by single and inter-networked clouds 
(Domain federation). In addition, the Cloud 
Computing Scenarios have tailored frameworks for 
executing the rules and applying strategies for 
allocating VMs. For their work into the availability 
of cloud services and energy-efficient data centre 
infrastructure, many scientists use CloudSim. This 
saw a relatively rapid reduction in waiting for time 
(Min-Min), which led to fewer makespan as more 
cloudlets were scheduled [71]. Compared to the 
MMax-Min, which selects and assigns the cloudlet 
with maximum or minimal execution time, our 
approach can choose and allocate minimum time  

for a resource first. In addition, we run each 
algorithm many times sequentially for better 
stability, and then we decided the minimum 
makespan to achieve better results. Figure (12) 
shows all phases of this research method and details 
as follows: 

PHASE 1: CREATING WORKFLOW. 

The initial creation of scientific workflows. This 
provides the basis and the dataset for simulation 
purposes. 

 PHASE 2: CREATING A DATA CENTRE. 

A data centre would be built to run applications, 
process and store data (storage platform). The data 
centre is a pool of servers that contain a collection 
of software or applications which allow users to 
operate and access multiple virtual server instances 
over the Internet. The establishment of a data centre 
ensures cloud availability of resources. 

PHASE 3: CREATING CLOUD DATA 
CENTRE BROKER. 

The Cloud Datacenter Broker can detect resources, 
pick the resources that have been seen, send them to 
the network system, and gather information and 
updates for help. 

PHASE 4: RESOURCE DISCOVERING AND 
SELECTING. 

In resource discovery, the cloud datacenter broker 
who addresses it in a network system and collects 
status information is provided with a list of all 
available resources in the cloud. Information on 
available resources is collected, and then the best 
resource to comply with the application 

requirements for practical resources are selected 
during the selection of resources. 

PHASE 5: TASK SUBMISSION. 

The final step in preparing the task for a resource is 
task submission—the broker of the datacenter 
submission to the appropriate or unused resources 
for scheduling the picked tasks. 

PHASE 6: APPLYING SCHEDULING 
ALGORITHMS. 

The min-min is then used to schedule a task, and all 
the other algorithms are then implemented to 
measure the performance of the Min-Min algorithm 
to compare its and taken as a benchmark.     

PHASE 7: SIMULATION AND COMPARISON 
OF THE RESULT. 

A simulation of this work aims to test the OMax-
Min algorithm’s output to benchmark it against 
existing algorithms.  

4.7 Design And Implementation Of Cloudsim. 

Figure (13), Bw Provider: it is an abstract class that 
design the rule on bandwidth delivery for VMs, for 
CloudSim is shown as a class design diagram [72]. 
The critical function of this element is to allocate a 
collection of competing VMs to the network 
bandwidths in the data centre. Cloud technology 
developers and researchers will expand the class to 
represent the needs of their applications within their 
policy (priority, quality of service). The Bw 
Provisioning Simple enables VMs to store the 
necessary bandwidth, which is restricted by the 
host's overall bandwidth usage. Cloud Coordinator: 
This conceptual class expands the union into a 
cloud-based data centre. It constantly tracks and 
makes complex load shredding decisions on the 
internal status of datacenter services. Specific 
sensors and policies that should be followed during 
load shedding are part of the practical realization of 
this aspect. The Datacenter update technique is used 
to observe the datacenter resources by sending the 
Datacenter query Sensors. In the defined abstract 
system datacentre, infrastructure/network discovery 
is made to incorporate customized protocols and 
structures (multicast, Internet, peer-to-peer). The 
discovery of datacentres is carried out. In addition, 
the Amazon EC2 Load-Balancer can be extended to 
simulate a cloud-based service [72]. Developers 
who wish to implement apps throughout different 
clouds should enhance their inter-cloud policies to 
include this section.  

Figure 13 shows the CloudSim design diagram. 
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4.8 Cloud Cloudlet 

This shapes app services (such as the delivery of 
content, social networks and corporate workflow). 
In terms of their computation criteria, CloudSim 
organizes the complexity of an application. Each 
application service does have an overhead of the 
pre-assigned length of instruction and transmission 
of data (both pre-and post-fetches) which must be 
carried out throughout its lifecycle. This class could 
also be extended to cover other performance and 
composition metrics modelling for applications 
such as database-oriented transactions. Figure (13) 
shows an example of cloudlets. A Cloudlet is a 

small data centre on the edge of the network that 
uses virtualization to provide mobile or IoT cloud 
computing services, including smartphones, tablets, 
cameras, or controls. Cloudlets are designed to 
supply hosted services in the proximity of the 
devices re-quired, which avoids the need for a wide 
area network (WAN) connection to an application 
[73]. Cloudlets act as plugins to integrated cloud 
facilities that provide an intermediary platform for 
interactive and resource-intensive applications [74]. 
Any other sort of applications are likely to benefit 
from the shorter latency levels offered closer 
proximity.  

 

Figure 13. Cloudsim Class Design Diagram 

Cloudlets are particularly advantageous for 
technologies that allow devices to load their 
computational processes towards more robust 
systems like machine learning, voice recognition, 
virtual reality, enhanced perception and language 
processing [73] Cloud-based devices can connect to 
host applications seamlessly high-bandwidth pri-

vate wireless network with cloudlet. In conjunction 
with the proximity, this structure allows 
applications that allow real-time interaction to be 
supported. Companies can maintain latency levels 
for a few milliseconds. By using cloudlets, 
companies can optimize transaction rates among 
devices and applications so that the capabilities of 
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centralized cloud infrastructures are much more 
significant. In some instances, cloudlets are more 
like private clouds than public clouds, particularly 
in self-management; the cloudlets often function as 
a buffer from the cloud. The current system runs 
parallel on virtual instances to the network nodes 
[75]. 

 

FIGURE 14.  A Cloudlets in cloud 

 

Respectively, cloud and private clouds enable 
organizations to launch and sustain their 
environments and evaluate services and 
applications. Many smartphones can send requests 
to the very same server, and other servers could 
remain idle. The cloudlet will act as an operations 
manager between all the mobile devices and the 
Cloud server in this environment [75]. Cloudlets 
restrict access to a local wireless network, while 
private clouds are accessible via the Internet and 
other WANs to promote plenty of users as required. 
The private cloud supports users anywhere they 
stand, whenever they need and from every device 
connected to the apps. Cloudlets vary in much the 
same manner from virtual private clouds (VPCs) as 
private clouds. Users wouldn't have to be near a 
VPC and can communicate from several computer 
types over the Internet. However, cloudlets offer 
better latency rates and a better consumer 
experience as a whole [76]. Cloudlets can 
effectively use virtualization to use computing 
resources, stabilize workloads, manage operations, 
and secure applications, allowing for the provision 
of scalable on-demand, logically divided resources 
from the underlying hardware elements.  

  While researchers have discussed cloudlets for 
several years, the industry is still catching up. There 
are also generally established principles and 
definitions [75]–[80]. Implementing different 
regulations expands this abstract class to evaluate 
the share of Cloudlets' computing power in a VM. 
As mentioned earlier, two forms of delivery 
schemes are available: space-shared (Cloud 

Scheduler Space Shared) and time-shared (Cloudlet 
Scheduler Time hared). 

4.9 Cloud Datacenter 

This class forms the core network (hardware) 
products offered by cloud providers (Amazon, 
Azure, Application Engine). It contains a series of 
host computers that can be consistent or 
heterogeneous with their hardware configurations 
(memory, backbone, capability and storage). In 
addition, each datacenter part designates a 
component to provide generalized applications that 
execute many guidelines for assigning bandwidth, 
memory and storage to hosts and VMs. Single or 
multiple several more centralized DCs are 
connected to a core network to host material of a 
cloud service provider [76], [81]. In the DCs 
network, servers, storage, aggregation circuits, and 
other edge routers are included. The contents of the 
data centre are transmitted through big core routers 
and optical connections to the edge network. 

4.10 Atacenter Broker Or Cloud Broker 

This class shapes a broker taking responsibility for 
facilitating bargaining among SaaS and cloud 
suppliers  [82], and the QoS requirements guide the 
bargaining’s. On behalf of the SaaS providers, the 
broker acts. In querying the CIS, it explores 
appropriate cloud service providers and performs an 
online negotiation process to allocate re-
sources/services to satisfy the application's QoS 
requirements. Researchers and system developers 
must stretch this class to measure [83] and test 
custom brokering regulations. The divergence 
between the broker and the cloud coordinator would 
be that the first signifies the client (i.e. choices are 
taken on such elements to enhance key performance 
indicators for users). At the same time, the latter 
operates on behalf of the data centre, i.e. it attempts 
to optimize the total performance of the data centre 
without trying to take the requirements of specific 
clients into account. The cloud brokerage and 
brokerage services were studied [83],[84] and [85]. 
Because each broker differs with their service 
arrangement, numerous cloud brokers have 
advantages: 1) it allows users to define the best 
settings based on a variety of functional and non-
functional criteria for their individual needs. This 
involves providing assis-tance and budget 
recommendations to determine how different 
programs can be chosen and implemented through 
various hybrid methods. 
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Figure 15.  Vm, Application And Host Relationship In Cloud Datacenter 

 2) standardize cloud-based services available in the 
market through the integration of multi-services 
cloud provider outputs. 3) provide better deals and 
gain additional cloud providers information. 4) 
select for particular criteria the finest cloud service 
provider. 5) offer good extra workflow acceptance, 
enhanced control, enforcement and protection. 
However, cloud data centres are highly dynamic 
and changeful because 1) customers keep 
demanding VMs, unstable resource consumption 
patterns, 2) fluctuating use of VM resources, 3) 
unpredictable arrival and departure patterns for  

users of the datacentre, and 4) the productivity of 
hosts can differ tremendously when managing 
various loads levels. This can easily cause unequal 
loads in cloud datacentres and break down 
performance and service level agreements, which 
needs a load balancing technique to solve this 
problem. However, load balancing in clouds is a 
method that optimally balances the excess dynamic 
local workload throughout all nodes [86]. 

 

4. 11 Datacenter Characteristics 

This module provides datacenter configuration 
information. 

4. 12 Host 

This class constructs a physical resource like a 
device or a storage server. It holds critical data such 
as capacity and storage quantity, a set of computing 
cores and size (to demonstrate a multi-core 
machine), resource sharing for VMs, and resource 
on capacity and bandwidth provisioning to VMs. A 
host can host multiple VMs with various potential 
assets and different load kinds. Servers hosting 
variable and unpredictable workloads 
heterogeneous VM can lead to an imbalance in 
resource use, resulting in deterioration inefficiency 
and infringement of the Service Level Agreements 
(SLAs) [107]. In situations such as VM operating a 
computation-intensive program with a low memory 
requirement, imbalance resource use [87] can be 
observed. 

 Figure (15) shows the VM, application and host 
relationship in cloud datacentres. Introduced first in 
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the 1960s and is commonly used for hardware 
network restructuring in enterprise datacentres with 
innovations such as VMware [88] and Xen [89] in 
recent years. The hosts below are the primary 
source of requirements such as CPU, memory and 
storage. Above host, the virtualization platform 
server such as XEN virtualizes the physical 
resource and manages hosted VMs. Applications 
are running on VMs, and dependence between them 
may be predefined. Each host can be assigned with 
several VMs, and VMs with several applications are 
installed. Study [88] focuses primarily on VM 
threshold load balance algorithms to enhance host 
efficiency, mostly modelled as a dumpster container 
issue and proven an NP-hard problem [80].  
Virtualization also strengthens the capacities and 
capacities of present infrastructure and resources 
and provides an opportunity for the datacenters to 
host typical infrastructure applications [80]. 

4.13 Network Topology 

This class gives information for network behaviour 
induction (latencies) in the simulation. It collects 
topology information collected by the BRITE 
topology generator. 

4.14 Ram Provisioner 

Here is an abstract class that denotes the policy of 
primary storage (RAM) allocation to VMs. VM can 
only be executed and deployed on a host if the Ram 
Provisioner component authorizes that the host has 
the requisite amount of free memory. This same 
Ram Provisioner Simple does not qualify any 
memory restriction that a VM can require. But if the 
requirement exceeds the memory capacity 
available, it is refused. 

4.15 San Storage 

This class structures a storage area network that is 
widely used to store large pieces of data (such as 
Amazon S3 and Azure blob storage) in cloud-based 
datacentres.  San Storage uses a simple protocol 
that simulates the retrieving of any volume of data 
subjected to network throughput capacity.  
Accessing the SAN files during execution leads to 
unnecessary disruptions in the operation of the job 
unit due to the extra latencies in the transmission of 
the data files via the internal datacenter network. 

4.16  SENDOR 

The said interface is necessary to install a sensor 
unit, which a cloud manager may use to track 
specific system performance (energy consumption, 
resource usage). Note that the Cloud Manager uses 
the complex output information for load balancing 

decision making. This interface defines the 
techniques: (i) set min, max output parameter 
thresholds and (ii) update the calculation from time 
to time. This class could be used to design the real-
world services provided by top cloud service 
providers such as Amazon's Cloud Watch and 
Fabric Controller from Microsoft Azure. A 
datacentre could mount one or even more sensors 
responsible for tracking the output of a particular 
datacenter parameter. 

4.17 VM 

This class structures a VM controlled and hosted 
via a part of a cloud host. Every VM element has 
access to the following VM-related characteristics: 
1) available memory, 2) CPU, 3) storage space, and 
4) the internal provision of the VM, expanded from 
the Cloudlet Scheduler abstract element (Cloudlet 
Scheduler). 

4.18 VM Allocation Policy 

This abstract class demonstrates a supply strategy 
that a VM Controller uses to allocate VMs to hosts. 
The critical function of the VM placement 
regulation is to choose the host accessible in a 
datacenter that satisfies the storage, space and 
availability criteria for a VM implementation. Live 
migrations virtual machines indicate that the VM 
tends to respond from the user's perspective during 
migration. Live migration offers other advantages 
than conventional suspend / resume migration[90], 
such as energy conservation, load balance and 
online maintenance. Study [90] examines the effect 
of live VM migration on the efficiency of 
applications in the Xen VM and shows that 
overhead migration is appropriate but cannot be 
ignored entirely. As the new cloud storage 
datacenter promotes the live migration of many 
virtual machines, living migration is a typical 
activity. For cloud computing, the VM merger is 
also done for keeping with the resource needs of 
VMs. The merger of the VM increases the servers 
suspended and allows live migration of the VM. It 
will also help to improve fault tolerance by 
migration of error VMs. 

 

4.18 VM Scheduler 

Here is an abstract class executed by a host 
component representing the regulations needed to 
assign processors cores for VMs (space sharing, 
time-sharing). The features in this class can be 
cleverly exceeded to achieve rules for the sharing in 
processors in ap-plications. The development phase 
for VM can be split into the initial stage for VM de-
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ployment and the live migration phase of VM. In 
the initial positioning phase, some work has centred 
on the balance of VM load without considering the 
live migration [7]. At present, the VM approval 
policy specifies the host location to be assigned by 
VM, which is a crucial aspect of the scheduling 
process. The policy usually takes account of the 
host resource availability. The scheduling 
procedure's critical elements of the live migration 
phase are: VM migration rule allows cloud 
datacenters to set priorities as VMs are passed on to 
the other hosts. The VM migration rules show when 
a VM migration from a host to a different host can 
occur. This generally includes a migration threshold 
to initiate migration procedures. A data centre’s 
administrator makes the decision an entry based on 
each host's computational capabilities, such as Red 
Hat and VMware [91][92]. For example, a CPU-
intensive host can be installed with significantly 
higher CPU usage thresholds, whilst an I / O heavy 
host with a comparatively low CPU usage threshold 
can be installed. VM policy placement permits the 
setting of cloud datacenters' policies to choose 
whether the VMs from overstressed hosts must be 
transferred. In general, too many VMs are running 
an overloaded server. First of all, pick the 
overloaded hosts from the VM  

allocation regulations. In addition to reducing host 
load, VM allocation regulations are designed to 
decide which VMs must be migrated to accomplish 
other objectives, such as lowering migration 
quantities and reducing migration latency [15]. 

 

Table 3. Detail Settings For The Workflows 

Terms MEANS NODE 

COUNT 
EpiSma Epigenomics with 

Small Cloudlets 
24 

EpiMe Epigenomics with 
Median 
Cloudlets 

46 

EpiLa Epigenomics with 
Large Cloudlets 

100 

EpiHe Epigenomics with 
Heavy Cloudlets 

997 

SiSma Sipht with Small 
Cloudlets 

30 

SiMe Sipht with Median 
Cloudlets 

60 

SiLa Sipht with Large 
Cloudlets 

100 

SiHe Sipht with Heavy 
Cloudlets 

1000 

MoSma Montage with Small 
Cloudlets 

25 

MoMe Montage with 
Median 
Cloudlets 

50 

MoLa Montage with Large 
Cloudlets 

100 

MoHe Montage with 
Heavy Cloudlets 

1000 

 

Table (3) shows the workflows detailed settings, 
specific terms for node sizes. VM approval 
regulations allow cloud datacenter to build 
strategies that VMs from other overloaded hosts are 
approved for cooperative load balancing among 
hosts via live migration of VMs. The rules for VM 
acceptance must gather information, including the 
following: (a) remaining hosts resource, (b) the 
CPU or memory of a related resource type, (c) a 
threshold above or below the remaining amount of 
resource. The acceptance policies for VM are then 
enforced to decide whether a specific VM is to be 
hosted. The following Table (4) shows the 
parameters used in the simulation for all algorithms 
in all cases, respectively. Therefore, the workflow is 
CloudSim based; thus, it operates within the 
CloudSim architecture, class diagram, etc. 

Table 4. Parameters Used In The Simulation 

 

5. RESULTS AND DISCUSSION 

A workflow application W = (T, E) is modelled as a 
Directed Acyclic Graph (DAG) where T = {t1, t2, 
…, tn} is the set of tasks and E is the set of directed 
edges. An edge eij of the form (ti, tj) exists if there 
is a data dependency between ti and tj, a case in 
which ti is said to be the parent task of ti and tj is 
said to be the child task of tj. Based on this defi-
nition, a child task cannot be executed until its 
parent tasks are completed. The provider specifies 
the unit of time in which the pay-per-use model is 
based; any partial utilization of the leased VM is 
charged as if the full-time period was consumed. 
The following table shows the tasks to resource 
mapping, where tn, are the tasks and the R = {r1, 
r2, …, rn} are the set of resources (VMs) that need 
to be linked. Each resource ri has a VM type VMri 
linked to it and estimated linking start time ELSTri 
and estimated linking finish time ELFTri. And 
according to the following: M\ rjti = (ti, rj, ST ti, ET 
ti) for all tasks; where M represents the mapping 
and is interpreted as follows:  Task (ti) is scheduled 
to be run by (rj) and is starting the execution 

VM 15 
Datacenters 2 

Number of runs 50 
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process at a time (ST ti) and finish at a time (ET ti). 
For comparing and benchmarking the proposed 
algorithm (Min-Min) with other previously used 
cloud task scheduling algorithms such as Max-Min, 
MMax-Min, and Round Robin, a simulation 
environment called CloudSim toolkit was used [51]. 
The simulation was run on Intel® core i5, 1TGB 
HDD and 8GB Ram on 64-bit Windows 8 operating 
system. 

 We considered three workflows, Epigenomics and 
Sipht, which differ from each other in terms of 
cloudlet size. The procession speediness of each 
cloudlet is measured in Million Instructions Per 
Second (MIPS). In analyzing the performance, we 
used the Makespan as a performance matrix to 
measure, compare and evaluate the performance of 
the proposed algorithms. Table 3 gives detailed 
descriptions of all the cases used in each of the 
three workflows used for the simulation. Makespan 
is referred to as the total execution time for the 
entire workflow [93]. This is mainly used to 
measure the efficiency of the algorithms in respect 
of time. It is calculated by using equations 1 and 2. 

 

Makespan = Max (Ct Of J(Ti, Mj))                             (1) 

Ct = Job End Time – Job Start Time                          (2) 

 

Makespan is used to estimate the performance of 
the algorithm. The time elapsed from the task 
submission to the cloud until the end of the request 
of its last task. To calculate the percentage of 
enhancement, the following equations are used: 

 

IP = LM/HM*100                                                      (3) 

100% - IP = FP                                                         (4) 

 

Where IP is the initial percentage, LM is the lower 
makespan value, HM is the higher value of 
makespan, and FP is the final percentage. 
Percentage calculations of performance comparison 
were done in this section. 

 

Figure 16. The Epigenomics Makespan Results Of 
Different Scheduling Algorithms, Small And Medium 

Node Size, And Large And Heavy Node Size 
 
In table (5), a percentage of enhancements offered 
by our proposed algorithm against other existing 
algorithms is introduced, including the original 
Min-Min algorithm, for all workflows are shown. 
Specifically, our proposed algorithm outperforms 
the original Min-Min in all workflows as follows: 

 

 
 

Figure 17. The Sipht Makespan Results Of Different 
Scheduling Algorithms, Small And Medium Node Size, 

And Large And Heavy Node Size 

 

Epigenomics workflow: Achieves the best in large 
cloudlets by 79%, while the minor rate 
enhancement is in small cloudlets by 1.6%, 
Montage workflow: Achieves the best in large 
cloudlets by 43.7%, while the minor rate 
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enhancement is in small cloudlets by 4% Sipht 
workflow: Achieves the best in heavy cloudlets by 
40%, while the mi-nor rate enhancement is in small 
cloudlets by 6.8%. 

 The OMin-Min scheduling algorithm has achieved 
the minimum (less) Makespan, which means better 
performance. In addition, Round Robin has the 
worst case of Makespan. In the light of Figure (16), 
in Epigenomics workflow results for the algorithms, 
the proposed OMin-Min algorithm achieves the best 
results compared to all other algorithms. 

 The RR achieves the worst among them. Refer to 
Figure (17), in Sipht workflow Results for the 
algorithms, again OMin-Min achieves the best 
result, and the RR achieves the worst for all 
workflows and in Figure (18). For calculating the 
exact enhancements of our proposed algorithm 
against all other used algorithms, we used 
Equations 3 and 4. The results are shown in Table 5 
where the performance enhancements of our 
proposed algorithm in a percentage manner are 
compared against other algorithms for 
Epigenomics, Montage, and Sipht workflows. The 
proposed OMin-Min algorithm outperforms all 
other algorithms. Specifically, at the level of node 
sizes, the proposed algorithm achieves the best 
results with EpiLa for all algorithms in epigenomics 
workflow.  

On the other hand, for the Montage workflow, the 
proposed algorithm achieves the best results with 
MoLa for Min-Min and Max-Min. It performs best 

with MoHe for MMax-Min, while for Round 
Robin, the proposed algorithm achieves very close 
results with MoMe and MoLa as the best. It 
illustrates that the algorithm output level relies on 
the computing time required to accomplish tasks. 
Each workflow has a particular architecture and 
many cloudlets in size (small, medium, large and 
heavy).  Given that every workflow is dedicated to 
different types of applications, the comparison 
results show the algorithms' performance in every 
workflow separately, without comparing the output 
of the same algorithm with different workflows. 

 

 
 

Figure 18.  The Montage Makespan Results Of 
Different Scheduling Algorithms, Small And Medium 

Node Size, And Large And Heavy Node Size 
 

 
Table 5. Results Of In-Min Performance Comparison To Other Agorithms In Percentag.

 

 

Workflow Node size R-R Max-Min MMax-Min  Min-Min 

E
P

IG
E

N
O

M
IC

S
 EpiSma (24) 94.18%  8.19% 6.65% 1.66% 

EpiMe (46) 96.09% 80.99% 59.23% 53.38% 

EpiLa (100) 97.77% 96.37% 82.92% 79 % 

EpiHe (997) 96.27% 92.78% 76.29% 69.56% 

M
O

N
T

A
G

E
 MoSma (25) 81.33% 49.21% 47.13% 4% 

MoMe (50) 84.96% 55.97% 38.74% 29% 

MoLa (100) 84.90% 70% 46.70% 43.71% 

MoHe (1000) 64.97% 63.29% 49.28% 28% 

S
IP

H
T
 

SiSma (30) 69.12% 18.07% 12.08% 6.83% 

SiMe (60) 65.82% 36.72% 22.34% 18.54% 

SiLa (100) 76.01% 44.79% 31.78% 19.07% 

SiHe (1000) 83.81% 70.84% 51.40% 40.01% 
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Table 6. Comparison Between Our Work And Oher Minmin Algorithms With Pros And Cons. 
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O
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w
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[95] 
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M
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W
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nd 
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M
 and 
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M
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W
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A
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o algorithm
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presented in M

O
W

O
S for task allocations. 
 

M
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O
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7. CONCLUSION 

In this work, we have shown various kinds of cloud 
systems, the scheduling strategies, the critical 
phases of the simulation, and a classification of 
scientific workflows. Reviewed several 
characteristics and features from literature for 
distributed systems. We have provided details about 
the importance of cloudlets, VMs and data centres 
in designing and implementing the scheduling 
process in the cloud environment.  

This research seeks to perform task scheduling 
better and resource allocation than previous 
research works in a cloud computing environment. 
Performance analysis, experimentation, and 
benchmarking of the results indicate that our 
approach using OMin-Min can produce reasonable 
quality solutions, producing good makespan value 
compared to the standard Max-Min, Min-Min, 
Round-Robin and (Modified Max-Min (MMax  

Min)) algorithms. We simulated our approach using 
the CloudSim toolkit, which saw a frequent 
reduction in waiting time, leading to less makespan 
as more and more cloudlets arrived to be scheduled. 
It can be seen that (in-Min) leads to better 
performance since it achieved less makespan 
comparing with other algorithms in three types of 
workflows (Epigenomics, Sipht and Montage), 
Min-Min has achieved less Makespan in three 
different workflows as well, in (data-intensive) 
scientific workflows and (computational) scientific 
workflow. For future work, balancing load 
effectively and cost can be considered with more 
algorithms that could be used to evaluate more 
system parameters and more workflows that may 
further improve the performance. In addition, 
deployment of task scheduling (TS) and resource 
allocation (RA) in other systems where resource 
allocation is essential, such as Li-Fi and Li-Fi/RF 
hybrid network systems, can be investigated. 
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