

Journal of Theoretical and Applied Information Technology

30th September 2022. Vol.100. No 18
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5384

NATIVE JSON MODEL FOR DATA INTEGRATION IN
BUSINESS INTELLIGENT APPLICATIONS

MOHD KAMIR YUSOF1,MUSTAFA MAN2, WAN AMIR FAZAMIN WAN HAMZAH1,
SUHAILAN SAFEI1, ISMAHAFEZI ISMAIL1

1Faculty of Informatics & Computing, Universiti Sultan Zainal Abidin, 22200 Besut, Terengganu, Malaysia
2Faculty of Ocean Engineerinf Technology & Informatics, 21300 K.Terengganu, Terengganu, Malaysia

E-mail: {mohdkamir,wamir,suhailan,isma}@unisza.edu.my, mustafaman@umt.edu.my

ABSTRACT

Collection of data is important component for most business intelligent (BI) application to make a best
decision regarding to company. Successful of BI application is consist how much this application can
provide useful data for decision maker to achieve the company critical goals such as achieving or
exceeding revenue, opportunity to reduce cost, etc. However, 80 percent of BI application has a problem to
produce useful data because of data integration issue. This issue is occurred because of increasing amount
of data., integration difficulties, and high complexity. Universal data integration model is required to
provide useful data for BI application. Native XML (NXD) and JSON are two approaches have been
implemented in data integration. These approaches are proven efficient for data integration in term of data
insertion response time and query processing response time. Based on NXD and JSON, this paper proposed
Native JSON (N-JSON) as a new alternative data integration for BI application. Three experiments such as
data insertion response time, query processing response time and CPU usage has been done by using two
different datasets; SigmodRecord and DBLP. The results indicate N-JSON produces a better performance
compared NXD. As a result, N-JSON can be used as an alternative data integration for BI application in
order to provide useful data to decision maker.
Keywords: Data Integration, Business Intelligent, Native XML, JSON, Native JSON

1. INTRODUCTION

 Business intelligent (BI) is the process of
collecting operational data and use these data to
make a best decisions regarding to company [1].
The success of a BI is consists how much it can
helps the users, managers, technicians, and
organizations to achieve the company critical
goals such as achieving or exceeding revenue
figures, seeking opportunities to reduce cost
throughout the organization and maximize
profitability by identifying the most profitable
customers, most profitable products, services or
programs. Another success key in BI is providing
useful data coming from multiple heterogeneous
sources of data [2]. However, almost 80 percent
of any BI projects or applications face with data
integration problem in order to provide useful
data [3][5]. This problem occured 5384uet o the
increasing amount of data, integration difficulties,
high complexity and manual effort to manage the
data. A suitable data integration model is looking
to overcome this problem, thus to produce a
successful BI projects or applications. Data
integration is combining data residing at different
data sources and providing the user with a unified

view of these data [4]. Data integration is
providing a uniform view of a set of
heterogeneous data sources [6]. Current practice
in most of organizations for data integration is
relational database. In this paper, we find out two
alternative approaches have been used in data
integration: Native XML (NXD) and JSON.
These approaches are proven efficient in term of
data insertion response time and query processing
response time for data integration especially
involved with huge amount of data [7][8]. Based
on these approaches, we proposed Native JSON
(N-JSON) as another alternative approach for
data integration.

2. RELATED WORK

 This section discusses about two current data
integration approaches: Native XML (NXD) and
JSON.

A. Native XML (NXD)

Native XML (NXD) database is the database
that stores XML documents directly [9]. NXD
promise to play a key role in the near future as
management system for XML data [9*]. NXD is

Journal of Theoretical and Applied Information Technology

30th September 2022. Vol.100. No 18
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5385

the best described as a database that has an XML
document (or its rooted part) as its fundamental
unit of (logical) storage and defines a (logical)
model for an XML document, as opposed to the
data in that document (its contents) [11]. It is
represented logical XML document model, and
stores and manipulates documents according to
that model [12]. The basic characteristic of NXD
as below: -

 A logical unit of an NXD is XML
document or its footed part, and it
corresponds to a row in a relational
database

 Includes at least the following
components: elements, attributes,
textual data (PCDATA), and document
order

 Physical model (and type or persistent
NXD storage) is unspecified

In an NXD, XML is invisible inside the
database. There is unique database for all XML
schemas and documents. NXD are especially
suitable for storing irregular, deeply hierarchical
and recursive data. There are example of “menu”
XML document in NXD stored in fixed
relational database tables.

Documents Doc_id Doc_name
 1 simple.xml

… …

Eleme
nts

Doc_
id

El_i
d

Parent_
id

Na
me

OrdInPar
ent

 1 1 NULL men
u

1

1 2 1 food 1
1 3 2 nam

e
1

1 4 2 pric
e

2

… … … … …

Attribut
es

Doc_
id

Atr_i
d

Parent_
id

Na
me

Value

 1 1 1 Date 5.10.20
06

 … … … … …

Text Doc_id Text_id Parent_id Value
 1 1 3 Homemade

Bean Soup
 1 2 4 100.00
 … … … …

The example above shows how to build a NXD
on top of a relational database, most the NXD are
built from scratch, as stand-alone document in
management systems. Those systems manage
collections of documents, allowing users to query
and manipulate those documents as a set, which
is like the relational concept of a table.

B. JSON

JSON is lightweight data-interchange format
which is easy for humans to read and write, and
for machines to parse and generate [13]. JSON is
becoming the universal standard format for the
representation and exchanging the information
[14]. JSON approach is widely adopted as a data
exchange format, which is used by major Web
APIs such as Twitter, Facebook, and many
Google services [15]. JSON approach is more
powerful compared XML in term of storage and
query retrieval [16][17][19]. JSON is a friendly
alternative to XML, and often used as a
substitute to it [18]. When XML has been said to
contribute with a lot of unnecessary baggage,
JSON document can contain the same
information with much lightweight and easier to
read. JSON is commonly used when exchanging
or storing structured data. On the other hand,
XML and JavaScript Object Notation (JSON) are
two different data serialization formats used in
web applications [20][21]. These two approaches
which typically are the application in
Asynchronous JavaScript and XML (AJAX).
XML is a platform independent language for
representing data and has been used in the
development of web service application.
However, the performance of web services has
shown a significant decrease when using XML
data because of the low efficiency of reading and
parsing XML data during execution of services.
Based on the measurement of metrics such as the
number of objects sent, total time to send the
number of objects, average time per object
transmission, use CPU utilization, system CPU
utilization, and memory utilization, it has been
proved that it is significantly faster and has
higher parsing efficient than XML.

Based on these approaches, JSON model has a
potential for improvement by integrate with
NXD model. In this paper, Native JSON (N-
JSON) are proposed to get better performance in
term of data insertion response time and query
processing response time compared to NXD.

Journal of Theoretical and Applied Information Technology

30th September 2022. Vol.100. No 18
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5386

3. METHODOLOGY

This section described the model of N-JSON.
In this model, three steps involved; fetch the data
from data sources, integration from data sources
and produce output in N-JSON model. Figure. 1
shows the workflow of N-JSON.

Figure. 1. N-JSON Model Workflow

C. Fetch data from data sources

Assume G represent a dataset of semi-structured
data. A ={s1, s2, s3 ...sn} where s1 until
sn is an element of A. Figure. 2 shows the
datasets representation for semi-structured.

Figure. 2. Mapping To Data Sources

Input : Relevant data source s
Output : Selected data sources, Ds
Begin For each GS relation R in GS relevant to s.
 Construct a view sV to be mapped to R.
 Query the mapping helper table from the
 repository.
 Insert a new record into mapping helper
 table.
 Enrich mR with a new union element and
 add sV
 Extract the detectors of R from s (Ds)
 Unify the naming between the attributes
common on the 2 sets of Ds and DR Apply difference
operator between Ds and DR Ds_DR_Diff
 If Ds_DR_DIFF is empty, then
 Rebuild the mapping assertion of
 R_Detectors to include
 view over s
 Continue
 End If
 Else then
 Insert new record into the
 GSRelationDetector
 table with values (R,Ds)
 Apply different operator between
 Ds_DR_DIFF and
 attributes of R to get R_Diff_Atts
 Else then
 Rebuild the mapping assertion of
 R_Detectors to include
 R_Diff_Atts
 Enrich the R_Detectors with view
 for s
 Modify the views over other
 sources include corresponding
 attributes for R_Diff_Atts
 End if
End if
End loop

Figure. 3. Algorithm For Addition Of A New Data
Source

D. Cleansing data

Assume C represent a dataset of clean semi-
structured data. The special characters, as an
example, are removed from the data. Figure. 4
shows the diagram for removing special
characters from the dataset. B represents dataset
with special characters.

Journal of Theoretical and Applied Information Technology

30th September 2022. Vol.100. No 18
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5387

Figure. 4. Removing Special Characters

Figure. 5 shows the algorithm to remove any
special characters from data sources. The
purpose of this cleaning process is to improve
the performance of data insertion response time
and query processing response time.

Input : Data source, DS and data dictionary, dd
Output : Clean data source, Cds

Begin :
 Step 1: Read data source, DS
 Step 2: Identify any special characters, w &
 refer dd
 Step 3: If w is exist
 Step 3.1: Remove the value
 Step 3.2: Repeat step 2
 Step 4: Write a new data source, Cds
 Step 5: Display clean data source, Cds

Figure. 5: Algorithm For Removing Special

Characters

E. Data Extraction

This section describes how data is extract
from different data sources and convert into
standard format using native JSON.

Assume B = {s1, s2, s3… sn}. Let B represent set
of clean data sources, where s1 until sn is a clean
data source that contains different elements,
attributes, and text.

Figure. 6 represent algorithm for NXD. This
algorithm has been designed to produce different
types of documents or data models.

Input : Clean Data Source, Cds
Output : Data schema (DS) in RDBMS, M,
insertion time (t)
Begin :
 1: Read element and attributes from Cds
 1.1: Identify elements of data source, E
 1.2: Identify attributes of data source, AT
 1.3: Write a value into E into table element,
 tbl_element
 1.4: Write a value into E into table
 attributes, tbl_attribute
 1.5: Repeat Step 1.1 to 1.4 until end of file
 2: Map tbl_element and tbl_attribute to Cds
 3: Save M to extension of *.xml
 4: Display data insertion response time, t

Figure. 6: Algorithm (Data Extraction – NXD)

In an NXD, XML is invisible inside the
database. There is a unique database for all XML
schemas and documents. NXD are especially
suitable for storing irregular, deeply hierarchical
and recursive data. There are example of
“record” XML document in NXD stored in fixed
relational database tables.

Documents Doc_id Doc_name
 1 dblp.xml

2 sigmodrecord.xml

Elemen
ts

Doc_i
d

Elm_i
d

Name OrdInPare
nt

 1 1 article 1
1 2 author 1
1 3 title 1
1 4 journal 1
2 29 articlesTup

le
29

 2 30 title 29
 … … … …

Attribut
es

Doc_i
d

Atr_i
d

Elm_i
d

Nam
e

Value

 1 1 1 Date 5.10.20
06

 … … … … …

In XML approach, a basic unit file is an entity or
chunk that contains content and markup. The
markup database describes the content.
Generally, a markup consists of tags, the name
and any additional information surrounded by
the “<” and “>” characters. Similarly, an end tag
consists of the tag name surrounded by the “</”
and “>”. XML is case sensitive, so the start and
end tag names must match exactly. Figure. 7

A C

B

Special character to be removed

B = A ∩ C

Journal of Theoretical and Applied Information Technology

30th September 2022. Vol.100. No 18
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5388

and Figure. 8 shows how publication data is
represented in XML format.

:
<article mdate=”2003-03-31” key=”tr/trier/MI97-12”>
<author>Christoph W. Kebler</author>
<title>Practical PRAM Programming with Fork95 – A
Tutorial</title>
<journal>Universitat Trier, Mathematik/Informatik,
Forschungsbericht</journal>
<volume>97-12</volume>
<year>1997</year>
</article>
<article mdate=”2003-02-11” key=”tr/trier/MI99-24”>
<author>Markus R. Schmidt</author>
<title>Dual Characterization of Super-Hedging Prices
in a Currency Market with Proportional Transaction
Costs</title>
<journal>Universitat Trier, Mathematik/Informatik,
Forschungsbericht</journal>
<volume>99-24</volume>
<year>1999</year>
</article>:
:

Figure. 7: DBLP In XML (Dblp.Xml)

:
<article mdate=”2003-03-31” key=”tr/trier/MI97-12”>
<author>Christoph W. Kebler</author>
<title>Practical PRAM Programming with Fork95 – A
Tutorial</title>
<journal>Universitat Trier, Mathematik/Informatik,
Forschungsbericht</journal>
<volume>97-12</volume>
<year>1997</year>
</article>
<article mdate=”2003-02-11” key=”tr/trier/MI99-24”>
<author>Markus R. Schmidt</author>
<title>Dual Characterization of Super-Hedging Prices
in a Currency Market with Proportional Transaction
Costs</title>
<journal>Universitat Trier, Mathematik/Informatik,
Forschungsbericht</journal>
<volume>99-24</volume>
<year>1999</year>
</article>:
:
Figure. 8: Sigmodrecord In XML (Sigmodrecord.Xml)

Figure. 9 represent algorithm for N-JSON. This
algorithm has been designed to produce different
types of documents or data models.

Input : Clean Data Source, Cds
Output : Data schema (DS) in RDBMS, M,
insertion time (t)
Begin :
 1: Read element and attributes from Cds
 1.1: Identify elements of data source, E
 1.2: Identify attributes of data source, AT
 1.3: Write a value into E into table element,
 tbl_element
 1.4: Write a value into E into table
 attributes, tbl_attribute
 1.5: Repeat Step 1.1 to 1.4 until end of file
 2: Map tbl_element and tbl_attribute to Cds
 3: Save M to extension of *.json
 4: Display data insertion response time, t

Figure. 9: Algorithm (Data Extraction – N-Json)

In N-JSON, JSON is invisible inside the
database. There is a unique database for all
JSON schemas and documents. N-JSON are
especially suitable for storing irregular, deeply
hierarchical and recursive data. These are
example of “record” JSON document in N-JSON
stored in fixed relational database tables.

Documents Doc_id Doc_name
 3 dblp.json

4 sigmodrecord.json

Elemen
ts

Doc_i
d

Elm_i
d

Name OrdInPar
ent

 3 34 “article” 34
3 35 “id” 34
3 36 “author” 34
3 37 “title” 34
3 38 “pages” 34

 4 49 “articlesTup
le”

49

 4 49 “title” 49
 … … … …

Attribut
es

Doc_i
d

Atr_i
d

Elm_i
d

Nam
e

Value

 3 1 34 Date 5.10.20
06

 … … … … …

The JSON approach represents data in an array
format. JSON is built through two structures.
The first is a collection of name/value pairs. In
various languages, this is realized as an object,
structure, dictionary, hash table, keyed list, or
associate array. The second is an ordered list of
values. In most languages, this is realized as an
array or list of sequences. Each object begins

Journal of Theoretical and Applied Information Technology

30th September 2022. Vol.100. No 18
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5389

with “ [” and ends with “] ”. Meanwhile, a
value can be a string in double quotes, a number,
true or false, an object, or an array. Figure. 10
and Figure. 11 shows how publication data is
represented in JSON format. A JSON file is
simple in that each data /record is separated by
line.

{“article”:[{“id”:”274222”,”author”:”N.
Prati”,”title”:”A Partial Model of NP with
E.”,”pages”:”1245-
1253”,”year”:”1994”,”volume”:”59”,”journal”:”J.Sym
b.
Log.”,”url”:”db\/journals\/jsyml\/jsyml59.html#Prati9
4"}],
 :
“book”:[{“id”:”211”,”isbn”:”3-540-60058-
2”,”author”:”Marco Cadoli”,”title”:”Tractable
Reasoning in Artificial Intelligence”,”series”:”Lecture
Notes in Computer
Science”,”volume”:”941”,”publisher”:”Springer”,”yea
r”:”1995”,”url”:”...”}],

“www”:[{“id”:”1”,”editor”:”...”,”title”:”Java
Language Home
Page”,”booktitle”:”...”,”year”:”...”,”url”:”http:\/\/java.s
un.com\/”}
:
:

Figure. 10: DBLP In JSON (Dblp.Json)

{“articlesTuple”:[{“title”:”Announcements.”,”initPag
e”:”4”,”endPage”:”6”,”author”:”J. S. Knowles”}],

“articlesTuple”:[{“title”:”A Progress Report on the
Activities of the CODASYL End User Facility Task
Group.”,”initPage”:”1”,”endPage”:”19”,”author”:”He
nry C. Lefkovits”}],

“articlesTuple”:[{“title”:”SIGMOD Chairman’s
Message.”,”initPage”:”20”,”endPage”:”20”,”author”:”
James P. Fry”}],

“articlesTuple”:[{“title”:”Problems of Basic and
Applied Research in Database
Systems.”,”initPage”:”16”,”endPage”:”12”,”author”:”
Edgar H. Sibley,W. Terry Hardgrave”}],

:
:

Figure. 11: Sigmodrecord In JSON (Dblp.Json)

F. Data Retrieval

Assume M be a dataset including steps for
query of data. M query of data are fetched from
∈ Z. M = {Q1, Q2, Q3, Q4}. Figure. 12 – 13

shows the algorithms to execute a list of queries
start with Q1 until Q3.

Input : keyword, Z and query, Q, tbl_element,
tbl_attribute
Output : Data retrieved, r, query processing
response time, c and CPU usage, cp
Begin :
 1. Read keyword, Z.
 2. Read query, Q
 3. Assign Z → Q
 4. Assign variable a, for start time, b for end
time and cp for CPU usage
 5.Search elements and attributes from
tbl_element & tbl_attributes
 5.1 If data is found, map directly
to XML document
 5.2 Retrieve all data, r
 5.3 r++
 6. Assign variable c for different time
 7. Calculate value of c, which b minus a
 8. Display value of r and c and cp

Figure. 12: Algorithm (Data Retrieval – Nxd)

Input : keyword, Z and query, Q, tbl_element,
tbl_attribute
Output : Data retrieved, r, query processing
response time, c and CPU usage, cp
Begin :
 1. Read keyword, Z.
 2. Read query, Q
 3. Assign Z → Q
 4. Assign variable a, for start time, b for end
 time and cp for CPU usage
 5.Search elements and attributes from
 tbl_element & tbl_attributes
 5.1 If data is found, map directly to JSON
 document
 5.2 Retrieve all data, r
 5.3 r++
 6. Assign variable c for different time
 7. Calculate value of c, which b minus a
 8. Display value of r and c and cp

Figure. 13: Algorithm (Data Retrieval – N-Json)

4. EXPERIMENTAL RESULTS

This study performed all its experiments on a
Dell XPS13, IntelI Core I i7-5500U CPU @
2.39 GHz with 8GB RAM using a Windows 10
64-bit platform. The software specification for
algorithm development is deployed using open
source software, including MySQL version
5.6.20, MySQL community server (GPL) for our
database server, Apache/2.4.10 (Win32)
OpenSSL/1.0.1i PHP/5.5.15 for our web server,
PHP as a programming language and

Journal of Theoretical and Applied Information Technology

30th September 2022. Vol.100. No 18
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5390

phpMyAdmin with administration of MySQL
over the Web. The phpMyAdmin
(phpMyAdmin: Bringing MySQL to the web) is
a free software tool, written in PHP, that
supports a wide range of operations on MySQL,
MariaDB and Drizzle. The user interface helps
one to perform frequently used operations
(managing databases, tables, columns, relations,
indexes, users, permissions, etc.), with the ability
to directly execute any SQL statement.

a. Data Source and
Characteristics

In our experiments, SigmodRecord and
DBLP will be used as a benchmark dataset.
These benchmark datasets have been used for
NXD approach in experiments purposes in term
of data insertion time and query processing
response time [7]. These datasets are download
and saved in a *.xml file format. Size of these
data are 704KB and 22.9MB. These datasets
provide bibliographical information about
computer sciences journals, books, thesis, URL,
and proceedings. The overall characteristics of
benchmark datasets is tabulated in Table 1. The
size in MB represents physical file size, the
length represents attributes or labelled as
attributes name and the records defines the total
number or records.

Table 1: Database Characteristics

File Name URL Size Length Records

SigmodReco
rd

http://www.di
a.uniroma3.it/
Araneus/Sig
mod/

704
KB

4-7

3820

DBLP

https://hpi.de/
naumann/proj
ects/repeatabi
lity/datasets/d
blp-
dataset.html

22.9
MB

6-10

50000

b. Data Extraction and Data
Retrieval

The main motivation for this research is to
extract data from different data sources and
convert into three different data models. Three
experiments will be executed in this research:
data insertion response time, query processing
response time, and CPU usage. Query processing
response time, and CPU usage are evaluated
based on queries with different complexity in
Table 2 and Table 3.

Table 2: Query Complexity (SIGMOD Record)

Query Description

I
Retrieve and list all the information where the tag
is “number” which is a child node of tag “issue”

II
Retrieve and list all the information where tag is
“article” on condition that the value of one its child
node – tag “author” is “Amihai Motro”

III

Retrieve and list all the information for all tags
with name “title” where the attribute articleCode is
greater than “152010” and less than or equal to
“152010”

Table 3: Query complexity (DBLP)

Query Description

I
Retrieve and list all the information where the tag is
“title” which is a child node of tag “www”

II
Retrieve and list all the information where the tag is
“masterthesis” on condition that the value of one of its
child node – tag “year” is “2006”

III
Retrieve and list all the information for all tags with
name “www” where the attribute key is
“www/org/tpc” or the attribute mdate is “2004-12-02”

 Data Insertion Response Time

In this section, data are extracted from
different data sources and converted into two
data models: NXD and N-JSON. Two types of
datasets in Table 1 have been used in this
experiment. In this experiment, response time for
data insertion have been calculated 4 times.

Based on Figure. 14, the result of data
insertion response time N-JSON is reduce to 7%
compared to NXD using SigmodRecord dataset.
Meanwhile, based Figure. 15, the result of data
insertion response time N-JSON is reduce to
15% and 22% compared to NXD using DBLP
dataset. The number of percentages for each data
model can be calculated based on the following
formula:

௩. ௗ௧ ௦௧ ௧ (ே) ି௩. ௗ௧ ௦௧ ௧ (ேିௌைே)

௩. ௗ௧ ௦௧ ௧ (ே)

x 100

N-JSON (SigmodRecord) =
ଶଽିହ଼

ଶଽ
 x 100 = 6.83

≈ 7%

N-JSON (DBLP) =
ଶହଷଶିଶଵହଶ

ଶହଷଶ
 x 100 = 15.01 ≈

15%

Journal of Theoretical and Applied Information Technology

30th September 2022. Vol.100. No 18
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5391

Figure 14. Data insertion response time – Query I

Figure. 15. Data insertion response time – Query II

 Query Processing Response Time

In this section, we evaluated the
performance of NXD and N-JSON based on
query processing response time. Three (3)
different queries were executed based on
specified statement in TABLE II and TABLE III,
and query processing response time were
executed 4 times.

The result shows N-JSON in three different
queries complexity are reduce by 7%, 8%, and
5% respectively compared to NXD using
SigmodRecord dataset. The number of
percentages for each data model can be
calculated based on the following formula:

𝐴𝑣𝑔. 𝑜𝑓 (𝑁𝑋𝐷) − 𝐴𝑣𝑔. 𝑜𝑓 (𝑁 − 𝐽𝑆𝑂𝑁)

𝐴𝑣𝑔 𝑜𝑓 (𝑁𝑋𝐷)

=
ଷହଷିଷ

ଷହଷ
 x 100 = 7.08 ≈ 7%

=
ସଶିଷଽଷ

ସଶ
 x 100 = 7.74 ≈ 8%

=
ଵହିଵ

ଵହ
 x 100 = 4.76 ≈ 5%

Figure. 16. Query processing response time –

SIGMOD (Query I)

Figure. 17. Query processing response time –

SIGMOD (Query II)

Figure. 18. Query processing response time –

SIGMOD (Query III)

The result shows N-JSON in three different
queries complexity are reduce by 7%, 8%, and
5% respectively compared to NXD using DBLP.
The number of percentages for each data model
can be calculated based on the following
formula:

𝐴𝑣𝑔. 𝑜𝑓 (𝑁𝑋𝐷) − 𝐴𝑣𝑔. 𝑜𝑓 (𝑁 − 𝐽𝑆𝑂𝑁)

𝐴𝑣𝑔 𝑜𝑓 (𝑁𝑋𝐷)

=
ଷହଷିଷଵସ

ଷହଷ
 x 100 = 11.08 ≈ 11%

=
ସଶିଷ଼

ସଶ
 x 100 = 11.26 ≈ 11%

=
ଵହିଽହ

ଵହ
 x 100 = 9.52 ≈ 9%

Figure. 19. Query processing response time – DBLP

(Query I)

Journal of Theoretical and Applied Information Technology

30th September 2022. Vol.100. No 18
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5392

Figure. 20. Query Processing Response Time – DBLP

(Query II)

Figure. 21. Query Processing Response Time – DBLP

(Query III)

 CPU Usage

This section evaluated the performance of
CPU usage based on queries complexity in
TABLE II and TABLE III by using two different
datasets: SigmodRecord and DBLP.

Based on Fig. 22 – Fig. 24, the result shows
N-JSON in three different queries complexity are
reduce by 12%, 8%, and 6% respectively
compared to NXD using SigmodRecord dataset.

௩. ௨௦ (ே) ି௩. ௨௦ (ேିௌ)

௩. ௨௦ (ே)
 x

100

=
.ିହ.ଷ

.
 x 100 = 11.66 ≈ 12%

=
ଵ.ଵିଽ.ଷ

ଵ.ଵ
 x 100 = 7.92 ≈ 8%

=
ଽ.ଽିଽ.ଷ

ଽ.ଽ
 x 100 = 6.06 ≈ 6%

Figure. 22. CPU Usage – SIGMOD (Query I)

Figure. 23. CPU Usage – SIGMOD (Query II)

Figure. 24. CPU Usage – SIGMOD (Query III)

Based on Figure. 25 – Figure. 27, the result
shows N-JSON in three different queries
complexity are reduce by 11%, 7%, and 6%
respectively compared to NXD using DBLP
dataset.

௩. ௨௦ (ே) ି௩. ௨௦ (ேିௌைே)

௩. ௨௦ (ே)
 x

100

=
ଶ.ହିଶଷ.ହ

ଶ.ହ
 x 100 = 11.32 ≈ 11%

=
ଶ.ଶିଶହ.ଷ

ଶ.ଶ
 x 100 = 6.98 ≈ 7%

=
ଶ.ଷିଶସ.଼

ଶ.ଷ
 x 100 = 5.70 ≈ 6%

Figure. 25. CPU Usage – DBLP (Query I)

Journal of Theoretical and Applied Information Technology

30th September 2022. Vol.100. No 18
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5393

Figure. 26. CPU Usage – DBLP (Query II)

Figure. 27. CPU Usage – DBLP (Query III)

c. Performance Analysis

To evaluate the efficiency and accuracy for each
database approaches, this section is focusing on
the performance of extraction time for extracting
information, we also want to extract the
significant information of data by removing the
noisy information.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝐷𝑎𝑡𝑎 𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑

𝐷𝑎𝑡𝑎 𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 + 𝐷𝑎𝑡𝑎 𝐹𝑎𝑙𝑠𝑒

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝐷𝑎𝑡𝑎 𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑜𝑓 𝐷𝑎𝑡𝑎

𝐹𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = 2.
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛. 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

Table 4 – 6 shows the accuracy results based on
three different complexity queries using
SigmodRecord dataset.

Table 4: Result Of Experiments -SIGMOD RECORD

(I)

Databa
se

Approa
ch

Total
Data

Data
Retriev

ed

Data
(false

)

Precisi
on

Recal
l

F1

NXD 3820 34 1 0.97
0.008

9
0.01
76

N-
JSON

3820 37 2 0.94
0.009

7
0.01
92

Table 5: Result Of Experiments – SIGMOD RECORD
(II)

Datab
ase

Appro
ach

Total
Data

Data
Retrie

ved

Data
(fals

e)

Precisi
on

Reca
ll

F1

NXD 3820 14 2 0.87
0.00
36

0.00
71

N-
JSON

3820 18 2 0.90
0.00
47

0.00
94

Table 6: Result Of Experiments – SIGMOD RECORD

(III)

Datab
ase

Appro
ach

Total
Data

Data
Retriev

ed

Data
(false

)

Precisi
on

Reca
ll

F1

NXD 3820 8 4 0.66
0.002

1
0.00
42

N-
JSON

3820 10 2 0.83
0.002

6
0.00
52

Figure. 28 represent the line graph based on the
results TABLE 4 – 6 stated.

Figure. 28. Fmeasure – SIGMOD

TABLE 7 – 9 shows the accuracy results based
on three different complexity queries using
DBLP dataset.

Table 7: Result Of Experiments – DBLP (I)

Datab
ase

Appro
ach

Tota
l

Data

Data
Retrie

ved

Data
(fals

e)

Precis
ion

Rec
all

F1

NXD
5000

0
34 1 0.97

0.00
68

0.0
01
4

N-
JSON

5000
0

37 1 0.97
0.00
74

0.0
01
5

Journal of Theoretical and Applied Information Technology

30th September 2022. Vol.100. No 18
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5394

Table 8: Result Of Experiments – DBLP (II)

Datab
ase

Appro
ach

Tota
l

Data

Data
Retrie

ved

Data
(fals

e)

Precis
ion

Rec
all

F1

NXD
5000

0
14 2 0.88

0.00
38

0.00
27

N-
JSON

5000
0

18 1 0.95
0.00
36

0.00
35

Table 9: Result Of Experiments – DBLP (III)

Datab
ase

Appro
ach

Tot
al

Dat
a

Data
Retrie

ved

Data
(fals

e)

Precis
ion

Rec
all

F1

NXD
500
00

8 0 1.00
0.00
16

0.00
32

N-
JSON

500
00

10 1 0.91
0.00
20

0.00
40

Figure. 29 represent the line graph based on the
results Table 7 – 9 stated.

Fig. 29. Fmeasure – DBLP

5. CONCLUSION

NXD and JSON are two approaches have
been reviewed in this research for data
integration. N-JSON approach is proposed by
combination of NXD and JSON elements to
produce better performance in data integration.
SigmodRecord and DBLP datasets have been
used for experiment purposed. Three
experiments have been done, N-JSON indicated
a better performance in term of data insertion
response time, query processing response time
and CPU usage compared to NXD. In this case,
N-JSON is proven efficient and reliable to
become as an alternative data integration
approach especially in business intelligent
applications.

6. ACKNOWLEDGMENT

We wish to thank FRGS of Kementerian
Pengajian Tinggi (KPT) for providing financial
support for this study with
FRGS/1/2020/ICT06/UNISZA/03/2.

REFERENCES

[1] Marian, P., 2017. Business Intelligent

Integrated Solutions. Land
Forces Academy Review, Vol. XXII, No.
4(88), 2017.

[2] Ana, R., & Razwan, B. (2011). Integrating
Data Sources From Different
Development Environments: An E-LT
Approach. Quality- Access To Success,
Special Issue 123, Vol 11, 2011, Pp: 785 –
792.

[3] Kisker, H., Garbani, J.P., Evelson, B.,
Green, C., Lisserman, 2010. The State Of
Business Intelligence Software And
Emerging Trends, 2010. Forrester
Research Report, May 10, 2010, Available
Online At
Http://Www.Forrester.Com/Rb/Research/
State_Of_Business_Intelligence_Softwa
 E_And_Emerging/Q/Id/56749/T/
2, Accessed On 31 Januari 2020.

[4] Lenzerini, M. (2002). Data Integration: A
Theoretical Perspective.
Proceedings Of The Twenty-First ACM
SIGMOD-SIGART Symposium On
Principles Of Database Systems, Madison,
Wisconsin, USA, June 2002.

[5] Mustafa Man, Nurul Aqilah Ruslan,
Julaily Aida Jusoh, Wan Aezwani Abu
Bakar, (2020). Conceptual Model Of
Incremental R-Eclat Algorithm For
Infrequent Itemset Mining, International
Journal Of Engineering Trends And
Technology (IJETT), Vol. 10, Pp: 129 –
133.

[6] Bouzeghoub, M., Loscio, B. F., Kedad, Z.,
Soukane, A. (2002). Heterogeneous Data
Source Integration And Evolution. DEXA
2002, LNCS 2453, Pp: 751 – 757.

[7] Marjani, M., Nasaruddin, F., Ghani, A.,
Shamshirband, S. (2018). Measuring
Transaction Performance Based On
Storage Approaches Of Native XML
Database. Measurement 114, 91 -101.

[8] Eriksson, M., & Hallberg, V. (2011).
Comparison Between JSON

Journal of Theoretical and Applied Information Technology

30th September 2022. Vol.100. No 18
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5395

And YAML For Data Serialization. KTH
Computer Science And Communication.

[9] Saba, A. M., Shahab, E., Abdolrahimpour,
H., Hakimi, M., Moazzam, A. (2017). A
Comparative Analysis Of XML
Documents, XML Enabled Databases And
Native XML Databases. Computer
Science: Databases.

[9*] Gonzalez, M., Prieto, M., Nieto, M.
(2009). A Study Of Native XML
Databases – Document Update, Querying,
Access Control And Application
Programming Interfaces In Native XML
Databases. 5th International Conference
On Web Information System And
Technologies, Pp: 89 – 92.

[11] Lazetic, G. M. P. (2007). Native XML
Databases Vs. Relational Databases In
Dealing With XML Documents.
Kragujevac J. Math. Vol 30, Pp: 181 –
199.

[12] Bourret, R. (2007). XML Database
Products.
Http://Www.Rpbourret.Com/Xml/Xmland
database-Products.Htm. Last Updated
March 2007. Visited The 2008/10/20.

[13] Haw, S. C., & Lee, C. S. (2014). Efficient
Preprocesses For Fast Storage And Query
Retrieval In Native XML Database. IETE
Technical Review. Vol 26, Issue 1, 28 -
40.

[14] Nurseitov, N., Paulson, M., Reynolds, R.,
Izurieta, C. (2009). Comparison Of JSON
And XML Data Interchange Formats: A
Case Study.CAINE 2009, Computer
Science.

[15] Wang, L., Hassanzadeh, O., Zhang, S.,
Shi, J., Jiao, L., Zou, J., Wang, C. (2015).
Schema Management For Document
Stores. Proceedings Of The VLDB
Endowment, Vol. 8, No. 9. Pp: 922-933.

[16] Meneghello, M. 2001. XML (Extensible
Markup Language) – The
New Language Of Data Exchange.
Cartography, Vol 30, No. 1, 51 – 57

[17] Yusof, M.K., & Man, M. (2016).
Efficiency Of JSON Approach For Data
Extraction And Query Retrieval.
Indonesian Journal Of Electrical
Engineering And Computer Science. Vol
4, 201 - 214.

[18] Eriksson, M., & Hallberg, V. (2011).
Comparison Between JSON And YAML
For Data Serialization. KTH Computer
Science And Communication.

[19] Kamir, Y., Mustafa, Man. (2018).
Efficiency Of Flat File Database Approach
In Data Storage And Data Extraction For
Big Data, Indonesian Journal Of Electrical
Engineering And Computer Science, Vol.
9, No. 2, Pp: 460 - 473, Doi:
10.11591/Ijeecs.V9.I2.Pp460-473

[20] Afsari, K., Eastman, C. M., Lacouture, D.
C. (2017). Javascript
Object Notation (JSON) Data Serialization
Of IFC Schema In Web-Based BIM Data
Exchange. Automation In Construction. 24
- 51.

[21] Mustafa Man, Wan Aezwani Wan Abu
Bakar, Zailani Abdullah, Masita Abdul
Jalil, 2016. Mining Association Rules: A
Case Study On Benchmark Dense Data,
Indonesian Journal Of Electrical
Engineering And Computer Science, Vol.
3, No. 3, Pp: 546 – 553.

