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ABSTRACT 
 

Forests are large areas gathering trees and other plants. They are so important for protecting the environment; 
they filter air and water, provide food and shelter for animals, and help regulate the climate. Wildfires are 
one of major hazards of global warming; they destroy forests and speed up the deforestation phenomenon. 
Other wildfires are also caused by human errors in wilderness environments. Dry vegetation fuels a wildfire's 
rapid ignition and spread. It is difficult to extinguish flames even with the best efforts of forest firefighters. 
Smoke and air pollution from wildfires may harm human health and ruin property. Forest fires are difficult 
to detect at time or to anticipate it, because they spread rapidly. Early-warning systems that they are more 
accurate are really needed. These systems could be implemented with IoT (Internet of Things), machine 
learning (ML), or deep learning (DL).  In this paper, we focus on this direction of research and we examine 
literature proposals utilizing IoT and DL to detect wildfires and their spread via a comprehensive evaluation 
and comparison of existing works. 
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1. INTRODUCTION  
 

The term ‘forest’ refers to a large area of land, 
densely forested with trees and other plants. For 
many reasons, forest ecosystems are critical. 
Millions of plants and animals call forests their 
homes. Additionally, they assist in climate 
regulation, filter air and water, and provide a variety 
of valuable resources. Despite their value, forests 
really face numerous threats, like destruction, 
wildfires, or deforestation. Numerous forests are 
eliminated to make room for agriculture or to extract 
valuable resources such as timber and minerals. 
Additionally, global warming poses a significant 
threat to forests. Because of fires, pests, and diseases, 
forests are increasingly threatened as the Earth's 
climate changes. It is critical to safeguard forests that 
are real homes of animals and plants. By adopting 
environmentally friendly choices, we can all 
contribute to forest preservation [1]. 

While forest fires spontaneously occur in a variety 
of ecosystems, they could be extremely destructive 
to people, properties, and natural resources. These 

fires are frequently sparked in wild areas by lightning 
or human neglect.  With conducive environmental 
conditions, a wildfire can ignite quickly and broadly 
over large areas, fueled by dry vegetation. Forest 
firefighters often deploy all their efforts to contain 
and extinguish wildfires, it takes them days to stop 
it, and some of them die for this end. Wildfire smoke 
and air pollution can cause a real health risk, and the 
flames can destroy or damage homes and businesses.  
In order to safeguard homes and communities 
against wildfire dangers, it is critical to have a fire 
prevention policy and disaster response program [2]. 

The task of detecting and predicting wildfires is 
not obvious, as they can ignite anywhere and spread 
rapidly. However, with the help of technological 
solutions involving IoT and artificial intelligence, it 
is possible to develop early-warning systems with 
relevant accuracy. Using key sensors to measure 
changes in temperature, humidity, and wind speed, 
as well as to detect the presence of smoke and fire, is 
a relevant way to accomplish this task, according to 
our opinion. The collected data from these measures 
could be archived, and next used to develop ML 
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models capable of forecasting the likelihood of a fire 
igniting. We can develop models that predict how a 
given fire will progress under various conditions by 
analyzing data from previous fires. Built fire datasets 
will be a valuable mean to assist firefighters and 
other emergency responders facing efficiently 
wildfires. Additionally, it may aid in identifying 
areas at high risk of wildfires, allowing for the 
implementation of preventative measures [3]. 

By conducting a systematic review of the 
literature, we examine the possibility of using IoT 
and deep learning to detect and predict wildfires. 
This paper is structured as follows. The second 
section covers the terminological aspect of this topic 
and gives the background of used technologies. The 
third section discusses the adopted methodology of 
our literature review. Before concluding, the fourth 
section makes a synthesis of our findings. 
 
2. BACKGROUND  
 
2.1 Wireless Sensor Networks (WSN) 

A WSN is a network of autonomous sensors that 
can monitor physical or environmental conditions 
like temperature, and transmit their data to a central 
location. This latter can be either a standalone 
centralized unit or a cluster head (a node within the 
WSN that has the responsibility of collecting and 
sending sensor data to the centralized unit). Wireless 
sensor networks are composed of nodes, which are 
often battery-operated, autonomous, and self-
contained with sensors, a radio transceiver, and an 
onboard signal-processing unit. Data collected by the 
sensor nodes are processed, then transmitted 
wirelessly to the centralized unit using multi-hop 
wireless links [4].  

WSNs have many potential applications in a 
variety of fields, such as military, industrial, 
commercial, and home applications. The main 
benefits of WSNs appear in their use of monitoring 
remotely physical and environmental conditions 
over a wide area (without the need for physical wires 
or cables) under reasonable budgets. WSNs are often 
more flexible and easier to install than wired 
networks. In addition, WSNs are often more robust 
and reliable than wired networks due to their 
distribution and redundancy [5].  

 
2.2 Internet of Things (IoT) 

IoT is a term that refers to a future in which 
everyday objects are connected to the internet and 
capable of exchanging data. These objects can range 
from watches to refrigerators. The concept behind 
the IoT is that by connecting these devices to the 
internet, they can be remotely controlled and 

monitored. For instance, people could use their 
phones to turn on the lights in their homes or adjust 
the refrigerator's temperatures [6]. 

The IoT is = rapidly gaining popularity. Numerous 
companies are developing products that leverage IoT 
technologies. IoT has a plethora of potential 
applications. Home automation, health care, and city 
management are just a few examples of the IoT's 
most popular applications. For instance, home 
automation is gaining popularity as people become 
more interested in remotely controlling their homes 
[7]. 

IoT in reality is inspired from a WSN and internet, 
but with key improvements. IoT is a network of 
physical devices, vehicles, home appliances, and 
other objects that are embedded with electronics, 
software, sensors, and connected to the internet, and 
can communicate between each other. Compared to 
WSN, IoT is used not only for monitoring and data 
collection, but also for control. 
2.2.1 IoT protocols. 

IoT protocols can be divided into two categories: 
communication protocols and application protocols. 

Communication protocols define how devices 
connect to and communicate with each other. These 
protocols can be based on different technologies, 
such as Wi-Fi, Bluetooth, Zigbee, and LoRa. Each 
has its own strengths and weaknesses, and the best 
protocol for a given application will depend on the 
specific requirements [8]. 
 Wi-Fi: is a widely used protocol for internet 

connectivity, and it can also be used for IoT 
applications. It has a good range and data 
throughput and is widely supported by devices 
and infrastructure. However, it can be power-
hungry and is not well suited for applications 
that require very low data rates or long battery 
life. 

 Bluetooth: is another popular protocol for IoT, 
and it has the advantage of being low-power and 
supporting very low data rates. It is often used 
for short-range applications where power 
consumption is a concern, such as in wearables. 
However, its range is limited, and it may not be 
suitable for some types of applications. 

 Zigbee: is a low-power protocol that is often 
used for IoT applications that require long 
battery life. It has a good range and supports 
mesh networking, which can be useful for 
certain types of applications. However, it has 
relatively low data throughput and may not be 
suitable for applications that require high data 
rates. 

 LoRa: is a long-range, low-power protocol that 
is gaining popularity for IoT applications. It has 
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an excellent range and can support very low data 
rates, making it ideal for applications that 
require long battery life. However, it is not as 
widely supported as some other protocols, and 
may not be suitable for all applications. 

While the Zigbee and Bluetooth protocols are 
useful for connecting devices wirelessly, they are not 
well suited for applications that require long-range 
or low power consumption. The LoRa protocol is 
designed specifically for low-power and long-range 
applications. LoRa allows devices to communicate 
over distances of up to 15km, making it ideal for IoT 
applications that require long-range connectivity [9]. 

Application protocols define how data is 
exchanged between devices and how applications 
can access and use that data. Many different 
application protocols can be used for IoT devices, 
depending on the specific needs of the devices and 
the network [10]. Some common protocols that are 
used for IoT applications include MQTT, CoAP, 
HTTP, XMPP, and AMQP [11]: 
 MQTT: a popular protocol for handling data 

from IoT devices, as it is lightweight and can be 
used over unreliable networks. 

 CoAP: a protocol designed specifically for 
resource-constrained IoT devices, as it is very 
lightweight and efficient. 

 HTTP: a common protocol that is used for many 
different types of networking applications, 
including IoT. 

 XMPP: a protocol that is commonly used for 
instant messaging applications, but can also be 
used for IoT applications. 

 AMQP: a protocol that is designed for reliable 
message queuing, and is often used in IoT 
applications that require high reliability. 

2.2.2 IoT cloud platforms 
IoT cloud platforms provide a comprehensive and 

centralized way to manage the data and connectivity 
of IoT devices. These platforms enable enterprises to 
remotely monitor and manage IoT devices and 
connect them to various applications and data 
sources. IoT cloud platforms also offer features such 
as device management, security, data management, 
and analytics [12]. 

There are many different types of IoT cloud 
platforms available, each with its own unique 
benefits and features. Some of the most popular IoT 
cloud platforms include [13], [14]: 
 AWS IoT: Amazon’s cloud platform offers a 

comprehensive set of features for managing and 
deploying IoT applications. 

 Google Cloud IoT: Google’s platform provides 
powerful data processing and analysis 

capabilities, making it ideal for complex IoT 
applications. 

 IBM Watson IoT: IBM’s platform offers a 
robust set of features for building cognitive IoT 
applications. 

 Microsoft Azure IoT: Microsoft’s cloud 
platform provides a comprehensive set of 
services and tools for deploying IoT 
applications. 

 Thingsboard: is an open-source IoT platform 
that allows to connect devices and applications 
to the cloud and to other devices. It provides 
access to data and commands from the devices 
and allows to send commands to the devices. 

 ThingSpeak: is an IoT analytics platform that 
allows to collect, visualize, and analyze data 
from devices. It also allows to send commands 
to devices. 

 BOLT Cloud: A highly integrated IoT platform 
for developers that enables users to rapidly and 
simply construct IoT projects and products. 

These are just some examples of the many 
different IoT cloud platforms available today. Each 
platform has its own unique benefits and features, so 
it is important to choose the one that best suits the 
specific needs. 
 
2.3 Machine Learning (ML) 

Machines can learn in a variety of ways. Some 
machines employ artificial intelligence, while others 
employ machine learning, a subfield of artificial 
intelligence concerned with the design and 
development of algorithms capable of learning from 
and forecasting data. Machine learning algorithms 
can be used to discover patterns in data and make 
future predictions [15]. 

Machine learning is a technique for teaching 
computers to learn from data without explicitly 
programming them to do so. It entails exposing 
computers to large data sets and then allowing them 
to discover patterns and relationships in the data on 
their own. This can be accomplished through the use 
of a variety of techniques, such as artificial neural 
networks, decision trees, and genetic algorithms 
[16]. Machine learning algorithms can be used for 
many different tasks, including [17]: 
 Regression: Used to predict a continuous value, 

such as a price, a probability, or fire in our case 
study. Common regression algorithms include 
linear regression, logistic regression, and 
support vector regression. 

 Classification: Used to predict a discrete value, 
such as a class label (e.g., "Fire" or "No Fire"). 
Common classification algorithms include 
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ANN, decision trees, k-nearest neighbors, and 
support vector machines. 

 Clustering: Used to find groups of similar 
examples. Common clustering algorithms 
include hierarchical clustering and k-means 
clustering. 

 Dimensionality reduction: Used to reduce the 
number of features in a data set. Common 
dimensionality reduction algorithms include 
principal component analysis and kernel 
principal component analysis. 

Machine learning is a rapidly expanding field that 
is being applied in a variety of industries, including 
finance, healthcare, manufacturing, and 
transportation. Additionally, it is used in a variety of 
research fields, including natural language 
processing and computer vision. 
Artificial Neural Network (ANN) 

ANN is a computational model inspired by the 
structure and functionality of the biological neural 
networks. Structurally, an ANN is composed of a set 
of interconnected processing nodes, or neurons, 
where each neuron is a mathematical function that 
computes a weighted linear combination of its input 
values. Functionally, an ANN performs a mapping 
of input values to output values [18]. 

The interconnections between neurons are called 
synaptic weights, and these weights can be adjusted, 
or learned, to produce the desired mapping. ANNs 
are capable of learning to approximate any mapping 
function, given enough data and computational 
resources. There are different types of neural 
networks, including feed-forward networks, 
recurrent networks, and convolutional networks 
[18]. 

 
2.4 Deep Learning (DL) 

Deep learning is a subset of machine learning that 
enables computers to discover patterns and insights 
in data. It is a highly effective technique for 
developing sophisticated models capable of learning 
to recognize objects, textures, and patterns in data. 
Deep learning is particularly well-suited for tasks 
that humans find difficult, such as object recognition 
in images and videos or natural language 
comprehension. It has been demonstrated to be 
effective across a broad spectrum of applications, 
including computer vision, speech recognition, and 
natural language processing [19]. 

One of the primary benefits of deep learning is that 
it enables the training of powerful models using 
massive amounts of data. These models can then be 
used to perform complex tasks such as natural 
language comprehension or object recognition in 
images. One of the primary drawbacks of deep 

learning is how difficult it can be to learn how to use 
it effectively. However, with the appropriate tools 
and resources, it is possible to develop models that 
outperform humans across a broad range of tasks 
[20]. 

Machine learning is limited in several ways when 
compared to deep learning. Machine learning 
algorithms are less adept at dealing with data noise, 
which means they are more susceptible to being 
duped by inaccurate or incomplete data. Besides, 
machine learning algorithms are less effective at 
generalizing from training data to new data sets, 
which means they are less effective at making 
predictions in situations where the data has never 
been seen before [21]. 
There are various deep learning algorithms; among 
the most popular are Convolutional Neural 
Networks (CNNs) [22], Recurrent Neural Networks 
(RNNs) [23], and Generative Adversarial Networks 
(GANs) [24]. 
2.4.1 Convolutional Neural Networks (CNN) 

CNNs, or Convolutional Neural Networks, are a 
type of neural network that is optimized for image 
processing. They are similar to other types of neural 
networks, but they have several features that make 
them particularly effective at image processing [25]. 
CNNs are made up of multiple layers (see Figure 1), 
each of which is dedicated to a specific task. The first 
layer is the input layer, which is responsible for 
receiving the image data. The following layer is the 
convolutional layer, which concatenates the input 
data. Following this layer is the pooling layer, which 
pools the input data. The following layer is the fully 
connected layer, which is responsible for activating 
the input data. Finally, the output layer is responsible 
for generating the final output [26]. 

CNNs are more effective at processing image data 
than other types of neural networks because they are 
purpose-built for this purpose. The convolutional 
layer extracts feature from the input data, while the 
pooling layer combines these features into a smaller 
set of parameters. This increases the network's 
efficiency and capacity for learning. Additionally, 
the fully connected layer is capable of learning the 
relationships between these features, which enables 
the network to produce meaningful outputs [27]. 
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Figure 1: CNN layers architecture 
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2.4.2 Recurrent Neural Network (RNN) 
RNNs are a type of neural network in which node 

connections form a directed graph along a temporal 
or sequential path. In other words, the output of each 
node in the sequence is fed as input to the next node 
in the sequence (see Figure 2). This creates an 
internal state for the network, allowing it to model 
temporal dependencies in data – such as natural 
language understood by humans. RNNs were first 
developed in the 1980s but have only recently been 
widely used with the advent of powerful computers 
and effective training algorithms [27]. 

RNNs are particularly well suited to tasks that 
involve sequences of data, such as time series or text 
data. This is because they can remember information 
about what has come before in the sequence, which 
is important for understanding the context of the 
current data. For example, an RNN could be used to 
predict the next word in a sentence, based on the 
words that have come before [28]. 

There are several different applications for RNNs. 
One common use case is time series prediction, 
where an RNN is used to predict the next value in a 
sequence, based on the previous values. RNNs were 
also applied in machine translation, speech 
recognition, and image captioning applications. 
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Figure 2: Recurrent Neural Networks layers 

While RNNs have several advantages, they also 
have some limitations. One major limitation is that 
RNNs struggle to learn patterns that span long 
periods of time. This is because the information that 
is passed from one node to the next is forgotten over 
time. LSTM networks are designed to overcome this 
limitation, as they contain special nodes that can 
remember information for long periods of time (see 
Figure 3). 

There are three main types of RNN: long short-
term memory (LSTM), gated recurrent unit (GRU), 
and plain RNN. Each has its own pros and cons, and 
the type that is best for a given situation depends on 
the nature of the data and the task at hand [29]. 
 LSTMs are the most powerful and flexible type 

of RNN. They are well-suited for tasks that 
require long-term memory, such as language 
translation and text generation. LSTMs are also 

relatively robust against the vanishing gradient 
problem, which is a common issue with vanilla 
RNNs. 

 GRUs are a simplified version of LSTM cells 
and are well-suited for tasks that do not require 
the full power of an LSTM. GRUs are faster to 
train and consume less memory than LSTMs, 
making them a good choice for applications 
where resources are limited. 

 Plain RNNs are the simplest type of RNN. They 
are suitable for tasks that do not require long-
term memory and are not as computationally 
demanding as LSTMs or GRUs. However, plain 
RNNs are more susceptible to the vanishing 
gradient problem. 
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Figure 3: Plain RNN, LSTM, and GRU blocks 

2.5 Datasets 
A dataset is a structured set of data. It usually 

contains a set of variables, each with a set of values. 
A dataset may also contain other sets of data, such as 
subsets, hierarchies, or networks, they are often used 
to represent real-world objects, systems, or events 
[30]. 

Datasets can be used to store data in a wide variety 
of formats, including text, images, audio, and video. 
They can also be used to store data in a more specific 
format, such as a spreadsheet or database. Datasets 
can be created manually or generated automatically, 
they can be created by individuals or organizations, 
can be small or large, simple or complex, and can be 
static or dynamic. Datasets are often used in data 
analysis and data mining. They can also be used for 
classification, prediction, and optimization. 

Datasets about forest fires are important for 
understanding the extent of the problem and for 
designing effective mitigation strategies. These 
datasets can help answer questions about the 
location, size, and severity of forest fires, as well as 
the factors that contribute to them. Forest fire 
datasets are available in a variety of formats, 
including tabular (which includes data such as sensor 
data collected) and image/video (contains images or 
videos of forest fires). 

 
2.6 Evaluation Metrics 

In machine learning, evaluation metrics are used 
to evaluate the performance of the machine learning 
models, and the appropriate metric to use depends on 
the specific type of model and the data. Some 
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common evaluation metrics for classification models 
include accuracy, precision, recall, and f1-score. For 
regression models, common evaluation metrics 
include mean absolute error, mean squared error, 
root mean squared error and R-squared. There is no 
single perfect evaluation metric. It is always best to 
use multiple evaluation metrics when assessing a 
machine learning model. 
2.6.1 Accuracy  

The accuracy metric is a mathematical formula 
used to determine the accuracy of predictions made 
by a machine learning model. The accuracy metric is 
used to compare the predicted values with the actual 
values. The accuracy metric is used to assess the 
performance of a machine and deep learning model. 
The accuracy metric is a value between 0 and 1, 
where 1 is the perfect score. The accuracy metric is 
used to compare the prediction of a machine learning 
model to the actual values. The accuracy metric is 
used to assess the performance of a machine learning 
model [21]. The accuracy is calculated using the 
formula (1) [31] presented below: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
்ା்ே

்ା்ேାிାி
 (1) 

In the case of forest fires, accuracy would tell us 
how many fires were correctly detected out of the 
total number of fires. If accuracy is high, then we can 
be confident that the fire detection system is working 
well. 
2.6.2 Precision, Recall, and F1-score.  

In the field of data mining, machine, and deep 
learning, there are three important metrics used to 
evaluate the performance of a classifier: precision, 
recall, and F1-score. 

Precision is the proportion of correct positive 
predictions out of all positive predictions. The recall 
is the proportion of correct positive predictions out 
of all actual positive events. The F1-score is the 
harmonic mean of precision and recall and is a 
measure of a classifier's accuracy [32]. These metrics 
are calculated using the formulas (2,3, and 4) [21] 
presented below: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
்

்ା ி
 (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
்

்ା ிே
  (3) 

𝐹1 =
ଶ

షభା ோషభ (4) 

Where: 
 𝑇𝑃 = True Positive 
 𝐹𝑃 = False Positive 
 𝐹𝑁 = False Negative 

A classifier that is very precise but not very recall-
oriented will have a high precision but low recall. A 

classifier that is very recall-oriented but not very 
precise will have a high recall but low precision. The 
ideal classifier would have a high precision and high 
recall, but this is often not possible. 

The trade-off between precision and recall is 
important to consider when designing a classifier. In 
some applications, it is more important to have a high 
precision (even at the expense of recall), while in 
others, it is more important to have a high recall 
(even at the expense of precision). 

The F1-score is a good metric to use when 
comparing the performance of different classifiers, 
as it takes into account both precision and recall. 
2.6.3 MAE, MSE, RMSE, and R2 

The Mean Absolute Error (MAE), Mean Squared 
Error (MSE), Root Mean Square Error (RMSE), and 
the coefficient of determination (R2, or R-squared) 
evaluation metrics are used to assess the 
performance of predictive models. Each metric 
measures the difference between the predicted values 
and the actual values [32]. 

 MAE is the simplest of the three metrics to 
calculate. Simply take the average of the absolute 
value of the difference between the predicted values 
and the actual values. MAE is easy to interpret, as it 
gives the average error in the predictions. It can be 
calculated using the formula (5): 

𝑀𝐴𝐸 =  
ଵ


 ∑ ห𝑦 − 𝑦ොห

ୀଵ   (5) 

Where: 
 𝑛 = number of data points 
 𝑦  = observed values 
 𝑦 = predicted values 
 

MSE is the mean of the squared difference 
between the predicted values and the actual values. 
MSE is more difficult to interpret than MAE, but it 
is a more accurate measure of differences. It can be 
calculated using the formula (6): 

𝑀𝑆𝐸 =
ଵ


 ∑ ൫𝑦୨ − 𝑦୨൯

ଶ
୨ୀଵ     (6) 

RMSE is the square root of the MSE. RMSE is 
more difficult to interpret than MAE or MSE, but it 
is the most accurate measure of differences. It can be 
calculated using the formula (7): 

𝑅𝑀𝑆𝐸 = ට
ଵ


 ∑ ൫𝑦 − 𝑦ො൯

ଶ
ୀଵ

మ
    (7) 

R2 is a measure of the proportion of the variability 
in the target that is explained by the model. It can be 
calculated using the formula (8): 

𝑅2 = 1 −  
ௌா

ௌா௧
    (8) 

Where: 
 𝑆𝐸 = the sum of squares of the residual 

errors 
 𝑆𝐸𝑡 = the total sum of the errors 
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Each of these metrics has its own strengths and 

weaknesses, and there is no one metric that is best 
for all situations. MAE is relatively easy to interpret 
and is often used when there is a need for a quick and 
dirty assessment of a model’s performance. MSE is 
more commonly used when there is a need for a more 
detailed analysis. RMSE is often used when there is 
a need to compare the performance of two or more 
models. R2 is a good metric to use when there is a 
need to understand how well the predicted values fit 
the actual values. 

 
3. FOREST FIRE DETECTION, 

MONITORING, AND PREDICTION 
TECHNIQUES  

 
Forest fires are detected, monitored, or predicted 

using a variety of approaches, which can be divided 
into two main categories: imagery-based and 
sensors-based. The first approach by which forest 
fires are detected is through imaging, this can be 
accomplished with fixed cameras, satellites, or 
drones and it allows authorities to get a bird's eye 
view of the fire, pinpoint its exact location, and get 
its contour. The second approach that is our review 
focus, involves the use of sensors that can detect 
environmental data such as heat, humidity, gases, 
and so on. These sensors, which can be placed 
strategically throughout the forest, will send an alert 
to authorities if they detect a fire [1] (see Figure 4).  

 
3.1 Imagery-based Detection Techniques  

One way to detect forest fires is to use imagery. 
Imagery can come from many different sources, 
including satellites, airplanes, and drones. Each of 
these sources has its own advantages and 
disadvantages [2]. 

Satellites are probably the most commonly used 
source of imagery for forest fire detection. They have 
the advantage of being able to cover large areas very 
quickly. However, they can sometimes have trouble 

picking up small fires, and they can be affected by 
clouds. One of the main advantages of using 
satellites for forest fire detection is that they can 
cover large areas quickly. This is important because 
forest fires can spread rapidly, making it difficult for 
ground-based systems to keep track of them [1]. 
Another advantage of using satellites is that they can 
provide information about the fire at night when it is 
often not possible to see the fire from the ground. 
This is important because many Forest fires start at 
night and can spread very quickly before they are 
noticed [33]. 

There are several different types of satellites that 
can be used for Forest fire detection, including 
passive sensors that detect the heat given off by a 
fire, and active sensors that use a laser or other 
electromagnetic energy to “see” through the smoke. 
Some satellites are specifically designed for fire 
detection, while others, such as weather satellites, 
can also provide valuable information about a fire. 
The information provided by satellites can be used 
by firefighters to plan their attack on a fire, and by 
fire, managers to monitor the progress of a fire and 
the spread of smoke. Satellites are an important tool 
for Forest fire detection, and their use is likely to 
increase in the future as they become more 
sophisticated and more widely available [34]. 

Airplanes and drones are also used for Forest fire 
detection. They have the advantage of being able to 
get a closer look at a fire, which can help to identify 
it more quickly. However, they can be more 
expensive to use, and they can only cover a small 
area at a time. One way to do this is by using. By 
analyzing collected images and videos, it is possible 
to identify potential fire hotspots and track the 
progress of the fire. This information can then be 
used to warn people in the area and help firefighters 
to better target their efforts [35]. 

There are a number of different ways to detect 
forest fires using images and videos. One popular 
method is to use of heat detection. This involves 
looking for areas of high temperature in the image or 
video. This can be done using infrared cameras or 
other thermal imaging methods. 

Thermal imagery is a type of infrared photography 
that can detect heat sources from a distance. This 
makes it ideal for detecting forest fires, which are 
often started by careless campers or hikers who don't 
realize the risks. In general, the working principle of 
this method is very simple: the thermal cameras will 
scan the area and identify the areas with high 
temperatures. These areas are likely to be the sources 
of forest fires [36]. 

Compared with other methods, the use of thermal 
imagery has many advantages. First of all, it is very 

 
Figure 4: Forest fire detection, monitoring, and 

prediction; the two main categories 
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quick and effective. By using this method, the 
firefighters can quickly identify the contours of the 
area of the fire and focus their efforts on this area. 
Moreover, this method can also help to detect the 
potential fires which have not been yet broken out. 
This is because the high temperatures usually 
indicate the areas where the fires are about to start. 
Another advantage of using thermal imagery is that 
it can be used in all weather conditions. This is 
because the thermal cameras can still detect high 
temperatures even in the heavy fog or the dark night. 
This is very important because the other methods, 
such as the use of ordinary cameras, will not be 
effective in these conditions [37], [38]. 

Infrared gas detectors are a vital tool in the fight 
against forest fires. By monitoring the presence of 
infrared radiation in the atmosphere, these detectors 
can provide an early warning of fires, allowing 
firefighters to take action to prevent them from 
spreading [39]. One of the main benefits of using 
infrared gas detection for fire detection is that it can 
be done from a distance. This means that firefighters 
can be alerted to a fire before it has had a chance to 
spread. This can be crucial in preventing a disastrous 
wildfire. Another benefit of using infrared gas 
detection is that it can help firefighters to identify the 
source of a fire. This can be very helpful in fighting 
a fire, as it can allow firefighters to target their efforts 
more effectively [40]. 

Another popular method is to look for changes in 
the color of the smoke. This can be done by 
analyzing the color of the smoke over time or by 
looking at the smoke plume from different angles. 
yet another method is to look for changes in the 
brightness of the image. This can be caused by the 
fire itself or by the smoke reflecting sunlight. By 
looking at the brightness over time, it is possible to 
track the progress of the fire. 

Using these camera devices (such as a drone, 
satellite images, …), it is possible to perform this 
prediction locally (in the Edge layer) or to send the 
data to the gateway, where a more capable device (in 
the Fog layer) may do so. Once the fire service 
receives the warning, they are able to make the 
necessary preparations for the forecast blazes on 
either the Edge or the Fog layer. If a wildfire is 
predicted, a notification will be issued to the local 
fire department (see Figure 5). 

All of these methods have their advantages and 
disadvantages. However, by using them together, it 
is possible to get a more accurate picture of where a 
fire is and how it is progressing. This information can 
then be used to help firefighters to better target their 
efforts and to warn people in the area. 

 

 
Figure 5: Forest fire monitoring and detection using 

imagery 

 
3.2 Sensors-based Detection Techniques 

A sensor is a device that detects and transforms 
physical quantities into a signal that can be read by 
an observer or equipment. There are many different 
types of sensors, and they are used in a wide variety 
of applications. Some of the most common 
applications for sensors are in the detection of forest 
fires [41]. 

Sensors are one of the most important tools that 
we use in order to detect forest fires. By monitoring 
various environmental factors. One of the best ways 
to detect a forest fire early is to use sensors. 
Temperature, humidity, CO, CO2, smoke, light, 
sound, wind speed, soil moisture, GPS, and pressure 
sensors can all be used to detect a forest fire. 
 Temperature sensors are the most commonly 

used type of sensor for Forest fire detection. 
They can be used to detect hot spots, which are 
areas where the temperature is significantly 
higher than the surrounding area. Hot spots can 
be caused by burning embers or fires. 

 Humidity sensors can also be used to detect 
forest fires. When the air is very dry, it can help 
to spread a fire. By measuring the humidity, 
firefighters can get an idea of how dry the 
conditions are and whether or not a fire is likely 
to spread. 

 CO and CO2 sensors can be used to detect the 
presence of smoke. Smoke is a major indicator 
of a fire. These sensors can help to give 
firefighters an early warning that a fire is 
present. 

 Light sensors can also be used to detect fires. 
When there is a lot of smoke, the light levels will 
be lower than normal. This can be used to help 
identify areas where a fire is burning. 

 Sound sensors can be used to detect the sound 
of a fire. This can be helpful in determining the 
location of a fire. 

 Wind speed sensors can be used to determine 
the rate at which a fire is spreading. The faster 
the wind is blowing, the faster a fire will spread. 



 
Journal of Theoretical and Applied Information Technology 

15th October 2022. Vol.100. No 19 
© 2022 Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
5453 

 

 Soil moisture sensors can be used to detect the 
moisture content of the soil. This information 
can be used to determine the likelihood of a fire 

spreading. 
 GPS sensors can be used to track the location of 

a fire. This information can be used to help 
firefighters to determine the best way to get to 
the fire. 

 Pressure sensors can be used to measure the 
amount of pressure in the air. This information 
can be used to determine the intensity of a fire. 

 O3 sensors can be used to detect the presence of 
ozone. Ozone is produced when oxygen is 
burned. This can be used to help identify areas 
where a fire is present. 

 NH3 sensors can be used to detect the presence 
of ammonia. Ammonia is produced when 
vegetation is burned. This can be used to help 
identify areas where a fire is present.  

These are the most used sensors that can be 
employed to detect forest fires. Tree-mounted 
sensors that are protected from animals and people 
while collecting the most data possible from a wide 
area are ideal for this purpose (temperature, 
humidity, CO concentration, and other relative 
measurements). In order to receive and communicate 
information to and from these sensors’ devices 
without interference, data collected by these sensors 
is sent to a gateway, which is supposed to be situated 
in a high position. Gateways take data and send it to 
the cloud, where it may be used for further analysis, 
storage, and dashboarding (see Figure 6). By using 
these sensors, firefighters can get an early warning 
that a fire is present and take action to prevent it from 
spreading.  

 

4. METHODOLOGY  
The search strategy used to retrieve papers on 

forest fire detection using deep learning and IoT 

includes searching for papers in the Scopus database; 
which is the leading abstract and citation database of 
peer-reviewed research literature, making it the most 
popular academic search engines and databases, 
which contains IEEE, Springer, and Elsevier 
publications. More than 1.8 billion cited references 
dating back to 1970, and more than 84 million 
records are indexed in Scopus, making it one of the 
largest academic search engines in the world [42]. 

 The search terms used were ("forest fire" OR 
"wildfire") AND ("Machine Learning" OR "ML" 
OR "DL" OR "Deep Learning") AND (IoT OR 
"Internet of Things" OR "Wireless Sensor Network" 
OR "WSN"). Our inclusion criteria for selected 
papers consider only those that had been published 
in peer-reviewed journals, and deal with forest fire 
detection using deep learning and IoT. 41 papers 
were retrieved using the search strategy described 
above (see Figure 7). In addition, some of these 
papers were excluded because they did not meet the 
inclusion criteria or were just first pages of 
conference proceedings. The remaining 20 papers 
were included in the review (see Table 1). 

 
Figure 6: Forest fire monitoring and detection using deployed sensors 
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Figure 7: Number of publications per year 

 

5.  FINDINGS  

The following section analyzes the results of Table 
1, 2, and 3. To begin, we will define the comparison 
criteria used in Table 1: 
 Year: the year in which the paper was published; 
 Objective:  

o CLA: Classification 
o REG: Regression 
o OD: Object Detection 
o Other objectives 

 ML or DL Model:  the used machine or deep 
learning models. 
o ANN: Artificial Neural Network 
o CNN: Convolutional Neural Network  
o RNN: Recurrent Neural Network 
o COELMAE: Compressed Sensing and 

Online Extreme Learning Machine 
Autoencoder 

o LSTM: Long Short-Term Memory 
o HNN: Hebbian Neural Network 
o AutoML: Automated Machine Learning 
o MLR: Multiple Linear Regression 
o GRNN: General regression neural network 
o LogR: Logistical Regression 
o LVQ: Learning Vector Quantization 

 EXP/SIM: 
o EXP: Experience 
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o SIM: Simulation 
 Results: The proposed model's best results, 

based on the metrics used; 
o ACC:  Accuracy 
o R-square 
o MAE 
o RMSE 
o RECALL 
o F1-Score 

 Dataset: the data used to train and evaluate the 
proposed Machine Learning model; 

 Features: Temperature and Humidity, Soil 
moisture, Pressure… 

 

At first sight, scientific research aimed at forest 
fire detection using ML, and IoT or WSN techniques, 
is increasing. More than 80% of the papers on the 
Scopus database that address this problem, are 
published over the last three years. 

The majority of the papers studied deal with the 
problem of forest fire detection by classification 
[43]–[50]. While the papers [51]–[54] worked on 
Regression to predict fire level, [51] determined the 
fire risk concerning the hydration level of a peat bog, 
[52] predicted humidity, and [54] estimated the post-
fire air pollution level (forecasting three different air 
pollution levels such as CO, NH3, and O3) [53]. [55] 
implemented an object detection technique in 
combination with Fire Sensor. In [56]–[61] the 

Table 1: Summary of reviewed papers 
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[51] 
Detection of forest fires using 
machine learning technique: A 

perspective 
REG SIM ML: REG 

R2=62.21% 
RMSE=7.9 

UCI 
repository 

Forest Fires 
Data Set 

 [63] 

X, Y, month, day, FFMC, 
DMC, DC, ISI, temp 
(Temperature), RH 

(Humidity), wind, rain, area 

20
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[43] 

Real-time identification of 
smoldering and flaming 

combustion phases in forest 
using a wireless sensor network-
based multi-sensor system and 

Artificial Neural Network 

CLA EXP ANN ACC=82.5% Captured 

CO, CO2, Smoke 
Concentration, Air 

Temperature, relative 
Humidity, and GPS 

20
17

 

[56] 
Faulty Sensor Data Detection in 
Wireless Sensor Networks Using 

Logistical Regression 
Faulty SIM ML: LogR ACC=98% Captured Temperature, Humidity 

20
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[44] 
Advancing early forest fire 

detection utilizing smart wireless 
sensor networks 

CLA EXP 
ANN: 
LVQ 

ACC=89.10% Captured 
Light, Temperature, and 

Sound. 

20
20

 

[45] 
Low-Latency Energy-Efficient 

Cyber-Physical Disaster System 
Using Edge Deep Learning 

CLA EXP 
CNN: 

MobilNet 
V2 

ACC=91.49% Captured Images 

20
20

 

[46] 
Early forest fire detection system 

using wireless sensor network 
and deep learning 

CLA EXP RNN ACC>99% Captured 
Temperature, Humidity, PM, 

CO2, CO and Pressure 

20
20

 

[55] 
Real time adaptive street lighting 

system 
OD EXP ANN - Captured 

Temperature, Humidity, Fire 
Detect, intensity light and 

Light fault 

20
20

 

[57] 
Self-Localization in Large Scale 
Wireless Sensor Network Using 

Machine Learning 

Locali
zation 

SIM ANN - - - 

20
20
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IoT Sensor and Deep Neural 
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Prediction System 
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DenseNet 
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moisture, Pressure, Altitude 

and GPS sensor 
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[49] 

A smart approach for fire 
prediction under uncertain 
conditions using machine 

learning 

CLA SIM ML ACC=72% 

UCI 
repository 

Forest Fires 
Data Set 

[63] 
+Images 

X, Y, month, day, FFMC, 
DMC, DC, ISI, temp 
(Temperature), RH 

(Humidity), wind, rain, area 

20
21

 

[52] 
Sustainable Peatland 

Management with IoT and Data 
Analytics 

REG EXP 

ML: 
Multi 

Variate 
REG 

- Captured 

Atmospheric Data (wind 
speed, ambient Temperature, 

relative Humidity, 
accumulated precipitation), 

Ground Data (soil 
Temperature and GWL) 

20
21

 

[53] 

A comparative analysis of 
LSTM and ARIMA for 

enhanced real-time air pollutant 
levels forecasting using sensor 
fusion with ground station data 

REG EXP LSTM - Captured 
IoT Data: O3, NH3, CO 
Ground station Data: O3, 

NH3, CO 

20
21

 

[62] 
Forest 4.0: Digitalization of 
forest using the Internet of 

Things (IoT) 

Re 
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20
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[59] 

Effective deployment of sensors 
in a wireless sensor networks 

using hebbian machine learning 
technique 

Deploy
ment 
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SIM HNN - - - 

20
22

 

[60] 

Towards mountain fire safety 
using fire spread predictive 
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containment in iot environment 
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SIM 
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[54] 
A Machine Learning Approach 

to Weather Prediction in 
Wireless Sensor Networks 

REG SIM 
ML: 
MLR 

MAE=11 
RMSE=17.5 

Intel Lab 
dataset [66] 

Temperature, Humidity, light, 
and voltage 

20
22

 

[61] 
Accurate Location Estimation of 

Smart Dusts Using Machine 
Learning 

Locali 
zation 

SIM GRNN - - - 

20
22

 

[50] 
Forest fire detection system 

using wireless sensor networks 
and machine learning 

CLA EXP 
ML: 
REG 

ACC=86.36% 
Captured 
(7000r) 

Temperature, Humidity, light 
intensity level, and CO level 
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authors examined complementary aspects of forest 
fire detection, including the deployment of WSNs, 
sensor location, and sensor data transmission errors.  

Half of the examined papers (up to ~ 10) [43]–
[48], [50], [52], [53], [55] were based on real-world 
experiments, others involved simulation, as for [49], 
[51], [54], [56]–[61]. It is difficult to compare the 
results obtained from the works reviewed since they 

were acquired using several different metrics and 
datasets, although practically they are very inspiring.  

By examining the models utilized, we can clearly 
categorize these works into two broad categories: 
ML and DL. The following papers [48]–[52], [54], 
[56], [60] worked with regression techniques 
(Logistical, Multi Linear...). On the other hand, the 
majority of papers on DL [43]–[47], [53], [55], [57]–
[59], [61] worked with classification techniques, 
with the exception of [55] which used image-based 
object detection. The Dataset is crucial for any 
scientific research using machine learning and IoT to 
detect forest fires. Papers [57], [59], [61], [62] made 
no reference to their used dataset. Meanwhile, the 
following papers [43]–[48], [50], [52], [53], [55], 
[56] collected their own datasets without making 
them publicly available. On the other side, papers 
[49], [51], [54], [58], [60] used public datasets from 

the UCI repository (for Forest Fire), the Harvard 
Shuttle, CortezMorais/Corsican Fire, 
Hallasan's/Kaggle Wildfire/UCI, and Intel Lab, 
respectively. 

Table 2 clearly shows that the most commonly 
used characteristics for detecting forest fires are 
Temperature, Humidity, CO, and Light. However, 
the papers that used particular characteristics were 

trying to explore some specific areas. For the use of 
Sound [44], it seems to be interesting, and we will 
consider it in our future works. 

The choice of the communication module is 
closely related to the targeted switching channel. 
Apart from the articles that used a complete solution 
based on a weather station [48], [52], the most 
commonly used boards are Arduino ones [47], [53] 
and their generic NodeMCU [55], and the most used 
communication channel is Wi-Fi, with the exception 
of [50]; This latter added the SIM800 Module to be 
able to use the GSM network. [43], [44] 
implemented the CC2430 and IRIS XM2110 boards, 
both of which integrate ZigBee technology; the latter 
boards of which has been discontinued. [45] used a 
Raspberry pi board to capture images. [47] used a 
low-quality LoRa32u4 card from BSFrance that is no 
longer commercially available. [48], [52] collected 

Table 2: Summary of reviewed literature based on the used characteristics 
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their own datasets using a weather station, the first 
on IBM Cloud and the second on MIMOS Malaysia. 
[43], [44], [50] performed storage on a single remote 
PC using WSN architecture, the first two using 
ZigBee and the last using GSM and Radio 
Frequency. [45] store d the captured images in 
Microsoft Azure in an IoT architecture with Wi-Fi as 
a communication channel. [46] used ThingsBoard as 
a Cloud solution in conjunction with WSN 
architecture and LoRA as communication 
technology. And [47], [53], [55] have built a Wi-Fi-
based IoT architecture with various cloud choices, 
including Thingspeak, BOLT Cloud, and Micro soft 
Azure.  

 
6. CONCLUSION  
 

In this paper, we conducted a systematic review of 
the scientific literature that addressed the challenge 
of detecting and predicting forest fires using IoT and 
machine/deep learning. The performed data analysis 
revealed that the features mostly used to identify and 
detect forest fires are temperature, humidity, CO, and 
light. We also learned that the communication 
channels deployed in this context are mostly based 
on one of these protocols WIFI, ZigBee, or GSM. In 

addition, the datasets used to this end are mostly 
synthetic. 

The majority of the studied papers use machine 
learning approaches to address the problem of 
wildfire detection; just few ones are considering 
deep learning models. The classification, regression, 
and object detection algorithms were by far the most 
popular. According to the findings of our systematic 
literature review, we conclude that scientific works 
having combined IoT and machine/deep learning, 
achieved best performances and constitute a 
feasibility proof of the potential and the strength of 
their approach towards detecting and forecasting 
wildfires. 
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