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ABSTRACT 
 

Principal Component Regression (PCR) is a combination method of Principal Component Analysis (PCA) 
and linear regression that aims to deal with multicollinearity in regression data. Classical PCA has the 
disadvantage that when faced with missing data. Missing data becomes a weakness in PCA where the 
resulting principal component will lose a lot of information so that the principal component cannot really 
describe the original variable properly. The method that can be used to deal with these problems and 
overcome overfitting is Variational Bayesian Principal Component Analysis (VBPCA). This study aims to 
modeling PCR using VBPCA with Ordinary Least Square (OLS) as a regression parameter estimation method 
to overcome multicollinearity at various levels of missing data proportions. The data used in this study are 
secondary data and simulation data which has been contaminated with collinearity in the predictor variables 
with various levels of the proportion missing data of 1%, 5%, and 10%. The results of this study indicate that 
in estimating the PCR parameters with VBPCA method using OLS, the estimated regression parameter 
coefficients have a constant value at the proportion of missing data up to 5%. This is influenced by missing 
data where the greater proportion of missing data, then the estimation results of the regression parameters are 
less constant and have a large standard error value of the regression parameters. Multicollinearity in 
secondary data and simulation data can be optimally overcome as indicated by the smaller standard error 
value of the regression parameter for the PCR method using VBPCA. VBPCA can handle the proportion of 
missing data to less than 10%. This is due to the large proportion of missing data as evidenced by the larger 
MAPE value, the cross validation (𝑄ଶ) and the adjusted 𝑅ଶ value which are getting smaller as the proportion 
of missing data increases. 

Keywords: Missing Data, Multicollinearity, PCA, PCR, VBPCA 
 
1. INTRODUCTION  
 

 Multicollinearity is one of the problems that 
often occurs in multiple linear regression analysis 
caused by a strong correlation between predictor 
variables. The multicollinearity that occurs will 
cause the possibility that the least squares method of 
estimation cannot be obtained or can be obtained but 
will have a high variance of parameter estimators [1]. 
One method that can overcome multicollinearity in 
regression data is PCR. PCR is a combination 
analysis between linear regression analysis and PCA 
which is formed from two stages, namely forming 
the eigenvalues and eigenvectors of the sample 

covariance matrix which produces the principal 
component and then regresses to the response 
variable. PCR method has been proposed as an 
alternative to the OLS estimator when independent 
assumptions are not met in the analysis [2]. 

 In field data, phenomena are often found 
where observations in the data have not been 
recorded or are missing, which is called missing data. 
Missing data is an observation on data that is not 
stored for a variable in the desired observation [3]. 
Problems that arise due to missing data is a 
significant influence on the conclusions that can be 
drawn from the when compared with complete data. 
Missing values in a data will cause the loss of 
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information for each observation so that some 
research will focus on handling missing data first 
before carrying out further analysis. Missing data can 
result in bias, depending on the missing data 
mechanism and the statistical approach applied [4]. 
The problems caused by the missing data have an 
impact on the validity of the experiment and can lead 
to invalid conclusions [3]. 

 Analytical methods in statistics are not 
entirely able to record and handle missing data. 
Some analyzes will return error results when there is 
missing data. In PCR, PCA can only handle 
multicollinearity on the predictor variables. 
However, it's ability to deal with missing data is 
incomprehensible and becomes an important open 
challenge [5]. Missing data is a weakness in PCA 
where the principal components produced will lose a 
lot of information so that the model cannot really 
describe the data properly. Missing data is common 
in medical research, but there is uncertainty about the 
acceptable limits of missing data when more 
complex methods are used, such as maximum 
likelihood, imputation, and Bayesian methods [6]. 

 There are methods to handle missing data 
that are also contaminated with multicollinearity, 
namely Probabilistic Principal Component Analysis 
(PPCA) and VBPCA. VBPCA was introduced by 
Bishop in 1999 with the aim of selecting the number 
of components in PCA [7]. Then VBPCA was 
applied in PCA method with missing data [8]. The 
VBPCA method on missing data provides a high 
mean accuracy estimate [9]. Between the two 
methods, PPCA has a weakness that is prone to 
overfitting when the proportion of missing data is 
large. The overfitting will cause the principal 
components formed to be influenced only by certain 
observations so that additional information is needed 
through the prior density in the Bayesian Framework 
which assumes all parameters will be considered as 
random variables. Handling the overfitting problem 
can be handled by the VBPCA method in a Bayesian 
Framework and using a variational expectation-
maximization iterative algorithm to search for each 
main sub-space, then automatically select the 
optimal number of principal components for data 
reconstruction [10]. 

 Several studies applying VBPCA to 
missing data have been carried out. Yordani's 
research [11], which conducted an analysis of the 
principal components of missing data using the 
VBPCA method. The data used in his research is 
simulation data and it concluded that the VBCPA 
method can provide a high tolerance for missing 
data. In addition, Li's research [10], conducted a 

study on extracting common mode errors from 
regional Global Navigation Satellite System (GNSS) 
based on time series in the presence of missing data 
using VBPCA. The study concluded that the 
VBPCA method is more efficient alternative method 
for extracting CME general errors from the time 
series of regional GNSS positions in the presence of 
missing data. However, research on PCR using 
VBPCA as a principal component analysis method 
to determine the limits of missing data in overcoming 
multicollinearity and missing data has not been 
found so far. 

According to Taufiq et al. [12] conducted a study 
that focused on Geographically Weighted 
Regression in Cox Survival Analysis for Weibull 
Distributed Data with Bayesian Approach. 
Meanwhile, according to Fernandes & Solimun [13] 
carried out research developments that implemented 
PCA in the innovation strategy by utilizing 
technology. Research by Raharjo et al [14] 
implements technological developments on 
organizational culture and job design using principal 
component analysis in the analysis of research 
variables indicators.  

Based on the problems that have been described 
and based on previous research, this study was 
conducted with the aim of modeling PCR with the 
VBPCA approach using OLS to overcome 
multicollinearity and missing data. In addition, this 
study also aims to see the effect of the proportion of 
missing data on the regression model to determine 
the tolerable limit of missing data. The data used in 
this study are secondary data and simulation data 
generated from secondary data. The reason for 
choosing the simulation data is based on previous 
research regarding the proportion of missing data 
with a high degree of collinearity which is rarely 
found. Therefore, in this study, a simulation study 
was used to facilitate researchers in adjusting data 
that met the criteria of the model to be developed. 

 
2. LITERATURE REVIEW 
 
2.1 Missing Data 
 Missing data is defined as the value of the 
observation on the data that is not stored for a 
variable in the desired observation [15]. Statistical 
analysis tends to be biased when more than 10% of 
data are missing [16]. Missing data itself is common 
in medical research [17]. Most researchers assume 
that missing data does not interfere with data set 
analysis intrinsically [18], but it becomes even more 
critical when missing data concerns a multi-item 
instrument, as the lack of information even on one of 
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its items leads to an inability to calculate total 
instruments scores [19]. Missing data can occur due 
to various factors such as completely random 
missing at random, missing not at random or 
accidental missing which may be the result of a 
system malfunction during data collection or human 
error during data pre-processing [20]. These factors 
are called the missing data mechanism. Mechanisms 
of missing data and patterns of missing data have a 
greater impact on research results than the 
proportion of missing data [21].  

 There are three types of missing data 
according to assumptions based on the missing data 
mechanism, namely Missing Completely at Random 
(MCAR), Missing at Random (MAR), and Not 
Missing at Random (NMAR) [22]. In this study used 
MCAR. MCAR is a missing data mechanism that 
often occurs in field data. The MCAR method 
assumes that the data set is independent of 
unobserved and unobserved values [23]. The pattern 
occurs unsystematically and can be considered as a 
random subsample of the hypothesized data when 
complete. Missing data in the MCAR mechanism 
due to things such as equipment failure, samples lost 
in transit, and failures in the study design. 
 
2.2 Missing Data Mechanism Assumption Test 
 Missing data mechanism assumption test is 
used to see whether the research data meets the 
missing data mechanism or not. In this study, the 
MCAR mechanism was used in the simulation data, 
so the assumption test for the MCAR mechanism 
used was Little's test of MCAR. The hypothesis for 
Little's test is given as follows [24]: 

𝐻଴ : 𝒚௢,௜|𝒓௜~𝑁 ቀ𝝁𝒐ೕ
,𝒐ೕ

ቁ  (missing data pattern 

following the MCAR mechanism), vs 

𝐻଴  : 𝒚௢,௜|𝒓௜~𝑁 ቀ𝒗𝒐ೕ
,𝒐ೕ

ቁ (missing data pattern does 

not following the MCAR mechanism) 

 The test statistic for Little's MCAR is given 
in the following equation: 

𝑑ଶ = ∑ 𝑛௝ ቀ𝒚ഥ𝒐ೕ
− 𝝁ෝ𝒐ೕ

ቁ
்

∑ ቀ𝒚ഥ𝒐ೕ
− 𝝁ෝ𝒐ೕ

ቁିଵ
𝒐ೕ

௃
௝ୀଵ    (1) 

where 𝒚ഥ𝒐ೕ
 with dimension 𝑝௝ × 1  is the average of 

the observed j-th missing pattern samples, 𝝁𝒐ೕ
 and 

𝒐ೕ
 are the average vectors with dimension 𝑝௝ × 1  

and the covariance matrix with dimension 𝑝௝ × 𝑝௝  of 
the component observed only for the j-th missing 
pattern. The rejection area for Little's MCAR test 
statistic is the null hypothesis is rejected if 𝑑ଶ >
𝜒ௗ௕

ଶ (1 − 𝛼), where 𝛼 is the level of significance. 
 

2.3 Non-Multicollinearity Assumption Test 
 Non multicollinearity assumption is an 
assumption which states that there is no correlation 
between two or more predictor variables in the data. 
Multicollinearity is a serious problem when they 
exist in econometric data, which arises as a result of 
violating the assumption of equal variance between 
the error terms and the independence between the 
predictor variables of the model. With this 
assumption, OLS violation will not provide the best 
linear model that is an unbiased, efficient and 
consistent estimator [25]. 

 One way that can be used to detect the 
presence or absence of multicollinearity is to look at 
the Variance Inflation Factor (VIF) value of each 
predictor variable. The VIF value is determined to 
explore the level of multilinear relationship that 
exists between the predictor variables where each 
predictor variable is regressed against the remaining 
predictor variable as response variable [26]. The VIF 
value can be obtained by formula in the following 
equation: 

𝑉𝐼𝐹 =
ଵ

ଵିோೕ
మ                             (2)           

where 𝑅௝
ଶ is the coefficient of determination of the 

auxiliary regression. Auxiliary regression is a 
regression with 𝑋௝ as predictor variable and other X 
as response variables. The formula for 𝑅௝

ଶ is given in 
the following equation: 

𝑅௝
ଶ =

ௌௌೃ

ௌௌ೅
=

∑ ∑ (௑෠೔೟ି௑ത೔೟)మ೅
೔సభ

ಿ
೔సభ

∑ ∑ (௑೔೟ି௑ത೔೟)మ೅
೔సభ

ಿ
೔సభ

               (3)   

where N is multiple subjects, T is a number of 
observations of each subject, and p is a number of 
predictor variables. 

 The coefficient of determination can be 
determined by modelling one predictor variable with 
another predictor variable. In this study, referring to 
the VIF criteria, if there is a VIF > 10 then the 
correlation between the predictor variables is very 
high and the opposite also applies [27].                     
            
2.4 Linear Regression Analysis 
 Linear regression analysis is a method that 
is useful for determining the linear relationship of 
response variable with one or more predictor 
variables. One of the goals of regression analysis is 
to determine a good regression model that can be 
used to explain and predict things related to the 
variables involved in the regression model [28]. The 
linear regression model in general can be written as 
follows: 
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𝒀 = 𝑿𝜷 + 𝜺,      𝜺~𝑁(0, 𝜎ଶ𝑰)            (4) 

with 𝒀 is a matrix of response variable, 𝑿 is a matrix 
of predictor variables, 𝜷 is a matrix of regression 
coefficient, and 𝜺 is a matrix of regression model 
error. 

 The regression parameter estimator that is 
often used is OLS. In matrix notation, the least 
squares method is the same as minimizing 𝜺ᇱ𝜺 with 
the equation [29]: 

𝜺 = 𝒚 − 𝑿𝜷                              (5) 

therefore,  

𝜺ᇱ𝜺 = (𝒚 − 𝑿𝜷)ᇱ(𝒚 − 𝑿𝜷 = 𝒚′𝒚 − 𝟐𝜷′𝑿′𝒚 + 𝜷′𝑿′𝑿𝜷      (6) 
where 𝜷′𝑿′𝒚 is a 1 × 1 matrix or a scalar. The 
reciprocal of (𝜷′𝑿′𝒚) = 𝒚′𝑿𝜷 is a scalar. The least 
squares method estimator must satisfy: 

డ ∑ ఌ೔
మ೙

೔సభ

డ𝜷
=

డ𝜺ᇱ𝜺

డ𝜷
= −2𝑿′𝒚 + 2𝑿′𝑿𝜷෡ = 𝟎        (7) 

when simplified the equation will become: 

𝑿′𝑿𝜷෡ = 𝑿′𝒚                             (8) 

to solve this equation, we multiply both by the 
inverse of 𝑿′𝑿. So, the OLS estimator of 𝜷෡ as 
follows:  

𝜷෡ = (𝑿′𝑿)ି𝟏𝑿′𝒚                         (9)  

                   
2.5 Classical Principal Component Regression 
 PCR analysis is a combination analysis 
between regression analysis and PCA. PCR analysis 
is a regression of the response variables to 
uncorrelated principal components, where each 
principal component is linear combination of all 
predictor variables that have been specified from the 
start [30]. The existence of correlation between 
predictor variables causes one of the basic 
assumptions of multiple linear regression analysis in 
OLS to fail to be fulfilled and one way to free the 
correlation between predictor variables is by PCR 
method. The new variable as the principal 
component (𝑄) is the result of the transformation of 
the predictor variable (𝑋) whose model is in the 
form of a matrix in the linear regression equation and 
the principal component is written with the principal 
analysis equation where the weighting vector 𝒂𝒋

𝑻 is 
obtained by maximizing the variance of principal 
components, namely 𝑺𝑸𝒋

𝟐 = 𝒂𝒋
𝑻𝑺𝒂𝒋  with constraints 

𝒂𝒋
𝑻𝒂𝒋 = 1 and 𝒂𝒉

𝑻𝒂𝒋 = 0, for ℎ ≠ 𝑗. The weighting 

vector 𝒂𝒋
𝑻 is obtained from the covariance matrix 

estimated with the matrix S, namely 𝑺 =
ଵ

௡ିଵ
∑ (𝑥௜ − 𝑥̅)௡

௜ୀଵ (𝑥௜ − 𝑥̅)்.  The vector 𝒂𝒋
𝑻 that 

satisfies the above constraints is the feature vector of 
the covariance matrix. The PCR model can be 
written as follows: 

𝑌 = 𝛽଴ + 𝛽ଵ𝑄 + 𝛽ଶ𝑄ଶ+. . . +𝛽௞𝑄௞ + 𝜀, with 𝑗 ≤ 𝑘 (10) 

 
2.6 Principal Component Regression with 

VBPCA Approach 
 PCA is a multivariate approach that is used 
to convert several correlated variables into linearly 
uncorrelated variables which can be called principal 
components [31]. The principal component itself is 
a linear combination of variables that have the 
largest number of variances and followed by the 
second, third, and so on [32]. PCA performed on the 
regression model is called PCR. In this study, PCR 
modelling was carried out using the PCA approach 
using the VBPCA method. The VBPCA method 
approach in PCR is intended to overcome 
multicollinearity in regression data that has missing 
observation vales. In the process, the principal 
components generated by VBPCA will be regressed 
using OLS. 

 VBPCA method uses the Expectation 
Maximization (EM) approach combined with the 
Bayesian estimation method to calculate the 
probability of the estimated value. VBPCA produces 
a weighting of factors to estimate the incomplete 
value to be different from the usual PCA technique, 
but the estimation of the incomplete value is getting 
better. The estimated missing value of the VBPCA 
method is given in the following equation [11]: 

𝑞(𝒀∗) = ∫ 𝑑𝜽 𝑞(𝜽)𝑝(𝒀∗|𝒀௢௕௦ , 𝜽)             (11) 

where 𝜽 is a posterior parameter, 𝒀௢௕௦ is a complete 
data set, and 𝒀∗  is an incomplete data set. The 
application of the VBPCA algorithm consist of 
several steps as follows [11]: 

1. Perform principal component analysis by 
estimating missing values 𝒀∗. 

2. Determines the conjugate prior distribution. 
3. Initiates the posterior distribution of missing 

values 𝑞(𝒀∗) by imputing missing values. 
4. Obtaining the posterior distribution of 𝜽 

parameters and 𝑞(𝜽) based on 𝒀௢௕௦ observation 
data and based on the new posterior distribution 
of missing values 𝑞(𝒀∗). 

5. The posterior distribution of missing values 
𝑞(𝒀∗) then estimated based on the new posterior 
distribution of 𝑞(𝜽). 

6. The hyperparameter 𝜶  then updated based on 
𝑞(𝜽) and 𝑞(𝜽). 

7. Repeat the process of steps 4 to 6 until it 
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converges. 

 VBPCA algorithm above will produce an 
estimate of all the missing values. So based on this 
process, the missing values has been resolved. After 
obtaining missing values estimates, complete 
observations are formed that can be used for further 
analysis. Estimators based on principal components 
that explain variations in the data. From the complete 
data that has been estimated, then steps are taken to 
find the principal components of the predictor 
variable group. The principal component is formed 
to overcome the multicollinearity of the predictor 
variables. In the process of finding the principal 
components, a covariance matrix is needed to form 
the eigenvalues and eigenvectors. The covariance 
matrix of the VBPCA covariance is symbolized in 
𝚺𝒘𝒊,𝒗𝒃𝒑𝒄𝒂.  

 VBPCA covariance matrix is used to 
calculate the eigenvalues as shown in the following 
equation: 

ห𝚺𝒘𝒊,𝒗𝒃𝒑𝒄𝒂 − 𝜆௝𝑰ห = 0                   (12) 

Then we get the eigenvalues 𝜆ଵ, . . . , 𝜆௣ and the 
eigenvectors 𝒂ଵ, . . . , 𝒂௣. From the eigenvectors 
formed, the principal components are obtained using 
the linear equation given in the following equation: 

𝑄௜௝ = ∑ 𝑎௞௝𝑥௜௞
௣
௞ୀଵ , 𝑖 = 1,2, . . . , 𝑛 ;  𝑗 = 1,2, . . .,      (13) 

where the principal component of 𝑄௜௝ formed is an 
orthogonal variable.  

 The principal components of the VBPCA 
formed will be regressed using OLS without the 
intercept of the standard response variables on the m 
principal components as shown in the following 
equation: 

𝑦௜ = 𝑓(𝑄ଵ, 𝑄ଶ, . . . , 𝑄௠)                     (14) 

then obtained the estimated regression coefficient as 
𝛾ොଵ, 𝛾ොଶ, . . . , 𝛾ො௠. 

 From the principal components of the 
VBPCA formed, the regression coefficients of the 
linear model based on the principal component 
regression are obtained which are presented in the 
following equation.  

𝛽መ௏஻௉஼ோೕ
=  

௦೤

௦ೣೕ

ൣ∑ 𝑾௝௧𝛾ො௧
௠
௧ୀଵ ൧𝑗 = 1,2, … , 𝑝       (15) 

where 𝑾௝௧ is a eigenvectors matrix, then the 
intercept can be obtained using the following 
equations: 

𝛽መ௏஻௉஼ோబ
=  𝑦ത −  ∑ 𝛽መ௏஻௉஼ோೕ

𝑥̅௝
௣
௝ୀଵ          (16) 

where 𝑠௬ =  ට
∑ (௬೔ି௬ത)మ೙

೔సభ

௡ିଵ
 and  𝑠௫ೕ

=  ට∑ ൫௫೔ೕି௫̅ೕ൯
మ೙

೔సభ

௡ିଵ
  

2.7 Model Evaluation Criteria 
The criteria for evaluating the model in this 

study used the standard error of regression 
parameter, value of cross validation (𝑄ଶ), adjusted 
𝑅ଶ, and MAPE. Standard error of regression 
parameter estimator can be used to see the effect of 
multicollinearity. Cross validation is a model 
selection tool to determine the strength of the model, 
especially the principal components in PCA [33], 
adjusted 𝑅ଶ is used to see the goodness of the 
regression model formed, while MAPE is used to see 
the accuracy of the VBPCA method in handling 
missing data.     
2.5.1. Standard Error Value of Regression 

Parameter Estimation 
 The standard error of the regression 
parameter estimator can be used to see the effect of 
multicollinearity. Multicollinearity on the predictor 
variables will cause the variance of the regression 
parameters to be very large so that the standard error 
of the regression parameter coefficients is also very 
large. The standard error of the regression parameter 
estimator formula is given in the following formula 
[34]:  

𝑆௘൫𝛽መ൯ = ඥ𝜎ఌ
ଶ(𝑿ᇱ𝑿)ି𝟏                 (17) 

where 𝜎ఌ
ଶ is mean square error of regression model. 

2.5.2. Cross Validation (𝑸𝟐) 
 Determining the optimal number of 
principal components that includes relevant 
information by reducing the presence of noise, one 
of which can be done by doing cross validation. 
Cross validation is the most common procedure for 
determining the number of latent variables used in 
the model based on the difference between the 
observed value vector, observed value vector, and 
predicted value vector [35]. This measure can 
estimate the level structure of the data set can be 
optimal in choosing the number of components. The 
maximum value of cross validation is 1, which 
means that all variance can be represented in 
predicting 𝑌 = 𝑌෠ . The formulas for cross validation 
are given in the following equation [11]: 

𝑄ଶ = 1 −
∑ ∑ ൫௬೔ೕି௬ො೔ೕ൯

మ೏
ೕసభ

೙
೔సభ

∑ ∑ ൫௬೔ೕ൯
మ೏

ೕసభ
೙
೔సభ

                (18) 

where 𝑦ො௜௝ is a predictive value of response variable.  
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2.5.3. Mean Absolute Percentage Error 
(MAPE) 

 In making estimates, there is always a 
difference between the estimated value and the 
actual value. This difference in value is called the 
error value which can be calculated by MAPE [36]. 
MAPE is a measure to calculate the difference 
between actual observations and data from forecasts 
or estimates that are absolute. MAPE is one of the 
most widely used measures of forecast accuracy due 
to its superior scale-independence and 
interpretability [37]. MAPE is considered a good 
measure of accuracy because MAPE does not 
depend on the magnitude of the variable to be 
predicted [38]. A method can be said to have good 
performance in estimating when it produces a MAPE 
value of less than 10 [39]. The smaller the resulting 
MAPE value, the better the method in estimating and 
forecasting. The MAPE formula is given in the 
following equation:   

𝑀𝐴𝑃𝐸 =
ଵ଴଴

௡
∑ ቚ

஺೔ିி೔

஺೔
ቚ௡

௜ୀଵ                 (19) 

where 𝐴௧ is the actual value and  𝐹௧ is the estimated 
value.   

2.5.4. Adjusted 𝑹𝟐 
 In general, adjusted 𝑅ଶ uses a small penalty 
to add more variables in the model which makes the 
difference between adjusted 𝑅ଶ and 𝑅ଶ. In other 
words, adjusted 𝑅ଶ penalizes the loss of degrees of 
freedom resulting from adding predictor variables to 
the model [40]. Adjusted 𝑅ଶ is intended to replace 
the bias estimator with an unbiased component. This 
leads to the formulation of the adjusted 𝑅ଶ called the 
Ezekiel estimator in the statistical literature which is 
given in the following equation [38]: 

Ezekiel: 𝜌ොா
ଶ(𝑅ଶ) = 1 −

ேିଵ

ேି௣ିଵ
(1 − 𝑅ଶ)      (20) 

where N is the number of observational samples and 
p is the number of predictor variables. Adjusted 𝑅ଶ 
is worth to 0 to 1, the closer to 1, the better the model 
formed and the variance of predictor variables can 
describe the variance of response variables very 
well. 

 
3. RESEARCH METHODS 

 
 The method used in this study is a 
combination of VBPCA with multiple linear 
regression analysis. The principal component 
analysis formed from the VBPCA method will be 
regressed with the response variable using OLS. The 
VBPCA will discuss the proportion of missing 

values that has been simulated. The data used in this 
study is simulation data which is generated from 
secondary data. The secondary data used is Poverty 
Depth Index data from three provinces in Indonesia, 
totaling 100 observations.  

 There are nine predictor variables and one 
response variable in secondary data which are used 
to generate simulation data. The secondary data 
becomes the initial data of the study, namely 
complete data. Predictor variables in simulation data 
will be generated from predictor variables in 
secondary data by contaminating the collinearity of 
each predictor variable. Then do the generation of 
new response variables obtained from multiple 
linear regression of response variables on complete 
data and new predictor variables that have been 
previously generated and contaminated with 
collinearity. New predictor variables and new 
response variables have been formed into initial 
simulation data which will then be simulated with 
missing data with the percentage of missing data 
being 1%, 5%, and 10% of the total complete data. 
There are three final simulation data that have been 
contaminated with collinearity and there are missing 
values. 

 Missing data simulation is carried out using 
the MCAR mechanism. To obtain data 
contamination with collinearity on the predictor 
variable, 𝑋௜௞ will be generated using a Monte Carlo 
simulation with the following equation [41]: 

𝑋௜௝ = (1 − 𝜌ଶ)
భ

మ 𝑥௜௝ + 𝜌 𝑥௜௝              (21) 

where 𝑖 = 1,2, . . . , 𝑛  and 𝑗 = 1,2, . . . , 𝑘. Then  𝑥௜௝  
is secondary data and is determined so that the 
correlation between predictor variables is formulated 
with 𝜌ଶ. The value of 𝜌 is determined at 0.99 which 
indicates that the variables are highly correlated with 
each other. 

 The steps of analysis with simulation data 
in this study are as follows: 
1. Generating simulation data in the form of a 

matrix containing predictor variables and 
response variables. Simulation data has been 
contaminated with collinearity and has missing 
values on the predictor variables.  

2. Testing the assumption of the MCAR data 
mechanism with the Little's MCAR test on the 
predictor variables of the simulation data. 

3. Testing the assumption of non-multicollinearity 
with VIF value on the predictor variables for 
secondary and simulation data.  

4. Standardize data for predictor and response 
variables. 
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5. Perform principal component analysis using the 
classical PCA and VBPCA method on the 
predictor variables of the secondary and 
simulation data and obtain the principal 
components. 

6. Perform principal component regression with the 
principal components obtained in step 4. The 
regression model formed is still in the form 
regression with the principal component 
coefficients. 

7. Perform back-transformation and substitution of 
principal components into principal component 
regression model so that the final regression 
parameter estimator is obtained. 

8. Evaluate the model using cross validation, 
standard error of regression estimator, MAPE, 
and adjusted coefficient of determination. 

9. Conclusion and suggestion.  
 

4. RESULTS AND DISCUSSION 

 In this study, the classical PCR method will 
be compared with the PCR of the VBPCA approach 
on secondary data and simulation data. The 
secondary data in this study has complete 
observations that are different from the simulation 
data that has been scripted to have missing values. 
Secondary data in this study was included in the 
comparison with the aim of seeing how effective the 
PCR method with VBPCA approach is in 
overcoming overfitting which is the weakness of 
several combined methods when faced with different 
data sets. 
 
4.1 Simulation Scenario 
 The simulation data used is obtained from 
the results of real (secondary) data generated in 
various levels of the proportion of missing data with 
multicollinearity. The proportion of missing data in 
the scenario in the predictor variable (X) ant the 
response variable (Y) has complete observations. 
The scenario to determine the effect of the 
proportion of missing data on the predictor variable 
was designed with three levels of missing data 
proportion, namely 1%, 5%, 10% of the total value 
of observations on the predictor variable. The 
scenario of the simulation data is given in Table 1. 

Table 1:  Simulation Data Scenario 

Total 
Observations 

Collinearity 
Rate 

Proportion 
of Missing 

Data 

Amount 
of 

Missing 
Data 

𝑛 × 𝑝
= 100 × 9
= 900 

𝜌 = 0.99 
1% 9 
5% 45 
10% 90 

 Based on the scenario of the simulation data 
presented in Table 1, three data combinations will be 
tabulated in the form of matrix where each data has 
a combination of collinearity and missing data on the 
predictor variable. In the simulation data, the 
predictor variables for all simulation data will have 
9, 45, and 90 missing values, respectively. The 
simulated missing data scenario spreads randomly 
according to the MCAR mechanism. The simulated 
missing data plot is presented in Figure 1. 

 Based on figure 1, the missing observations that 
have been simulated on the predictor variables for all 
simulation data visually have a random and 
unstructured pattern. The random pattern has been 
designed according to the MCAR missing data 
mechanism. The simulated missing data pattern is 
also randomly distributed for each predictor variable 
and has the appropriate amount, so that the 
simulation results meet the designed simulation 
scenario. To the further prove that the simulated 
missing data pattern has met the MCAR 
assumptions. 

 
4.2 Missing Data Mechanism Test 
 Testing the assumption of missing data 
mechanism used Little's MCAR test. The 
assumption test is carried out for all simulation data 
with 𝛼 = 5%. The test results are presented in Table 
2. 

Table 2:  Little's MCAR Test Results 

Proportion of 
Missing Data 

Little's MCAR 
(𝑑ଶ) 

p-value 

1% 60.3 0.258 
5% 137 0.692 

10% 226 0.888 

 Based on the test results in Table 2, it can 
be seen that the p-value of the Little's MCAR test 
statistic for the entire proportion of missing data is 
greater than 𝛼 = 5% so that according to the 
hypothesis, we can accept the null hypothesis. Thus, 
it can be concluded that all simulation data meet the 
assumption of the MCAR mechanism. This means 
that the pattern of missing data that is formed occurs 
randomly and not systematically. 

 
4.3 Non-Multicollinearity Assumption Test 
 Testing the non-multicollinearity 
assumption on the predictor variable used the VIF 
value. Testing the non-multicollinearity assumption 
is aimed at seeing whether the collinearity 
simulation carried out is in accordance with the 
expected scenario. To get the VIF value, it's 
necessary to do multiple linear regression modeling 
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on the simulation data. VIF values for all simulation 
data and secondary data are presented in Table 3. 
 

Table 3:  Simulation Data Scenario 

Variable 
Secondary 

Data 

Simulation Data 

Missing 
Data 1% 

Missing 
Data 5% 

Missing 
Data 10% 

𝑋ଵ 26.49 4,101.16 5,631.13   18,927.67   
𝑋ଶ 72.50 158.98 185.66   287.41   
𝑋ଷ 65.61 67.77 67.83 267.82 
𝑋ସ 463.43 3,858.75 5,220.12    16,885.90     
𝑋ହ 2.81 2.91 3.86 6.39 
𝑋଺ 21.27 3,058.01 3,796.51    8,937.68    
𝑋଻ 2.15 3.91 4.49 14.610 
𝑋଼ 3.59 2,779.43 3,428.46 7,699.06   
𝑋ଽ 2.54 138.52 154.35 354.61 

Based on the VIF values in Table 3, it can be seen 
that all simulation data and secondary data have 
predictor variables that have a VIF value of more 
than 10. This indicates that the entire proportion of 
missing data in the simulation data has been 
contaminated with collinearity. So that the 
collinearity simulation carried out is in accordance 
with the expected scenario. 
 
4.4 Estimation of Classical Principal Component 

Regression Parameters 
 The first step in classical PCR is to 
determine the covariance matrix. The covariance 
matrix is used if the data units are the same, in 
accordance with the secondary and simulation data 
in this study which had been standardized prior to 
PCA. Then, the covariance matrix is used to get the 
eigenvalues and eigenvectors. The eigenvalues can 
be visualized using a scree plot. The scree plot aims 
to make it easier to see the pattern of eigenvalues 
formed for each principal component. The scree plot 
of the eigenvalues for secondary and simulation data 
is presented in Figure 2.  

 In this study, all principal components were 
selected for PCA modelling, so that all information 
on principal components could be summarized in the 
model. The eigenvalues formed will be used to 
obtain the eigenvectors. Then the eigenvectors or 
called loadings values will be formed into a principal 
component model. There are 9 principal component 
models for each secondary and all simulation data.  

 Based on the classical principal component 
model that was formed, then the PCR analysis was 
carried out by regressing the principal component Q 
formed from the principal component model to the 
response variable.  The principal component Q is 
formed from entering all components of the 
predictor variable into the principal component 

model that is formed. The model is still in regression 
form with principal component coefficients, so it 
needs to be substituted back into the PCR model. In 
addition, the model coefficients are still in the form 
of results from standardized data, so they need to be 
returned to the initial observation unit. The results of 
the estimation of the final parameter coefficients of 
the classical PCR model are presented in Table 4. 
Based on the results of the estimation of classical 
PCR parameters formed in Table 4, the final 
classical PCR model for secondary and simulation 
data is given as follows. 

Classical PCR Model for Secondary Data 

𝑌෠ = 7.2000 + 0.1152𝑋ଵ − 0.0879𝑋ଶ + 0.0003𝑋ଷ 

        −0.2587𝑋ସ − 0.2568𝑋଺ + 0.0283𝑋଼ − 0.0009𝑋ଽ 

Classical PCR Model for Simulation Data (Missing 
Data 1%) 

𝑌෠ = 7.8753 − 0.0835𝑋ଵ − 0.0445𝑋ଶ + 0.0003𝑋ଷ 

         −0.0835𝑋ସ − 0.4789𝑋଺ + 0.1685𝑋଼  − 0.0414𝑋ଽ 

Classical PCR Model for Simulation Data (Missing 
Data 5%) 

𝑌෠ = 11.5823 + 1.0830𝑋ଵ + 0.2092𝑋ଶ + 0.0028𝑋ଷ  

     −1.0603𝑋ସ + 1.7336𝑋଺ − 1.6096𝑋଼ − 0.2519𝑋ଽ 

Classical PCR Model for Simulation Data (Missing 
Data 10%)  

𝑌෠ = 1.1175 − 2.3236𝑋ଵ − 1.1993𝑋ଶ − 0.0056𝑋ଷ 

     +2.2375𝑋ସ − 8.6233𝑋଺ + 7.9150𝑋଼ +  0.4790𝑋ଽ 
 
4.5 Estimation of Variational Bayesian Principal 

Component Regression Parameters 
 The first step in the PCR with VBPCA 
method is to analyze the principal components of the 
VBCPA, then do a regression using the principal 
components generated by the VBPCA method. The 
principal component of the VBPCA method uses a 
prior distribution which is used to estimate missing 
data. The variables used in the prior are 𝛾ఓబ

, 𝝁ഥ଴, 𝛾ఛబ
 

and 𝝉ത଴, where all of these variables are 
hyperparameters that define the prior. The value of 
the hyperparameter has been set according to the 
non-informative prior, namely 𝛾ఓబ

= 𝛾ఛబ
= 10ିଵ଴, 

𝝁ഥ଴ = 0 and 𝝉ത଴ = 1. So that the posterior distribution 
is obtained by marginalizing the likelihood function. 
Based on these priors and posteriors, missing data 
can be estimated to obtain a complete data set.  
 In secondary data, all observations are 
complete or there are no missing data. In the 
calculation algorithm, the process of estimating 
missing data using the VBPCA method on secondary 
data is still running. Complete data acquisition 
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process for missing data estimation using VBPCA, 
produces the same results as secondary data. So that 
in secondary data, the classical PCR process and the 
PCR with VBPCA method will produce the same 
results and model. 
 In the simulation data, there are missing 
data so that the missing data will be estimated using 
priors and posteriors, then the complete data set is 
obtained. From the complete data set, PCA will be 
carried out to overcome multicollinearity. Based on 
the estimation results of missing data, new 
observations which are the results of the estimation 
of missing data using the VBPCA method on 
missing data simulation of 1%, 5%, and 10%, so that 
a complete data set has been formed entirely. 
Furthermore, the complete data set was analyzed for 
principal components to overcome multicollinearity. 
From the complete data set that has been formed for 
simulation data, covariance matrix is obtained. 
Based on the covariance matrix, then the eigenvalues 
can be formed. In all simulation data for the PCR 
with VBPCA approach, the eigenvalues formed are 
visualized using a scree plot. The scree plot for the 
eigenvalues for simulation data is presented in 
Figure 3. 

 Based on the eigenvalues formed, the 
eigenvectors are obtained which then become the 
loadings values for the loading values for the 
principal component model. After obtaining the 
model for the principal components of the VBPCA 
method, a PCR analysis was carried out, namely 
regressing the principal components of the VBPCA 
method formed on the response variable from the 
simulation data using OLS method. The model that 
is formed is still in the form of regression with the 
principal component coefficients so that it needs to 
be substituted back into the PCR model using 
predictor variables. The results of the estimation of 
the final parameter coefficients of the classical PCR 
with VBPCA approach are presented in Table 5. 
Based on the results of the estimation of the PCR 
with VBPCA method formed in Table 5, the final 
PCR model for secondary and all simulation data is 
given in the following model. 

PCR Model with VBPCA Approach for Secondary 
Data 

𝑌෠ = 7.2000 + 0.1152𝑋ଵ − 0.0879𝑋ଶ + 0.0003𝑋ଷ 

        −0.2587𝑋ସ − 0.2568𝑋଺ + 0.0283𝑋଼ − 0.0009𝑋ଽ 

PCR Model with VBPCA Approach for Simulation 
Data (Missing Data 1%) 

𝑌ప
෡ =  7.3400 − 0.2443𝑋ଵ௜ − 0.0156𝑋ଶ௜ + 0.0000𝑋ଷ௜ 

          −0.1354𝑋ସ௜ − 0.0021𝑋ହ௜ − 0.5817𝑋଺௜ 

          −0.0024𝑋଻௜ + 0.8475𝑋଼௜ − 0.0560𝑋ଽ௜ 

PCR Model with VBPCA Approach for Simulation 
Data (Missing Data 5%) 

𝑌ప
෡ = 8.9260 − 0.2443𝑋ଵ௜ − 0.1301 + 0.0001𝑋ଷ௜ 

         −0.2500𝑋ସ௜ − 0.0093𝑋ହ௜ − 0.9056𝑋଺௜   

         −0.0057𝑋଻௜  + 1.8233𝑋଼௜ − 0.1059𝑋ଽ௜ 

PCR Model with VBPCA Approach for Simulation 
Data (Missing Data 10%) 

𝑌ప
෡ = 8.2757 − 0.2678𝑋ଵ௜ − 0.0580𝑋ଶ௜ + 0.0009𝑋ଷ௜ 

         −0.1159𝑋ସ௜ − 0.0011𝑋ହ௜ + 0.2545𝑋଺௜ 

         −0.0004𝑋଻௜ − 0.0056𝑋଼௜ − 0.1000𝑋ଽ௜ 
 
4.6 Model Evaluation 
4.6.1. Standard Error Value of Regression 

Parameter Estimation 
 The standard error of regression parameter 
estimator for secondary data and simulation data 
uses multiple linear regression analysis. The results 
of the standard error of multiple linear regression 
will be a comparison for the classical PCR and the 
PCR with VBPCA method, which then the classical 
PCR will be compared with the PCR with VBPCA 
method. The results of the comparison of the 
standard error coefficients of the regression 
parameters are presented in Table 6. The comparison 
of standard error values of the regression parameter 
estimators in Table 6 is visualized in graphic form in 
Figure 4.  

 
Figure 4:  Standard Error of Regression Parameter 

Estimator Comparison 

 Based on the standard error values of the 
regression parameter estimators presented in Table 6 
and Figure 4, in the secondary data it can be seen that 
the standard error of the multiple linear regression 
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parameter estimator is greater than the standard error 
of the classical PCR and the PCR with VBPCA 
method. This is because in multiple linear 
regression, the multicollinearity contained in the 
predictor variables has not been resolved, thus 
making the variance and standard error of the 
regression parameter estimator larger. The greater 
variance and standard error will cause the confidence 
interval of the regression parameter estimator to be 
greater so that the opportunity to accept the null 
hypothesis will be greater. Meanwhile, the classical 
PCR method and the PCR with VBPCA method for 
secondary data have a smaller standard error value 
for the regression parameter. This is because 
multicollinearity of the predictor variables has been 
resolved. The results of the estimation of the 
standard error value of the regression parameters for 
the classical PCR and the PCR with VBPCA method 
have the same value, because the secondary data has 
complete observations so that the process of 
estimating missing observations with the VBPCA 
method is not used. 

  In the simulation data, the classical PCR 
and the PCR with VBPCA method have differences 
in the standard error value of the regression 
parameter estimator. The standard error value of the 
regression parameter estimator in PCR with VBPCA 
for all simulation data is greater than the classical 
PCR. The PCR with VBPCA method overcomes 
missing data, so that complete observations will be 
obtained that are in accordance with the secondary 
data. When compared with classical PCR, the 
classical PCR method does not address missing data 
so that the PCR process will use available 
information without using information from missing 
observations. In addition, the greater the proportion 
of missing data, the greater the standard error of the 
PCR parameter estimator. This is because the 
missing data will cause the information in the data to 
be reduced and make the variance of the data bigger 
which causes the analysis results to be less valid. 

4.6.2. Cross Validation (𝐐𝟐) 
 The optimal principal component in the 
classical PCR as well as the VBPCA approach will 
be indicated by the value of 𝑄ଶ. In this study, the 
value of 𝑄ଶ of the secondary data will be compared 
with the simulation data for all methods, namely 
classical PCR and PCR with VBPCA approach. The 
value of 𝑄ଶ from the analysis is presented in Table 
7. The comparison of cross validation of the 
principal components in Table 7 is visualized in 
graphical form in Figure 5. 

 
Figure 5: Principal Component Cross Validation  

 Based on the 𝑄ଶ values in Table 7 and 
Figure 5, it can be seen that in secondary data, the 
classical PCR method and PCR with VBPCA have 
the same 𝑄ଶ value caused by a complete set of 
observations. In addition, the secondary data has a 
value of 𝑄ଶ which tends to be higher than other 
methods because there are no missing data, so that 
all information formed by the principal components 
can explain the data optimally. Meanwhile, in the 
simulation data, the PCR method with VBPCA has 
a higher 𝑄ଶ value than the classical PCR for all 
principal components. This is because in the 
VBPCA method, missing data have been estimated 
so that the observations used to form the principal 
component come from a complete data set so that the 
information covered by the principal component to 
explain the variance of the data is higher than the 
PCR. For all methods on the simulation data and 
secondary data, the first three components have a 
higher 𝑄ଶ value than the 4-th to 9-th components, it 
shows that the initial three principal components are 
sufficient to explain the variance and provide 
sufficient information from the data. In addition, the 
proportion of missing data also affects how the 
principal components explain the variability of the 
data. The higher the proportion of missing data, the 
lower the 𝑄ଶ value of the principal component and 
vice versa. 
 
4.6.3. Mean Absolute Percentage Error 

(MAPE) 
 In this study, the MAPE value was used to 
see the accuracy of the estimation results of missing 
data by the VBPCA method. The VBPCA method 
will be said to have good performance in 
overcoming missing data if the resulting MAPE 
value is less than 10%. The smaller the resulting 
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MAPE value, the better the VBPCA method in 
overcoming the missing data values. MAPE 
calculations are only used on simulation data 
because secondary data has complete data. The 
results of the MAPE values for the VBPCA method 
on the entire proportion of missing data are given in 
Table 8. 

Table 8:  Comparison of MAPE Values 

Simulation Data  MAPE 

Missing Data 1% 1.53% 

Missing Data 5% 6.04% 

Missing Data 10% 10.13% 

 Based on the MAPE calculation results for 
all missing simulation data in Table 8, it can be seen 
that for 1% and 5% missing data, the resulting 
MAPE value for the VBPCA method is less than 
10%. Meanwhile for 10% missing data, the MAPE 
value of the VBPCA method is 10.13% which is 
worth more than 10%. This shows that the VBPCA 
method can handle missing data up to less than 10% 
of missing observations from all complete data.  

4.6.4. Adjusted  𝐑𝟐 
 The evaluation of the model to see the 
goodness of the PCR model formed in this study 
used adjusted  𝑅ଶ. The value of adjusted  𝑅ଶ will 
show how much the variance of the response 
variables can be explained by the variance of the 
predictor variables. The results of the calculation of 
the adjusted  𝑅ଶ for all methods are presented in 
Table 9. 

Table 9:  Comparison of Adjusted  𝑅ଶ 

Data 
Method 

Classical PCR 
PCR with 
VBPCA 

Secondary Data 0,4894 0,4894 

Missing Data 1% 0.3949 0.4048 
Missing Data 5% 0.3855 0.4043 

Missing Data 10% 0.3765 0.4028 

The comparison of the Adjusted  𝑅ଶ in Table 9 is 
visualized in graphic form in Figure 6. 

 
Figure 6: Comparison of Adjusted  𝑅ଶ 

 Based on the calculation results of the 
adjusted  𝑅ଶ value in Table 9 and Figure 6, it can be 
seen that at all levels the proportion of missing data 
simulation, the value of the adjusted  𝑅ଶ for the PCR 
with VBPCA method is higher than the classical 
PCR method. The higher the proportion of missing 
observations in a data, the smaller the value of the 
adjusted  𝑅ଶ and vice versa. The number of missing 
data is the cause of the lower value of the adjusted 
𝑅ଶ formed. In classical PCR, missing data are not 
estimated so that the principal component formed 
stores observational information without the 
information contained in missing data, so that in the 
PCR process the variance of predictor variables is 
also not optimal in explaining the variance of 
response variables. So that the PCR with the VBPCA 
method will be better in overcoming this problem so 
that the variance of predictor variables will be more 
optimal in explaining the variance of response 
variables. In addition, in the comparison graph of the 
adjusted  𝑅ଶ, it can be seen that the value of the 
adjusted  𝑅ଶ for the classical PCR method and PCR 
with VBPCA has the same value in the secondary 
data. The VBPCA method is used to overcome 
missing data, but when faced with complete data, the 
VBPCA method produces the same coefficient of 
determination as the classical PCA. This can be an 
indicator that proves that the VBPCA method can 
overcome the problem of overfitting, where this 
problem often occurs when the method is faced with 
data that has been scripted according to the needs of 
the method. 
 
5. CONCLUSIONS AND SUGGESTIONS 

 Based on the applied studies and simulation 
studies conducted in this research, the following 
conclusions can be drawn: 
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1. The estimation of the PCR parameters using the 
VBPCA method using OLS in this study shows 
that the results of the regression parameter 
estimation have a constant value at the proportion 
of missing data up to 5%. The analysis shows that 
the greater the proportion of missing data, the 
more inconsistent the estimation results of the 
regression parameters and the larger the standard 
error of the regression parameters. 

2. Based on the evaluation of the model for classical 
PCR and PCR with VBPCA, it is concluded that: 
a. PCR with VBCPA is better than classical 

PCR and multiple linear regression in 
overcoming multicollinearity which is 
indicated by a smaller standard error value of 
the regression parameter. 

b. The MAPE value for the proportion of 
missing data of 1% and 5% is less than 10%, 
while for the proportion of missing data 10%, 
the resulting MAPE value is 10.13%, so the 
VBPCA method can handle missing data up 
to less than 10%. 

c. The level of the proportion of missing data 
affects the measure of the goodness of the 
model. The higher the proportion of missing 
data, the less optimal the resulting model is 
indicated by the larger MAPE value, the 
smaller the value of cross validation and 
adjusted 𝑅ଶ. The proportion of missing data 
causes the information obtained from the 
predictor variables to be less than optimal. 

d. PCR model with VBPCA can overcome 
overfitting indicated by the adjusted 𝑅ଶ value 
which is the same as the classical PCR 
method on secondary data that has complete 
data.  

The strength of this study is that it is able to 
overcome missing data up to 10%. In addition, the 
strength if this study us that the method formed can 
overcome overfitting, which often occurs in a 
combination of two or methods. The weakness in 
this research is the main component analysis, namely 
the missing data. In addition, one of the criteria for 
the goodness of the model is the coefficient of 
determination in this study is small. This can be due 
to the selection of the independent variables that are 
not suitable. 

 Suggestions that can be given by 
researchers for further research based on the 
conclusions are that this study has not examined the 
effect of the level of multicollinearity with missing 
data on PCR with VBPCA, so that in future research, 
the level of multicollinearity can be used to 
determine the effect of the level of multicollinearity 

with missing data. In addition, this study uses a large 
sample and has not studied the use of a small sample 
in PCR with VBPCA, so that in future research, a 
small sample can be used to determine the 
effectiveness of the PCR method with VBPCA in 
overcoming multicollinearity and missing data in 
small samples. 
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APPENDIX 

 

     

(a)                                                      (b)                                                       (c) 

Figure 1: Missing Data Proportion (a) 1%, (b) 5%, (c) 10% 

 

   

(a)                                                                          (b) 

    

(c)                                                                          (d) 

Figure 2: Scree Plot of Eigen Values (Classical PCR Method) (a) Secondary Data, (b) Missing Data 1%, (c) Missing 
Data 5%, (d) Missing Data 10% 
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(a)                                                                          (b) 

    

(c)                                                                          (d) 

Figure 3: Scree Plot of Eigen Values (PCR with VBPCA Method) (a) Secondary Data, (b) Missing Data 1%, (c) 
Missing Data 5%, (d) Missing Data 10% 

Table 4: Parameters Estimate of Classical PCR Method 

Parameter 
Secondary Data Missing Data 1% Missing Data 5% Missing Data 10% 

𝛽መ  ቀ𝑆௘൫𝛽መ൯ቁ 𝛽መ  ቀ𝑆௘൫𝛽መ൯ቁ 𝛽መ  ቀ𝑆௘൫𝛽መ൯ቁ 𝛽መ  ቀ𝑆௘൫𝛽መ൯ቁ 

𝛽଴ 7.2004 3.3634 7.8753 3.4899 11.5823 5.0392 1.1175 6.6114 

𝛽ଵ 0.1152 0.1747 0.0835 0.0761 1.0830 0.1039 -2.3236 0.2077 

𝛽ଶ -0.0879 0.0767 -0.0445 0.1317 0.2092 0.2009 -1.1993 0.2048 

𝛽ଷ 0.0003 0.0351 0.0003 0.0538 0.0028 0.1151 -0.0056 0.5691 

𝛽ସ -0.2587 0.0440 -0.0835 0.0745 -1.0603 0.1428 2.2375 0.1316 

𝛽ହ 0.0000 0.1468 0.0000 0.3627 0.0000 0.3935 0.0000 0.0470 

𝛽଺ -0.2568 0.1941 -0.4789 0.1094 1.7336 0.2491 -8.6233 1.4747 

𝛽଻ 0.0000 0.1584 0.0000 0.1232 0.0000 0.1842 0.0000 0.3988 

𝛽଼ 0.0283 0.1405 0.1685 1.5408 -1.6096 2.0777 7.9150 4.5516 

𝛽ଽ -0.0009 0.4212 -0.0414 3.0195 -0.2519 4.1289 0.4790 9.3413 

Source: Secondary and Simulation Data Processed (2022) 
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Table 5: Parameters Estimate of PCR with VBPCA Method 

Parameter 
Secondary Data Missing Data 1% Missing Data 5% Missing Data 10% 

𝛽መ  ቀ𝑆௘൫𝛽መ൯ቁ 𝛽መ  ቀ𝑆௘൫𝛽መ൯ቁ 𝛽መ  ቀ𝑆௘൫𝛽መ൯ቁ 𝛽መ  ቀ𝑆௘൫𝛽መ൯ቁ 

𝛽଴ 7.2004 3.3634 7.3400 3.2617 8.9260 3.5957 8.2757 3.5895 

𝛽ଵ 0.1152 0.1747 -0.2443 1.0432 -0.4836 0.6947 -0.2678 0.1133 

𝛽ଶ -0.0879 0.0767 -0.0156 0.1293 -0.1301 0.0830 -0.0580 0.1175 

𝛽ଷ 0.0003 0.0351 0.0000 0.5585 0.0001 0.3941 0.0009 0.1134 

𝛽ସ -0.2587 0.0440 -0.1354 0.1126 -0.2500 0.1002 -0.1159 0.0985 

𝛽ହ 0.0000 0.1468 -0.0021 0.4277 -0.0093 0.2875 -0.0011 0.0423 

𝛽଺ -0.2568 0.1941 -0.5817 0.1708 -0.9056 0.1096 0.2545 0.0723 

𝛽଻ 0.0000 0.1584 -0.0024 0.2311 -0.0057 0.1635 -0.0004 0.1444 

𝛽଼ 0.0283 0.1405 0.8475 1.9007 1.8233 1.4159 -0.0056 0.8134 

𝛽ଽ -0.0009 0.4212 -0.0560 2.0343 -0.1059 1.3582 -0.1000 4.5516 

Source: Secondary and Simulation Data Processed (2022) 

Table 6: Standard Error of Regression Parameters Estimator 

Parameter 

Secondary Data Simulation Data 

Linear 
Regression 

Classical 
PCR 

PCR with 
VBPCA 

Classical PCR PCR with VBPCA 
1% 5% 10% 1% 5% 10% 

𝛽଴ 3.4900 3.3634 3.3634 3.4899 5.0392 6.6114 3.2617 3.5957 3.5895 

𝛽ଵ 1.0230 0.1747 0.1747 0.0761 0.1039 0.2077 1.0432 0.6947 0.1133 

𝛽ଶ 0.2981 0.0767 0.0767 0.1317 0.2009 0.2048 0.1293 0.0830 0.1175 

𝛽ଷ 0.0748 0.0351 0.0351 0.0538 0.1151 0.5691 0.5585 0.3941 0.1134 

𝛽ସ 1.0080 0.0440 0.0440 0.0745 0.1428 0.1316 0.1126 0.1002 0.0985 

𝛽ହ 0.2196 0.1468 0.1468 0.3627 0.3935 0.0470 0.4277 0.2875 0.0423 

𝛽଺ 2.3010 0.1941 0.1941 0.1094 0.2491 1.4747 0.1708 0.1096 0.0723 

𝛽଻ 0.2458 0.1584 0.1584 0.1232 0.1842 0.3988 0.2311 0.1635 0.1444 

𝛽଼ 2.0520 0.1405 0.1405 1.5408 2.0777 4.5516 1.9007 1.4159 0.8134 

𝛽ଽ 0.5861 0.4212 0.4212 3.0195 4.1289 9.3413 2.0343 1.3582 4.5516 

Source: Secondary and Simulation Data Processed (2022) 

Table 7: Cross Validation (𝑅ଶ ) Value 

Principal 
Component 

Method 
Classical PCR PCR with VBPCA 

Secondary 
Data 

Missing 
Data 1% 

Missing 
Data 5% 

Missing 
Data 10% 

Secondary 
Data 

Missing 
Data 1% 

Missing 
Data 5% 

Missing 
Data 
10% 

𝑄ଵ 0.9101 0.6102 0.4698 0.3135 0.9101 0.7134 0.7021 0.6899 

𝑄ଶ 0.7942 0.4623 0.3102 0.3061 0.7942 0.6959 0.6788 0.6675 

𝑄ଷ 0.4365 0.4133 0.3014 0.2854 0.4365 0.6712 0.6601 0.6498 

𝑄ସ 0.4147 0.3244 0.2765 0.2614 0.4147 0.4235 0.4189 0.3967 

𝑄ହ 0.4009 0.3156 0.2611 0.2464 0.4009 0.4102 0.4001 0.3855 

𝑄଺ 0.3820 0.3004 0.2540 0.2299 0.3820 0.3964 0.3821 0.3711 

𝑄଻ 0.3511 0.2854 0.2433 0.2104 0.3511 0.3872 0.3704 0.3594 

𝑄଼ 0.2065 0.2766 0.2311 0.1975 0.2065 0.3642 0.3544 0.3416 

𝑄ଽ 0.1742 0.2614 0.2200 0.1755 0.1742 0.3541 0.3432 0.3398 

Source: Secondary and Simulation Data Processed (2022)
 


