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ABSTRACT 

Data mining is the process of discovering hidden knowledge from the existing datasets. The process of 
knowledge discovery is a complex task when the data source is in the form of data streams and more tough 
when the data source is of class imbalance in nature. To find an optimal solution for these problems many 
research proposals are formulated by researchers. Some of the unsolved problems in the literature for the 
above said problem are for very large data sources of data streams with class imbalance nature. In this paper, 
a novel proposal for class imbalance large data streams is presented with novel techniques of oversampling 
and a unique multi modal filtering technique known as Multimodal Increment over Sampling for Data Streams 
(MIOSDS). The experimental simulations are conducted on three large datasets with different domains with 
high class imbalance ratio. The results generated are very impressive in terms of accuracy, AUC, precision, 
recall and F-measure validation metrics. 
 
Keywords: Knowledge Discovery, Data Streams, Imbalanced data, oversampling, Multimodal Increment 

Over Sampling for Data Streams (MIOSDS).
 
1. INTRODUCTION 
 
Data streams have become the part and parcel of 
day-to-day life with complex and huge internet 
systems used in different areas like security, finance, 
hospitals, e-commerce, networking, surveillance etc. 
The raw data collected from the real world has 
properties like noise, outliers, skewness, spread, 
redundancy and correlation etc, which are to be 
carefully handled by the machine learning 
algorithms. Class imbalance nature is such a 
property which can drastically degrade the 
performance of any classifier due to insufficient data 
for model building. This problem also arises in the 
real world scenario due to unavailability of instances 
for training and model building for prediction of 
unseen instances. Algorithms proposed for data 
streams have to work in dynamic environments 
where data is evolved in huge volumes and with a 
swift arrival rate, this means the data received is to 
be analyzed online as it is received. One of the most 
well-known and widely used online learning 
benchmarks for evolving data streams is Massive 
Online Analysis (MOA) [1]. The intrinsic strengths 
of MOA are in the implementation techniques 
incorporated for bi-directional data transfer from 
Waikato Environment for Knowledge Analysis 
(WEKA) [2].       

 
A definite practical and thoughtful approach, with an 
insight of modern technology is required to solve the 
problem of data stream learning in real world 
applications. Furthermore, in this work, we extended 
the core of the recent approaches for solving the 
problem of skewed data stream learning. The 
proposed algorithm’s improved empirical results of 
Multimodal Increment Over Sampling for Data 
Streams (MIOSDS) are presented with solid 
theoretical background. 
 
The rest of this paper is organized as follows: 
Section 2 presents the recent works on data stream 
mining. Section 3 presents the main framework of 
the proposed MIOSDS algorithm. Section 4 provides 
a detailed explanation of the datasets and the 
evaluation criterias used in the experiments. Section 
5 presents the algorithms used for comparison and 
experimental setup. Section 6 presents the detailed 
experimental results and discussion. Section 7 draws 
the conclusions and points out future research 
directions. 
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2. RELATED WORK 
 
This section presents the most recent works in the 
research area of imbalance data learning and data 
stream learning in classification. 
 

2.1. Literature Review On Imbalance Data     
Learning: 

 
Alberto Fernández et al. [3] have reviewed the class 
imbalance big data problem and presented several 
challenges and solutions for different existing issues. 
Kapil K. Wankhade et al. [4] have presented 
different methods to handle concept drift in data 
stream learning. They have also presented different 
limitations for the existing methods and their 
proposed solutions. Z. Li et al. [5] have proposed a 
novel ensemble algorithm which dynamically 
updates the model for class imbalance dataset 
learning with concept drift. Xiangjun Li Li et al. [6] 
have proposed a new approach using cohesiveness 
and separation index for effective solution of 
concept drift in classification process. Eréndira 
Rendón et al. [7] have proposed a hybrid approach 
using heuristic sampling techniques for multi class 
big data imbalance datasets. They also considered 
the applicability of deep learning techniques on 
imbalanced big data sets.    
 
Dariusz Brzezinski et al. [8] have investigated 
different class imbalance metrics for dynamic 
analysis of gradients, diverging and distribution of 
the datasets for varying class proportions. Gregory 
Ditzler et al. [9] have used replacing by smote 
technique and ensemble technique for minority class 
improvement. They also implemented weighted 
voting for gaining class imbalance adjusted 
accuracy. Rebeen Ali Hamad et al. [10] have 
implemented a solution for class imbalance for smart 
home data using deep neural network learning. The 
temporal video technique is used for learning 
minority data more sensitively. 
 
T. Ryan Hoens et al. [11] have presented different 
challenges in class imbalance especially in data drift 
scenarios and presented some common solutions. 
Bartosz Krawczyk [12] have discussed wide areas of 
class imbalance learning such as classification, 
regression and clustering and also reviewed 
proposed data level and algorithmic level for 
effective knowledge discovery. Lei Zhu et al. [13] 
have proposed an incremental version of LPSVM for 
class imbalance learning using matrix coefficient 
updating technique.  The learning process is also 

aimed for loss less learning for the updated 
information for the model.       
 
Yang Lu et al. [14] have proposed an online data 
stream chunk based learning for minority weighted 
technique and specific data size selection. The 
proposed approach is well suitable for concept drift 
and least memory utilization with incremental 
building of the model. Rafiq Ahmed Mohammed et 
al. [15] have proposed an auto balancing framework 
for class imbalance data using racing algorithms and 
incremental learning. The approach is applicable for 
incremental stream frameworks using static batch 
learning technique.    
 
YANGE SUN et al. [16] have presented a two stage 
classifier for online data stream classification using 
window adjustment technique for concept drift. The 
proposed framework uses both cost sensitive 
information at feature selection and classification 
stages. Shuo Wang et al. [17] have presented a 
systematic literature review for class imbalance data 
streams for mitigating and adjusting the concept drift 
phenomenon. Hang Zhang et al. [18] have proposed 
an online learning strategy for ensemble learning for 
class imbalance data with uncertainty and semi-
supervised techniques. 
        
3. PROPOSED MULTIMODAL INCREMENT 

OVER SAMPLING FOR DATA STREAMS 
(MIOSDS) ALGORITHM 

 
The basic definition for multi modal is for using 
multiple methods for different contexts. The 
proposed Multimodal approach built on different 
models is used for classification of data streams of 
class imbalance nature. The proposed system makes 
use of a multi modal approach for extraction of the 
main features for improved classification of data 
streams. The extraction of the features subset is also 
influenced by the strategy of feature to class 
association.  

 
The proposed MIOSD approach performs 

classification of the data streams by considering 
several aspects. One of the aspects is on account of 
formation and merging of novel class instances from 
the income data streams. Here the C4.5 algorithm 
approach is used for identification of instances for 
merging into the classes. Another aspect is for 
performing oversampling of the minority sub class 
for reducing class imbalance in the forming data 
stream. Figure 1, presents the framework of 
MIOSDS. 
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The following sections discuss the phases 
in MIOSDS algorithm. 
3.1. Multi Modal Inspection Of The Data 

Stream For Concept Drift: 
 

In the initial phase, the chunks of data 
stream are collected and provided for the algorithmic 
processing. These algorithms should be able to 
handle two scenarios of the data stream. First, as the 
chunks of data streams arriving are in class 
imbalance in nature and there is a need for 
continuous model improvement in the minority 
class, second the arriving data composition can also 
change depending upon the time and the minority 

class can be changed as majority and vice versa. The 
incoming chunks of data stream is passed through 
different evaluators for detecting the class imbalance 
nature using a simple technique of continuous 
summation and evaluation. The class imbalance 
nature or drift detection can be done by finding the 
percentage of classes and evaluating the changeover 
of class from majority to minority or vice-versa. The 
following issues of drift detection, noisy or outlier’s 
detection and removal, detecting and replacing 
missing values, selecting the appropriate feature 
subset, generating required synthetic instances for 
reducing class imbalance nature are efficiently 
handled by the proposed framework.

 

Figure 1 :Framework of Multimodal Increment Over Sampling for Data Streams (MIOSDS) 

3.2. Multi Modal Approach For 
Preprocessing Stage For Removing 
Noisy And Missing Values: 

 
The basic definition of the pre-

processing is to analyze the dataset for the 
preliminary level, for finding the deviations from 
standards. The two main issues are regarding 
noisy and missing value instances. The multi 
modal approach is used for detection and 
elimination of noisy and missing values. The 
multi modal approach will be effective in terms of 
effective up gradation of the data stream. The 
technique used for noisy values detection is by 
investigating the deviation of instances from the 
class margins, either by projection technique or 
intra class distance measure. In our proposed 
research, we have adapted both the techniques of 
class margin deviation using support vector 
machine projection technique and intra class 
distance margin using remove misclassified filter 
technique for detection and removal of noisy or 
outlier instances. 

 
3.3. Multi Modal Identifying Influential 

Feature Subset: 
 

The process for identifying influential 
feature subset is one of the factors for better 
performance of the knowledge discovery process. 
The multi modal approach of filter and wrapper 
techniques can work effectively for selection of 
the best influential features subset. The features 
which are common in multi modal approach are 
selected and an improved data stream is prepared. 
In our work, the features are selected using 
correlation between features and class by passing 
the incoming data stream through correlation 
based feature subset selection. This technique is 
implemented by analyzing the individual 
predictive ability of features with the level of 
redundancy between the features. The searching 
of total features for discovering a novel subset is 
performed using greedy hill climbing technique 
with backtracking. The level of backtracking is 
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limited to utmost 5 non performing attribute 
selection in the subset.         

3.4. Multi modal Incremental oversampling 
on minority subset: 

The oversampling of the minority 
samples in the data source will definitely reduce 
the problem of class imbalance nature in the data 
stream. The incremental and multi-modal 
approach is applied for synthetic instance 
generation, duplicating existing instances and 
creating hybrid instances from two or more 
instance features. A specific strategy can be 
implemented to find the level of oversampling 
and should not cross from the threshold level in 
every chunk of data streams. The synthetic 
minority over sampling instance generation 
technique is used for generating pure synthetic 
instances. The synthetic oversampling is 
restricted to a maximum of hundred percent for all 
the datasets. The level of oversampling required 
for specific datasets is correlated with the 
imbalance ratio of the dataset.    

 

  
 

3.5. Preparing improved data stream for 
effective knowledge discovery: 

 
The minority chunk’s of data stream 

which was prepared using the above phases is 
joined with majority chunks of data streams 
collected. The improved data source will be 
applied to the base algorithm and different 
evaluation metrics are generated. In our proposal, 
we have used C4.5 as our base learner due to the 
merits of easy generalization, better 
interpretability and compact model generation. 
The different evaluation criteria such as accuracy, 
AUC, precision, recall and f-measure are 
generated for model evaluation.            
 
4. DATASETS AND EVALUATION 

CRITERIA’S 
 

In the experiments, we run our proposed 
MIOSDS on three large data streams from MOA 
[19]*. Table 1 presents the details of the data 
stream used in the experimental study. 

 
Table 1 : Details of the Data Stream from large datasets 

 

S No Data Set Instances Majority Minority Ir 

1 Airline 539383 240264 219119 1.09 

2 ElecNormNew 45312 26075 19237 1.35 

3 Poker-lsn 829201 415526 17541 23.06 

 
 

 
ElecNormNew   Classes                       Airline Classes                                             Poker-lsn Classes 
 

Figure 2: The summary of classes of ElecNormNew, Airline and Poker-Isn datasets. 
 
The different properties of datasets such 

as serial number, name of the dataset, total 
number of instances, number of majority 
instances, number of minority instances and 
imbalance ratio are given below in Table 1. Table 
2 presents the detailed description of the data 
stream formed for ‘t’ time. In this, we considered 

the maximum time ‘t’ as ‘10’ chunks of arrival for 
total instance. Figure 2 shows the summary of the 
classes of ElecNormNew, Airline and Poker-Isn 
datasets.  

In the same way, the data stream chunks 
arrive and total instances to be processed and the 
imbalance ratio varies for each and every dataset 
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depending upon the total instances. The complete 
details of all the datasets are given in Table 2. 

 
Table 2: Number of samples for each class (indicated by indices 0–10) for the three inspection data streaming sets 

from the datasets. 
 

Data 1 2 3 4 5 6 7 8 9 10 Sum 

Airline 53939 53939 53939 53939 53939 53939 53939 53939 53939 53939 539383 

ElecNorm
New 

4532  4532  4531 4531 4531 4531 4531 4531 4531 4531 45312 

Poker-lsn 82921 82920 82920 82920 82920 82920 82920 82920 82920 82920 829201 

 
Our goal is to explore stability of our 

algorithm on data stream learning datasets with 
machine learning techniques across different 
levels of imbalance. Moreover, we want to 
evaluate potential sources of bias in study design 
by constructing a number of experiments in which 
we diverse one parameter per experiment. To 
integrate conclusions obtained from each 
experiment a meta–analytic statistical analysis is 
proposed. These methods are suggested by a 
number of authors as tools for generalizing the 
results and integrating knowledge across many 
studies. The implementation of the proposed 
MIOSDS is done on WEKA [2] workbench with 
a system unit of i5-2410M CPU working on 2.30 
GHz and 4.0 G RAM on Windows 7 operating 
system. 
 

In this paper, we used AUC, Precision, 
Recall and F-measure for  performance 
evaluation. We used the experimental dataset and 
stratified 10 fold cross validation evaluation 
methods which are used by the previous studies 
[20-24]. The 10 fold cross validation technique 
splits the data into 10 folds and in each run it uses 
9 folds for training and 10th fold for testing. The 
process is repeated 10 times and in each run the 
testing data is replaced with untested fold. 
 

The evaluation metrics used in the paper 
are detailed as follows, Let us revise a few well 
known and widely used measures: True Positives 
(TP) are actual positives, which are correctly 
predicted as positive by classification algorithm. 
True Negatives (TN) are the actual negatives 
which are correctly predicted as negative by 
classification algorithm. False Positives (FP) are 
actual negatives that are wrongly predicted as 
positives and False Negatives (FN) are actual 
positives wrongly predicted as negatives. TP rate 
can be defined as the ratio between true positive 

and total positive instances which is given in the 
equation (1). TN rate can be defined as the ratio 
between true negative and total negative instances 
which are given in the equation (2).   

 

TPRATE = 
்௉

௉ைௌூ்ூ௏ா
   (1) 

 

TNRATE = 
்ே

ோீ஺்ூ௏ா
  (2)             

          Receiver Operating Characteristic (ROC) 
curve is the recent evaluation metric used for 
supervised learning dealing with imbalanced data 
study. This ROC curve can be used for projecting 
results depending upon the user perspective with 
different combinations of basic components such 
as true positives, false positives, true negatives 
and false negatives. The summary of the ROC 
curve can be given as the area under it, which is 
known as Area Under Curve (AUC). AUC can be 
computed simply as the micro average of TP rate 
and TN rate when only a single run is available 
from the classification algorithm. The Area Under 
Curve (AUC) measure is computed as given in the 
equation (3) and (4), 
 

AUC = 
ଵା ்௉ ೃಲ೅ಶି ி௉ ೃಲ೅ಶ

ଶ
 (3)                   

Or 

 

AUC = 
 ்௉ ೃಲ೅ಶ ା ்ே ೃಲ೅ಶ

ଶ
 (4)       

The Precision measure is computed as 
given in the equation (5), 
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precision = 
்௉

(்௉)ା(ி௉)
  (5) 

The Recall measure is computed as 
given in the equation (6), 

 

recall=
்௉

(்௉)ା(ிே)
 (6) 

 

    The F-measure Value is computed as given in 
the equation (7), 

F-measure = 2 × 
௣௥௘௖௜௦௜௢௡ × ௥௘௖௔௟௟

௣௥௘௖௜௦௜௢௡ ା ௥௘௖௔௟௟
 (7) 

5. COMPARISON OF ALGORITHMS 
AND EXPERIMENTAL SETUP 

 
We have conducted the comparative 

study using C4.5 [25] a classical benchmark 
decision tree algorithm and with a massive data 
stream learner Hoeffding tree [26]. The reason for 
choosing these two algorithms for comparison is 
to validate the MIOSDS approach in both terms 
of classical decision tree approach and data 
stream learning approaches. The details of the 
C4.5 and Hoeffding tree are given below.     
 

C4.5 is a decision tree algorithm used to 
perform classification. C4.5 uses the training data 
to build the model for efficient classification. The 
model is built by splitting the data in a recursive 
manner till it reaches a leaf node. The criterion 
used for splitting the model is known as splitting 
criterion. C4.5 uses normalized information gain 
i.e. gain ratio as the splitting criterion. After the 
model is built, the unnecessary branches 
generated due to noisy, missing values etc are 
deleted. The technique used for removing 
unnecessary branches from the built decision tree 
is known as pruning technique. In C4.5 error 
based pruning technique is used.  A Hoeffding 
tree is an efficient decision tree algorithm capable 
of classifying the instances from a huge data 
stream. The rationale behind the working of the 
Hoeffding tree is the mathematical principle of 
Hoeffding bound. A Hoeffding tree isn't able to 
address the data streams in which there is swift 
drift in the classes. In the experimental 
simulation, we considered the data stream which 
doesn’t have drift in the classes so as to make a 
fair comparison with the proposed MIOSDS 
approach. One of the advantages of the Hoeffding 

tree is to learn from a small subspace of samples. 
The Hoeffding tree assures to generate an 
efficient output as equivalent to non-incremental 
learning algorithms. 

 
6. EXPERIMENTAL RESULTS 
 

In this section, we present the 
experimental results of the proposed approach 
with the two benchmark comparative algorithms 
C4.5 and Hoeffding Tree. One of the two best 
known algorithms is chosen for comparison so as 
to expose the strengths and the weakness of the 
proposed approach on different evaluation 
criterias.  
 

The experiments are evaluated by the 
measures: accuracy, AUC, precision, recall and f-
measure with formulae stated in section 4. Each 
value in the table is split into two parts: mean and 
standard deviation values. For example, consider 
the first value in Table 3, 64.39±0.60 of accuracy 
for the Airline dataset using the C4.5 algorithm. 
The 64.39 is the mean value and 0.60 is the 
standard deviation value for 10 runs of 10 fold 
cross validation.  
 

In the first row of Table 3, the accuracy 
values for each of the 10 chunks of Airline dataset 
are 64.39±0.60, 0 64.28±0.52, 64.36±0.52, 
64.15±0.57, 64.38±0.52, 64.29±0.58, 64.29±0.58, 
64.24±0.53, 64.31±0.48, 64.19±0.54 and average 
value is 64.28±0.54 which is also followed with ● 
indicating the value is less than MIOSDS 
algorithm. Here three average values of C4.5, 
Hoeffding Tree and MIOSDS are 64.28±0.54, 
62.16±0.65, 98.38±0.16 and MIOSDS value is 
better than C4.5 and Hoeffding Tree which is bold 
faced indicating the best value in the row. In 
general, the algorithm that produces higher 
measure values is better than the other algorithm. 
The results show that our proposed MIOSDS 
approach performs better than both C4.5 and 
Hoeffding Tree algorithms on all the three data 
stream datasets from MOA. The graphical 
representation of results for the tables 3, 5, 6 and 
7 are presented below the corresponding tables for 
better understanding of the readers as figures 
3,4,5,6,7. 
 
*(https://moa.cms.waikato.ac.nz/datasets/). 
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Table 3 :Normalized Accuracy (in %) of all classifier variants in case of three data streams from large datasets
 

data 
stream # 

Airline# elecNormNew# Poker #  

 C4.5 Hoeffdin
gTree 

MIOSDS C4.5 Hoeffdin
gTree 

MIOSDS C4.5 Hoeffdin
gTree 

MIOSDS 

1 64.39 
±0.60 

61.98 
±0.69       

90.17 
   ±0.40    

79.35 
±1.72 

74.98 
±1.99 

93.77 
±1.02 

99.11 
±0.14 

62.14 
±1.99      

80.00 
±0.35 

2 64.28 
±0.52 

62.13 
±0.63         

87.79 
±0.40          

79.02 
±1.94           

74.42 
±2.31           

87.91 
±1.41           

99.11 
±0.12           

62.03 
±2.16 

79.96 
±0.29 

3 64.36 
±0.52 

62.11 
±0.72      

89.20 
±0.42     

79.37 
±1.81 

74.72 
±3.91  

87.12 
±1.39     

99.10 
±0.14     

62.83 
±2.09 

79.78 
±0.36 

4 64.15 
±0.57 

62.05 
±0.62       

87.01 
±0.47       

80.00 
±1.86        

73.66 
±3.32        

88.82 
±1.14        

99.16 
±0.12         

62.78 
±2.61 

79.74 
±0.35 

5 64.38 
±0.52 

62.22 
±0.67   

88.56 
±0.49     

78.59 
±2.37    

73.92 
±4.79    

84.46 
±1.44   

99.15 
±0.11   

62.76 
±2.00 

79.82 
±0.35 

6  64.29 
±0.58 

62.36 
±0.64     

89.60 
±0.36      

79.20 
±2.12       

73.66 
±2.67       

84.05 
±1.67        

99.14 
±0.11     

62.81 
±1.68       

79.82 
±0.45       

7 64.29 
±0.58 

62.51 
±0.67     

91.78 
   ±0.28    

79.17 
±1.77   

74.63 
±2.05     

84.97 
±1.98      

99.12 
±0.11       

63.17 
±1.17 

79.86 
±0.37    

8  64.24 
±0.53 

62.21 
±0.71 

88.49 
±0.43 

79.86 
±1.60      

74.81 
±2.07      

92.20 
±1.24       

99.10 
±0.17     

63.00 
±1.48     

79.88 
±0.37     

9 64.31 
±0.48 

61.99 
±0.67 

89.39 
±0.43 

78.68 
±1.76     

74.46 
±3.94 

90.43 
±1.24 

99.13 
±0.15   

63.01 
±1.58 

79.88 
±0.31 

10  64.19 
±0.54 

62.11 
±0.62         

89.18 
±0.44 

78.68 
±1.79         

74.16 
±1.93         

86.22 
±1.50       

99.16 
±0.12        

62.56 
±1.95  

79.88 
±0.35         

Average 64.28 
±0.54● 

62.16 
±0.65● 

89.12 
±0.16 

79.19 
±1.82● 

74.34 
±2.33● 

88.65 
±0.83 

99.12 
±0.14● 

62.07 
±0.86● 

99.56 
±0.17 

 
Figure 3: The summary of experimental analysis using Bar plots of average Normalized Accuracy. 
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Table 4 : Normalized AUC (in %) of all classifier variants in case of three data streams from large datasets;

 

data 
stream # 

Airline# elecNormNew# Poker #  

 C4.5 Hoeffdin
gTree 

MIOSDS C4.5 Hoeffdin
gTree 

MIOSDS C4.5 Hoeffdi
ngTree 

MIOSDS 

1 0.653 
±0.008     

0.636 
±0.008    

0.967 
±0.002    

0.824 
±0.021    

0.731 
±0.036    

0.962 
±0.010    

0.998 
±0.000 

0.758 
±0.047 

0.857 
±0.004 

2 0.653 
±0.008     

0.636 
±0.008     

0.955 
±0.004    

0.814 
±0.024   

0.735 
±0.040     

0.941 
±0.011  

0.998 
±0.000  

0.756 
±0.051 

0.859 
±0.004    

3 0.659 
±0.008     

0.637 
±0.008   

0.963 
±0.002    

0.821 
±0.019     

0.746 
±0.046 

0.946 
±0.010     

0.998 
±0.000  

0.765 
±0.046 

0.857 
±0.004 

4 0.651 
±0.009 

0.636 
±0.007     

0.943 
±0.004  

0.829 
±0.021     

0.737 
±0.055     

0.928 
±0.012     

0.998 
±0.000 

0.770 
±0.050 

0.858 
±0.004 

5 0.657 
±0.008   

0.639 
±0.008   

0.961 
±0.003 

0.802 
±0.026  

0.741 
±0.060   

0.902 
±0.013  

0.998 
±0.000 

0.775 
±0.035 

0.857 
±0.004 

6 0.650 
±0.009    

0.640 
±0.007     

0.966 
±0.002 

0.811 
±0.025  

0.739 
±0.052    

0.822 
±0.020  

0.998 
±0.000    

0.769 
±0.043 

0.858 
±0.005    

7 0.653 
±0.007   

0.641 
±0.008   

0.953 
±0.003 

0.809 
±0.021   

0.743 
±0.045   

0.879 
±0.031   

0.998 
±0.000    

0.779 
±0.027    

0.859 
±0.004    

8 0.652 
±0.007  

0.640 
±0.008  

0.961 
±0.002 

0.827 
±0.022     

0.750 
±0.036     

0.961 
±0.011     

0.998 
±0.000    

0.774 
±0.037     

0.857 
±0.004   

9 0.653 
±0.006  

0.636 
±0.009   

0.968 
±0.002 

0.812 
±0.021 

0.746 
±0.046 

0.960 
±0.009 

0.998 
±0.000 

0.779 
±0.034 

0.858 
±0.003 

10 0.652 
±0.008     

0.637 
±0.008      

0.967 
±0.002 

0.814 
±0.023     

0.724 
±0.035     

0.846 
±0.022      

0.998 
±0.000  

0.763 
±0.043  

0.859 
±0.004    

Average 0.653 
±0.008● 

0.637 
±0.007● 

0.995 
±0.001 

0.816 
±0.023● 

0.739 
±0.048● 

0.964 
±0.011 

0.964 
±0.011● 

0.768 
±0.043● 

1.000 
±0.000 

 
Figure 4: The summary of experimental analysis using Bar plots of average Normalized AUC.



 
Journal of Theoretical and Applied Information Technology 

15th October 2022. Vol.100. No 19 
© 2022 Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
5683 

 

Table 5 :Normalized Precision (in %) of all classifier variants in case of three data streams from large datasets
 

data 
stream # 

Airline# elecNormNew# Poker #  

 C4.5 Hoeffdin
gTree 

MIOSDS C4.5 Hoeffdin
gTree 

MIOSDS C4.5 Hoeffdin
gTree 

MIOSDS 

1 0.639 
±0.005    

0.632 
±0.006    

0.981 
±0.006 

0.767 
±0.027  

0.809 
±0.061  

0.944 
±0.013   

0.996 
±0.000 

0.644 
±0.027  

0.759 
±0.004 

2 0.637 
±0.004     

0.633 
±0.004     

0.962 
±0.011 

0.771 
±0.029     

0.776 
±0.068     

0.900 
±0.020      

0.996 
±0.000 

0.644 
±0.028 

0.759 
±0.003 

3 0.639 
±0.005     

0.634 
±0.006     

0.964 
±0.009 

0.765 
±0.028   

0.774 
±0.073 

0.885 
±0.021 

0.996 
±0.000  

0.647 
±0.026 

0.758 
±0.004 

4 0.637 
±0.006  

0.632 
±0.005  

0.943 
±0.008 

0.772 
±0.026     

0.770 
±0.092     

0.908 
±0.013    

0.996 
±0.000 

0.651 
±0.026 

0.758 
±0.004 

5 0.640 
±0.004     

0.635 
±0.005     

0.958 
±0.006 

0.752 
±0.029 

0.772 
±0.091 

0.879 
±0.017 

0.996 
±0.000 

0.652 
±0.019  

0.758 
±0.004 

6 0.637 
±0.005 

0.635 
±0.005    

0.973 
±0.005 

0.759 
±0.028  

0.754 
±0.063  

0.946 
±0.024     

0.996 
±0.000    

0.648 
±0.024    

0.758 
±0.005    

7 0.639 
±0.004   

0.636 
±0.005   

0.921 
±0.003  

0.767 
±0.025   

0.770 
±0.053 

0.872 
±0.034 

0.996 
±0.000 

0.654 
±0.017 

0.759 
±0.004 

8 0.636 
±0.004    

0.634 
±0.005 

0.962 
±0.008 

0.762 
±0.023    

0.759 
±0.045    

0.941 
±0.016    

0.996 
±0.000    

0.652 
±0.021    

0.760 
±0.004    

9 0.637 
±0.004 

0.633 
±0.006  

0.962 
±0.006 

0.745 
±0.025 

0.771 
±0.072 

0.917 
±0.017 

0.996 
±0.000 

0.652 
±0.019 

0.759 
±0.003 

10 0.639 
±0.004     

0.633 
±0.005     

0.972 
±0.009      

0.761 
±0.027  

0.793 
±0.062   

0.942 
±0.021    

0.996 
±0.000   

0.647 
±0.025     

0.760 
±0.004     

Average 0.638 
±0.005● 

0.632 
±0.006● 

0.960 
±0.003 

0.765 
±0.027● 

0.771 
±0.078● 

0.913 
±0.018 

0.996 
±0.000● 

0.649 
±0.000● 

1.000 
±0.000 

 
Figure 5: The summary of experimental analysis using Bar plots of average Normalized Precision. 
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Table 6 :Normalized Recall (in %) of all classifier variants in case of three data streams from large datasets
 

data 
stream # 

Airline# elecNormNew# Poker #  

 C4.5 Hoeffdin
gTree 

MIOSDS C4.5 Hoeffdin
gTree 

MIOSDS C4.5 Hoeffdin
gTree 

MIOSDS 

1  0.822 
±0.010 

0.752 
±0.015  

0.835 
±0.008         

0.739 
±0.034  

0.550 
±0.087 

0.948 
±0.013 

1.000 
±0.000 

0.834± 
0.058 

1.000 
±0.000 

2 0.827 
±0.010  

0.756 
±0.015  

0.799 
±0.011 

0.722 
±0.036  

0.576 
±0.078  

0.885 
±0.021  

1.000 
±0.000 

0.833 
±0.068 

1.000 
±0.000 

3 0.820 
±0.016 

0.750 
±0.014   

0.833 
±0.011 

0.744 
±0.034  

0.598 
±0.090  

0.884 
±0.022 

1.000 
±0.000 

0.847 
±0.055 

0.999 
±0.001    

4 0.820 
±0.017  

0.754 
±0.015   

0.794 
±0.009 

0.752 
±0.036     

0.579 
±0.110  

0.896 
±0.019 

1.000 
±0.000 

0.826 
±0.086 

1.000 
±0.000 

5 0.816 
±0.012 

0.750 
±0.013    

0.818 
±0.010 

0.741 
±0.042  

0.592 
±0.125 

0.850 
±0.025  

1.000 
±0.000 

0.829 
±0.049 

1.000 
±0.000  

6 0.826 
±0.010    

0.754 
±0.014    

0.830 
±0.007 

0.749 
±0.041    

0.581 
±0.089    

0.651 
±0.035    

1.000 
±0.000    

0.840 
±0.050    

1.000 
±0.000    

7 0.824 
±0.011 

0.757 
±0.016 

0.984 
±0.003 

0.734 
±0.034  

0.584 
±0.074 

0.727 
±0.039 

1.000 
±0.000 

0.833 
±0.035 

1.000 
±0.000    

8 0.831 
±0.008 

0.752 
±0.013  

0.821 
±0.009 

0.766 
±0.035  

0.604 
±0.063 

0.927 
±0.017 

1.000 
±0.000 

0.837 
±0.044 

0.999 
±0.000   

9 0.828 
±0.010 

0.750 
±0.012 

0.839 
±0.008 

0.758 
±0.036 

0.591 
±0.081 

0.922 
±0.020 

1.000 
±0.000 

0.836 
±0.046 

1.000 
±0.000 

10 0.816 
±0.010 

0.754 
±0.011 

0.826 
±0.010 

0.727 
±0.040  

0.544 
±0.084 

0.690 
±0.037    

1.000 
±0.000   

0.838 
±0.060   

1.000 
±0.000   

Average 0.823 
±0.012● 

0.752 
±0.014● 

0.838 
±0.002 

0.743 
±0.035● 

0.579 
±0.095● 

0.838 
±0.017 

1.000 
±0.000 

0.835 
±0.073● 

1.000 
±0.000 

 
Figure 6: The summary of experimental analysis using Bar plots of average Normalized Recall 
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Table 7 :Normalized F-measure (in %) of all classifier variants in case of three data streams from large datasets
 

data 
stream 

# 

Airline# elecNormNew# Poker #  

 C4.5 Hoeffdin
gTree 

MIOSDS C4.5 Hoeffdin
gTree 

MIOSDS C4.5 Hoeffdin
gTree 

MIOSDS 

1 0.719 
±0.005  

0.687 
±0.007  

0.902 
±0.004  

 0.752 
±0.021 

0.647 
±0.053  

0.945 
±0.009 

0.998 
±0.000  

0.725 
±0.018 

0.863 
±0.002 

2 0.720 
±0.005     

0.689 
±0.007    

0.873 
±0.005     

0.745±0.
025     

0.654 
±0.041     

0.892 
±0.013    

0.998 
±0.000 

0.724 
±0.021 

0.863 
±0.002 

3 0.718 
±0.005    

0.687 
±0.007    

0.894 
±0.005  

0.754 
±0.022 

0.666 
±0.043    

0.884 
±0.012 

0.998 
±0.000  

0.732 
±0.019 

0.862 
±0.003 

4 0.717 
±0.006     

0.688 
±0.007  

0.862 
±0.005     

0.761 
±0.024     

0.647 
±0.052     

0.902 
±0.010    

0.998 
±0.000 

0.725 
±0.053 

0.862 
±0.003 

5 0.718 
±0.005 

0.688 
±0.007      

0.882 
±0.006 

0.746 
±0.030      

0.654 
±0.068 

0.864 
±0.013 

0.998 
±0.000   

0.729 
±0.017  

0.862 
±0.002 

6 0.719 
±0.004    

0.690 
±0.007    

0.896 
±0.004    

0.753 
±0.027 

0.649 
±0.053    

0.771 
±0.027    

0.998 
±0.000     

0.730 
±0.015     

0.862 
±0.003     

7 0.720 
±0.005    

0.691 
±0.008    

0.951 
±0.002    

0.749 
±0.023    

0.659 
±0.043 

0.792 
±0.029 

0.998 
±0.000    

0.732 
±0.009    

0.863 
±0.003    

8 0.720 
±0.004  

0.688 
±0.007  

0.885 
±0.005    

0.763 
±0.020 

0.669 
±0.036    

0.934 
±0.011   

0.998 
±0.000    

0.732 
±0.012    

0.863 
±0.003    

9 0.720 
±0.004   

0.686 
±0.006  

0.896 
±0.004   

0.751 
±0.022  

0.661 
±0.039 

0.919 
±0.011 

0.998 
±0.000   

0.731 
±0.017    

0.863 
±0.002 

10 0.717 
±0.005 

0.688 
±0.006     

0.893 
±0.005    

0.743 
±0.024     

0.637 
±0.050     

0.796 
±0.026 

0.998 
±0.000    

0.729 
±0.018    

0.863 
±0.003    

Average 0.719 
±0.005● 

0.687 
±0.006● 

0.894 
±0.002 

0.751 
±0.022● 

0.654 
±0.057● 

0.870 
±0.014 

0.998 
±0.000● 

0.731 
±0.012● 

1.000 
±0.000 

 
Figure 7: The summary of experimental analysis using Bar plots of average Normalized F-measure 
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Finally, we can conclude that MIOSDS 
approach is efficient to solve the real time issues of 
knowledge discovery for imbalance and noisy data 
streams. The experimental results clearly indicate 
that the MIOSDS approach performs better or 
similar on the data streams than the classical 
approaches.  

 
7. CONCLUSION 
 

In this paper, a novel Incremental Over 
Sampling algorithm for Data Stream using an 
efficient and unique oversampling strategy is 
proposed. MIOSDS approach oversamples the 
prominent and class oriented instances from the 
minority subset for better knowledge discovery 
from the data streams. The experimental  
validation is conducted in two different scenarios 
for UCI and MOA datasets of small, moderate, huge 
and very huge data streams. The experimental 
results suggest that the MIOSDS approach 
efficiently discovers knowledge from the 
imbalanced data streams. Some important future 
directions of this work are: i) to mitigate the 
solution for the problem of concept drift for 
imbalance data streams; ii) the present proposal’s 
limitation is that it is only applicable for bi-class 
problems and are not applicable to multiclass cases; 
iii) modification of proposal for handling uncertain 
and noisy environments is one of the direction for 
the reconstruction of the future classifier. 
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