

Journal of Theoretical and Applied Information Technology

30th September 2022. Vol.100. No 18
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5308

SOFTWARE EFFORT ESTIMATION USING HIERARCHICAL
ATTENTION NEURAL NETWORK

HAITHEM KASSEM1, KHALED MAHAR2, AMANI SAAD3
1Multimedia Center, AASTMT, Egypt

2College of Computing and Information Technology, AASTMT, Egypt

3College of Engineering and Technology, AASTMT, Egypt

E-mail: 1 haithem_k@aast.edu, 2 khmahar@aast.edu, 3amani.saad@aast.edu

ABSTRACT

In every software project, a software effort estimation process is not only vital but also extremely critical.
Project success or failure depends massively on, the concise knowledge of effort and schedule estimates. The
development of agile techniques in the field of software development has presented researchers and
practitioners with many opportunities and challenges. An estimated effort for agile software development is
one of the main challenges. Although traditional estimates of effort are used to estimate effort for agile
software projects, most of them lead to inaccurate estimates. This paper focuses on the development of the
agile effort estimation model. A machine learning classifier that uses information contained within an issue
report is proposed to classify the difficulty or the weight of a given task according to a range of story point
scales. The model has two levels of attention mechanisms implemented at the word and sentence levels,
allowing it to pay distinguished attention to more and less relevant semantic features when constructing the
document representation. The proposed model has achieved 87% classification accuracy. An empirical
evaluation demonstrates that our approach has a greater or at least equivalent F score, Precision, and Recall
when compared to classical classifiers.

Keywords: Software Effort Estimation, Story Points, Deep Learning, GloVe, Hierarchical Attention
Networks, Agile

1. INTRODUCTION

The main goal for all software project managers
is to complete the project on time and within the
given budget. Many companies have chosen to use
agile approaches to guide software development
since the release of the agile manifesto [1].
Estimating effort is important for successful project
management in the agile sense. Indeed, accurate
estimates are needed to avoid inefficient resource
allocation [2], [3].

The story points [4], [5] are a common way to

estimate task effort. Story points are usually
allocated in the context of agile development through
organized group meetings known as Planning Poker
sessions [6]. These meetings rely heavily on human
judgment: the more the developers understand the
job, the more reliable their estimation will be.
Human judgment, on the other hand, can be limited
by a number of factors. Humans are positive by
nature, and this bias is amplified in group
interactions [7], [8], [9]. Furthermore, the presence

of a project manager, other senior developers, or
dominant personalities in the meeting has been
shown to affect developer estimation [10].

In order to solve these issues, we propose a

machine learning classifier that uses information
contained within an issue report to classify the
difficulty or the weight for a given task according to
a range of story point scale. Issue reports were
considered because they are frequently used by
developers to describe development tasks and are
also heavily used in Planning Poker sessions [11].

There are three advantages of using machine

learning classifier. To begin with, the classifier has
comprehensive knowledge of the project dating back
to its inception, and it bases its predictions on all
previous issues in the issue tracking system. Second,
since the classifier's estimates can be traced back to
the features used for classification, it is not affected
or coerced by other people. Third, the estimation is
repeatable and predictable: the system never gets
tired and consistently produces the same results.

Journal of Theoretical and Applied Information Technology

30th September 2022. Vol.100. No 18
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5309

We propose a prediction model that assists teams
by recommending a story point estimate for a given
user story. To predict the size of new issues, the
model learns from the team's previous story point
estimates. This prediction system will be used in
conjunction with (rather than in place of) the team's
existing estimation techniques. It could also be used
as a decision support system to assist in the
estimation process. This is analogous to the concept
of combination-based effort estimation, in which
estimates are derived from various sources, such as a
combination of expert and formal model-based
estimates [38, 64].

The proposed model learns semantic features that

represent the meaning of user stories or issue reports
automatically, freeing users from manually
designing and extracting features. Feature
engineering typically relies on domain experts who
use their specific knowledge of the data to create
features on which machine learning techniques can
be applied.

The key novelty of our approach resides in

employing hierarchical attention networks (HAN)
for categorizing user stories depending on a number
of story points.

We consider the classifier as a member of the

team, sharing its predictions with other developers.
In this way, the classifier acts as an extra creator,
generating a real-time calculation based on objective
analysis.

An empirical evaluation has been carried out to

answer the following research questions:
RQ1: What is the effect of adding attention layer

during the training phase?
RQ2: Can attention mechanism be leverage to

improve software effort estimation?
RQ3: Does the use of Hierarchical Attention

Networks provide more accurate story point
estimates than using traditional classification
technique?

The remainder of the paper is organized as

follows: Section 2 provides context for story points
and Deep Learning. Section 3 presents related work,
while Section 4 focuses on the design of the
proposed model. Section 5 discusses experimental
results and analysis, Section 6 shows future work and
finally Section 7 presents the conclusion.

2. BACKGROUND

2.1 Story Points

In agile development, user stories or issues
commonly describe what has to be built in the
software project. Story points are the most common
unit of measure used for estimating the effort
involved in completing a user story or resolving an
issue. The story point is a metric that agile teams use
to estimate the amount of effort required to complete
a development task [4], [5].

Instead of quantifying the amount of work

required to complete a given task, the number of
story points is an estimate of how difficult a given
task is for the development team. The team usually
agrees on the number of story points that a baseline
task deserves as a first step. From then on, effort
estimation is based on a comparison to that baseline.
Story points are frequently assigned in a manner that
deviates slightly from the Fibonacci sequence (i.e. 1,
2, 3, 5, 8, 13, 20, 40, 100, ∞) [12]. This sequence
reflects the uncertainty that comes with estimating
complex tasks in real-world software.

In a project, story points will be evaluated by the

entire team. The widespread planning poker method
[13], for example, indicates that every team Member
gives an estimate and after a few rounds of
discussion and re-estimation a consensus estimate is
reached. This practice is different in several respects
from traditional approaches (e.g. points of function).
Both story and function points reflect an effort to
solve a problem. However, a standard set of rules
(e.g., input count, outgoing information or inquiry
count) which could be applied by any trained
practitioner can be used to determine function points.

2.2 Deep Learning

In recent years, deep learning technology (DL)
[14] has shown impressive results in a variety of
fields, including machine vision [15], speech
recognition [16], and text classification [17]. Most
deep learning studies on text classification can be
divided into two parts: (1) learning word vector
representations through neural language models [14]
and (2) performing classification composition over
the learnt word vectors.

Convolutional neural networks (CNNs) [18] and

recurrent neural networks (RNNs) [19] are two types
of deep learning models used in text classification.
Many text classification methods based on CNNs or
RNNs have been proposed in recent years [20], [24].

Journal of Theoretical and Applied Information Technology

30th September 2022. Vol.100. No 18
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5310

 CNNs are capable of learning the local response
from temporal or spatial data, but not sequential
correlations. RNNs, unlike CNNs, are designed for
sequential modeling but are unable to extract
features in a parallel manner. Text classification, in
particular, can be thought of as a sequential modeling
activity. RNNs are used more commonly in text
classification because of their characteristics.

2.2.1 Long Short-Term Memory (LSTM)

RNNs are a form of feed forward neural network
with a recurrent hidden state that is triggered at a
specific time by the previous states. As a
consequence, RNNs can dynamically model
contextual information and manage variable-length
sequences [25]. LSTM is a form of RNN architecture
that has recently become the standard structure for
RNNs. The LSTM solves the vanishing gradient
problem by replacing self-connected hidden units
with memory blocks. The memory block stores data
in purpose-built memory cells and is better at
detecting and leveraging long-range sequence.

The standard LSTM network can only use the

historical background. However, the absence of a
future contexts may cause the meaning of the
problem to be incomplete. Through the combination
of the forward hidden layer and a backward hidden
layer, as shown in Figure 1, bidirectional Gated
recurrent (BiLSTM) is therefore proposed to reach
both the preceding and the future context. In a similar
fashion to regular network, both forward and
backward passes are done over time through the
unfolded network; only BiLSTM must unfold the
forward hidden state and the back-hidden state at all
times [25].

Figure 1. (a) LSTM model and (b) BiLSTM model.

2.2.2 Gated Recurrent Unit (GRU)

Gated Recurrent Unit is another form of RNN
that overcomes the short-term memory problem [61].
Its internal gates, allow it to monitor the flow of
information in a similar manner as the LSTM. Its
composition is simpler than LSTM, with just the
reset and upgrade gates and no memory cells. In
deciding which data to keep or throw away, the

update gate works similarly to the input and forget
gates of an LSTM. The reset gate, on the other hand,
determines which data from the past should be
discarded.

GRU requires fewer operations to be estimated

than LSTM due to its simplicity. As a result, GRU-
based networks can achieve comparable
performance to LSTM-based networks for the same
task, while training is much faster.

The GRU tracks the state of sequences using a

gating system rather than independent memory cells.
The reset gate 𝑟௧ and the update gate 𝑧௧ are the two
forms of gates. They are in charge of how knowledge
is modified to the current state. The GRU computes
the new state at time 𝑡 as a vector which holds
information for the current unit and passes it down to
the network.

 ℎ௧ = (1 − 𝑧௧) ⊙ ℎ௧ିଵ + 𝑧௧ ⊙ ˜ℎ௧ (1)

This is a linear interpolation using new sequence

knowledge between the previous state ℎ௧ିଵ and the
present new state ˜ℎ௧. The gate 𝑧௧ determines how
much old data is retained and how much new data is
added. 𝑧௧ has been changed to:

 𝑧௧ = 𝜎(𝑊௭𝑥௧ + 𝑢௭ℎ௧ିଵ + 𝑏௭) (2)

where 𝑥௧ denotes the sequence vector at 𝑡. The
candidate state ˜ℎ௧ is calculated in the same way as a
typical recurrent neural network (RNN) is:

 ˜ℎ௧ = tanh(𝑊௛𝑥௧ + 𝑟௧ ⊙ (𝑢௭ℎ௧ିଵ) + 𝑏௛) (3)

The reset gate 𝑟௧ determines how much the

previous state contributes to the candidate state. If 𝑟௧
is empty, the previous state is forgotten. The
following is an update to the reset gate:

 𝑟௧ = 𝜎(𝑤௥𝑥௧ + 𝑢௥ℎ௧ିଵ + 𝑏௥) (4)

Where 𝑏௭, 𝑏௛ and 𝑏௥ are the biases applied to the

update, reset gates and hidden neurons.

2.3 Attention
This concept was first introduced in the context

of computer vision. We can learn to amass
information about a shape and identify the image by
glancing at different areas of the image (glimpses),
according to Larochelle and Hinton [65]. Later, the
same idea was used to sequences. We can look at all
of the words at once and learn to "pay attention" to
the ones that are correct for the task at hand. This is

Journal of Theoretical and Applied Information Technology

30th September 2022. Vol.100. No 18
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5311

what we now refer to as attention, which is just a
concept of memory gained by paying attention to a
variety of inputs throughout time.

2.4 Hierarchical Attention Networks

Hierarchical attention networks are made up of a
word sequence encoder, a word-level attention layer,
a sentence encoder, and a sentence-level attention
layer [55]. We'll go over the details of each
component later in this paper.

2.5 Word Embedding

Words in the text must be converted into vectors
in order to deal with various natural language
problems and application. Word embedding are
distributional vector representations of words that
have been introduced to represent their syntax and
semantics. The Word2vec [71] and GloVe [57] word
embedding models have recently been used in a
variety of natural language processing applications.
Global Vectors for Word Representation GloVe was
used for obtaining vector representation for each
word. GloVe is an unsupervised learning algorithm
for obtaining vector representations for words [72].
Every embedding approach has its own set of
advantages and disadvantages. The GloVe
embedding has the advantage of using the entire
corpus statistics during word feature extraction,
whereas Word2Vec simply looks at local window-
based data. The GloVe takes into account word
frequency both locally and globally, as well as word-
to-word co-occurrences [79].

2.6 Transfer Learning

Transfer learning [73] is a fascinating machine
learning method for transferring knowledge learnt
from one problem to another different but related
problem. Feature-based Transfer Learning is a set of
deep network-based algorithms that allow feature
extraction knowledge learnt from one problem to be
reused in the solution of another [74], [75]. This
eliminates the requirement for the network to learn
how to extract features, resulting in less overall
learning time.

3. RELATED WORKS

Software effort estimation methods can
generally be categorized into three major groups:
expert-based, model-based, and hybrid approaches.
Expert-based methods rely upon human
understanding to make estimations, and are the
most common techniques in practice [26], [27].
Expert-based estimation requires the provision of
experts on every occasion the estimation needs to

be made. Model-based approaches use data from
past projects but they are also varied in terms of
building customized models. The well-known
construction cost (COCOMO) model [28] is an
example of a fixed model in which factors and
variables are fixed. Their relationships are already
established. Data from a variety of previous
projects was used to build such estimation models.
As a consequence, they are typically only sufficient
for a particular type of projects that was used to
create the model.

The customized model building approach

requires context-specific data and employs a variety
of methods, including regression (e.g. [29], [30]),
neural networks (e.g. [31], [32]), fuzzy logic (e.g.
[33]), Bayesian belief networks (e.g. [34]), analogy-
based (e.g. [35], [36]), and multi-objective
evolutionary approaches (e.g. [37]). However, no
single method is likely to be the best performer for
all project types [38], [39], [40]. As a result, some
recent work proposes combining estimates from
multiple estimators [41]. Hybrid approaches
combine expert judgments with available data, [42],
[43], which is similar to the ideas in this paper.

While most existing work is focused on

estimating an entire project, little is done in building
models for agile projects in particular. Agile,
dynamic and incremental projects today require
different planning and estimation approaches [44].
Recent approaches use machine learning techniques
to help in estimating effort for agile projects.
Recently, in [45] the work has suggested an approach
that extracts TF-IDF features from the problem
description in order to develop a model for story
point estimations. The uniform selection technique is
then applied to the features extracted and fed into
classifiers such as SVM.

Furthermore, the research in [46] used Cosmic

Function Points (CFP) [47] to estimate the effort
needed to complete an agile project. In [48], the work
developed an effort prediction model for the
development of iterative software by regression
models and neural networks. This model is built after
each iteration (instead of at the end of the design
phase) to estimate the effort for the next iteration,
unlike traditional effort estimate models.

The authors in [49] created a Bayesian network

model for predicting effort in software projects that
use the agile Extreme Programming method. Their
model, on the other hand, is based on a variety of
criteria (such as process effectiveness and

Journal of Theoretical and Applied Information Technology

30th September 2022. Vol.100. No 18
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5312

improvement) that involve extensive learning and
fine tuning. In order to identify problems in Scrum-
based software development projects, Bayesian
networks are often used, as in [50], to model
dependencies between different factors (e.g., sprint
progress and sprint planning quality affect product
quality).

The work in [66] is a first step in understanding

how to create a user story-based Agile effort
prediction model. The datasets used in this project
are small, and the developers created user stories in
both Italian and English.

Moharreri et. Al [64] created an automated Agile

story card estimating system that effectively
combines existing machine learning algorithms to
historical estimation data gathered from people.
They aimed to find supervised learning models that
might outperform manual Planning Poker. None of
these techniques were able to outperform manual
Planning Poker by a significant margin.

The work in [67] employs distributed word

embedding to create a system capable of estimating
effort based on only basic project management
metrics and, most importantly, textual descriptions
of tasks. To automate the effort estimation task, an
artificial neural network was used.

Choetkiertikul in [56] focuses on estimating

issues with story points by using deep learning
techniques to automatically learn semantic features
that reflect the true meaning of issue descriptions,
which is a significant improvement over previous
work. Previous research (as in [51], [52], [53] and
[54]) has been done in forecasting the elapsed time
for fixing a bug or the risk of resolving an issue with
a pause.

The research of this paper is distinct from

previous work in that it focuses specifically on
estimating issues according to three story points’
classes providing the majority distribution for the
story point. The selection of the three classes is based
on the application and is done experimentally. A
story point estimate reflects the relative amount of
effort involved in resolving or completing the user
story. We are providing the team with a machine
learning classifier to work with them in the
estimation process. This classifier should give the
team a guide line. The classifier should reduce the
number of iterations done by the agile team to reach
an agreement on the estimated issues. Hierarchical
attention networks were used to learn semantic

features that convey the true meaning of the issue
descriptions automatically.

4. THE PROPOSED MODEL

The proposed model introduces the use of
hierarchical attention networks (HAN) for
classifying user stories according to a range of story
points. These ranges are clustered into three classes.
The model constructs a document vector
incrementally by gathering important words into
sentence vectors and then combining important
sentence vectors to document vectors. The document
vectors are then fed into a shallow neural network for
classification.

The main contributions of this paper are:

1. Proposing a new balanced data set that can be
used for classification with sufficient data for
training deep learning network.

2. Turning the estimation problem from a
regression into a classification problem,
where each class has a range of values. Since
effort estimation process is based on
uncertainty, having a range of values for
effort estimation will provide the software
team with a more flexible way than previous
work where estimation was done according to
a fixed value.

3. Reducing the training time by using pre-trained
embedding vectors by exploiting transfer
learning using GloVe, instead of building a
new embedding vector.

4. Implementing hierarchical attention network
[55] to capture two fundamental insights about
document structure. First, since documents are
hierarchical (words form sentences, sentences
form a text), we create a document
representation by first constructing sentence
representations and then aggregating them into
a document representation. Second, various
terms and sentences in a text are found to have
different levels of knowledge.

The proposed model, is made up of five layers, as

shown in Figure 2, and is explained briefly as
follows:

1. Input layer: takes a document, consisting of
sentences, where each sentence consisting of a
sequence of word IDs that represent user
stories or issues describing what has to be built
in the software project. Assume that a
document includes L sentences 𝑠௜ and each
sentence contains 𝑇௜ words. 𝑤௜௧ with 𝑡 ∈ [1, T]
represents the words in the 𝑖௧௛ sentence.

Journal of Theoretical and Applied Information Technology

30th September 2022. Vol.100. No 18
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5313

2. Embedding layer: embeds each word in each
sentence separately, to produce Sequences of
word vectors, one for each sentence. That is,
it converts incoming text into dense word
vectors that encode its meaning as well as its
context. Global Vectors for Word
Representation GloVe was used for obtaining
vector representation for each word.

3. Encoding layer: from preceding layer we
have a sequence of word vectors, the aim of
this layer is to compute a sentence matrix
from which we can build document matrix.
Sentence matrix is composed of rows each
row represents the meaning of each Model
Configuration in the sentence. This layer is
implemented using Bidirectional RNN. Each
token's vector is split into two sections, one
computed using a forward pass and the other
using a backward pass. We simply combine
the two to get the complete vector. This layer
contains two encoders which are:
 Sentence Encoder: converts sequence of

word vectors to sentence matrix.
 Document Encoder: converts sequence

of sentence vectors to document matrix.

Given a sentence with words 𝑤௜௧ , 𝑡 ∈ [0, T],
the Sentence Encoder embeds the words to
vectors through an embedding matrix 𝑤௘, such
that 𝑥௜௝ = 𝑤௘𝑤௜௝ .

Bidirectional GRU is used to get words

annotations by summarizing words information
from both ways, so it adds contextual information
into the annotation. The bidirectional GRU contains

the forward GRU 𝑓 which reads the sentence 𝑠௜ from

𝑤௜ଵ to 𝑤௜் and a backward GRU 𝑓 which reads from
𝑤௜் to 𝑤௜ଵ. Eq. (5) to Eq. (7) describe the encoding
process.

 𝑋௜௧ = 𝑊௘𝑤௜௧, 𝑡 ∈ [1, 𝑇]. (5)

 ℎప௧
ሬሬሬሬሬ⃗ = 𝐺𝑅𝑈ሬሬሬሬሬሬሬሬሬ⃗ (𝑋௜௧), 𝑡 ∈ [1, 𝑇]. (6)

 ℎప௧
ሬ⃖ሬሬሬሬ = 𝐺𝑅𝑈ሬ⃖ሬሬሬሬሬሬሬሬ(𝑋௜௧), 𝑡 ∈ [𝑇, 1]. (7)

Document Encoder works in a similar manner,

given the sentence vectors 𝑠௜, it produces a document
vector. To encode the sentences, we use a
bidirectional GRU with:

 ℎప
ሬሬሬ⃗ = 𝐺𝑅𝑈ሬሬሬሬሬሬሬሬሬ⃗ (𝑠௜), 𝑖 ∈ [1, 𝐿]. (8)

 ℎప
ሬ⃖ሬሬ = 𝐺𝑅𝑈ሬ⃖ሬሬሬሬሬሬሬሬ(𝑠௜), 𝑖 ∈ [𝐿, 1]. (9)

4. Attention layer: in this layer our objective
is to reduce the Sentence matrix obtained
from pervious layer to a single vector that
can be used by feed-forward network for
prediction. The role of this layer is to find
words that are most important semantically
for a user story.

5. Output layer: predict the class of story point
that match the given user stories. This layer
was implemented using shallow neural
network with softmax activation [80] for
classification.

Figure 2. Proposed model

Journal of Theoretical and Applied Information Technology

30th September 2022. Vol.100. No 18
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5314

5. EXPERIMENTAL RESULTS AND
ANALYSIS

5.1 Dataset

Our data set consists of 23,313 issues, with the
story points of 16 various projects [56]: Apache
Mesos (ME), Apache Usergrid (UG), Appcelerator
Studio (AS), Aptana Studio (AP), Titanum SDK/CLI
(TI), DuraCloud (DC), Bamboo (BB), Clover (CV),
JIRA Software (JI), Moodle (MD), Data
Management (DM), Mule (MU), Mule Studio (MS),
Spring XD (XD), Talend Data Quality (TD), and
Talend ESB (TE).

The story points used in planning poker are

usually arranged in a Fibonacci sequence, such as 1,
2, 3, 5, 8, 13, 21, and so on [24]. Only seven of the
projects we examined (Usergrid, Talend ESB,
Talend Data Quality, Mule Studio, Mule,
Appcelerator Studio, and Aptana Studio) followed
the Fibonacci scale, while the other nine projects did
not use any scale. We have selected these seven
projects to make a subset from the dataset, we were
able to merge the seven projects to form a new
dataset with 7,459 issues, and our intention is to test
the proposed model on this dataset.

After analyzing the new dataset by assuming that

every story point represents a class we faced the
imbalanced data problem, i.e., several classes are
under-represented (minority classes) in comparison
to others (majority classes). To overcome this
problem, the new dataset was clustered into 3
classes.

 First class (Low) ranging from 1-8 story point.
 Second class (Medium) ranging from 8-15

story point.
 Third class (High) ranging from 15 -21 story

point.

For further enhancement the three new classes
were balanced. There are several techniques to
obtain balanced data, but oversampling [63] was
used in this paper to duplicate the data samples in the
minority classes.

After applying the oversampling process, the data

set are used such that 70% of the data set for training,
15% for validation, and the remaining 15% for
testing.

5.2 Model configuration

We used NLTK [30] to break documents into
sentences and tokenize each sentence. Before
constructing the vocabulary, several pre-processing

steps has to be applied. These steps involve
removing punctuations, prepositions, stop words,
tags, html, removing numbers, extra spaces and
URLs, lower casing and stemming.

A dense vector that represents a word is referred

to as an embedding. During the training process, the
embedding vectors are randomly initialized, then
progressively improved with the gradient descent
algorithm at each back-propagation stage, so that
similar words or words in the same lexical field end
up near in terms of distance in the new vector space.

Pre-trained word embedding is a Transfer

Learning example. The key idea is to use public
embedding, which has already been trained on large
datasets. In particular, we set these previously
trained integrations as the initialization weights,
instead of initializing our neural network weights at
random. This technique helps to speed up training
and improve NLP model performance.

GloVe [57] is the most popular methods for

inducing word embedding from the text corpora. It
provides embedding off the shelf trained on huge text
corpora. The GloVe package provides embedding
with varying sizes. The three hundred embedding
size was used for this experiment.

Overfitting occurs when your model fits well on

training data but does not generalize well on new,
unseen data. In other words, the model learned
patterns that are unique to the training data and are
irrelevant to other data. Validation metrics such as
loss and accuracy can be used to detect overfitting.
After a certain number of epochs, the validation
metric typically stops improving and starts to
decline. Since the model aims to find the best match
for the training data, the training metric continues to
improve.

There are several methods for reducing

overfitting in deep learning models. Obtaining more
training data is the best option. Unfortunately, this is
not always possible in real-world situations.

We have chosen Dropout proposed by Srivastava

[62] to handle the proposed model. Dropout is a
training technique in which randomly selected
neurons are ignored. They are dropped out at
random. This means that on the forward pass, their
contribution to the activation of downstream neurons
is eliminated temporally, and on the backward pass,
any weight changes are not added to the neuron. As
a consequence, the network's sensitivity to individual

Journal of Theoretical and Applied Information Technology

30th September 2022. Vol.100. No 18
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5315

neuron weights decreases. As a result, the network
will be able to generalize better and will be less likely
to overfit the training data.

The implementation was done on Intel (i7-7700,

16 GB RAM) windows 10. Keras [29], a Python
library, is used to implement the proposed model.

Our experiments were done by testing three

scenarios. The first was by removing the attention
layer then two variations for the attention was tested.
Tables 1,2,3, and 4 show the achieved results. The
second scenario is using the first type of attention
with eq. (10) to (12).

We employ the attention mechanism to reward

sentences that provide clues to correctly classify a
document, and we create a sentence level context
vector 𝑒௧, which we use to measure the relevance of
the sentences and get a normalized importance
weight 𝛼௧ through a softmax function. This yields:

 𝑒௧ = 𝑡𝑎𝑛ℎ(𝑊ℎ௧ + 𝑏). (10)

 𝛼௧ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑒௧). (11)

 𝑜 = ∑ 𝛼௧ℎ௧ . (12)

where 𝑜 is the document vector that summarizes
all the information of sentences in a document. 𝑊
and 𝑏 are Learnable weights, and ℎ௧ the output from
GRU.

The third scenario is using Second type with the

following equations [59].

 𝑒௧ = 𝑡𝑎𝑛ℎ(𝑈𝑐 + 𝑊ℎ௧ + 𝑏). (13)

 𝛼௧ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑒௧). (14)

 𝑜 = ∑ 𝛼௧ℎ௧ . (15)

Where 𝑐 is the vector obtained by applying max
poling to the matrix obtained from GRU, and 𝑈 is a
new weight vector differs from pervious type context
learned vector 𝑐.

5.3 Analysis

In the first phase the objective is training the
model to be generalized well and to avoid
overfitting. The number of training epochs to use is
a concern when it comes to neural network training.
Too many epochs may cause overfitting, whereas
too few may cause underfitting. To handle this
problem, the Keras [29] API was used for adding

early stopping. Early stopping is a technique that
allows you to specify an arbitrary large number of
training epochs and then stop training when the
model performance on a holdout validation dataset
stops improving. The first sign of no further
improvement may not be the best time to stop
training. The model may get better or worse after
this point. This problem was handled by adding a
delay to the trigger equal to the number of epochs
we should wait to see no improvement. This can be
accomplished by using the “patience” provided by
Keras.

The learning curves in Figure 3 can be
summarized as X-axis shows the training time, the
Y-axis shows the accuracy and the loss. The red line
presents the training set and the blue the validation
set. The training curve continues to get better till it
reaches the best value. The behavior of the
validation is not the same; the validation keeps on
improving until it reaches a point of intersection
with the training curve after this point overfitting
will occur and the curve is getting worse. The gap
between training and validation accuracy is a clear
indication of over fitting. The larger the gap, the
higher the overfitting. At this point, an early
stopping should occur additionally patience option
present in keras gives the model additional number
of epochs to make sure no improvement may take
place.

(a) Model accuracy

(b) Model loss

Figure 3. Learning curve for model with no attention (a)

model accuracy, (b) model loss

The model behavior during training phase when

adding attention layer using first type of attention is
shown in Figure 4 that the point of intersection
between training and validation curve is reached
earlier than the previous cases.

Journal of Theoretical and Applied Information Technology

30th September 2022. Vol.100. No 18
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5316

(a) Model accuracy

(b) Model loss

Figure 4. learning curve for model with first type
attention (a) model accuracy, (b) model loss

The model behavior during training phase when

adding attention layer using second type of attention
is shown in Figure 5. The figure shows that the point
of intersection between training and validation
curves is reached earlier than the previous cases this
may answer RQ1 thus reducing the training time.

(a) Model accuracy

(b) Model loss

Figure 5. learning curve for model with second type
attention (a) model accuracy, (b) model loss

At the second phase we will be evaluating the

proposed model which is done by comparing the
overall accuracy F score, Precision and recall.

Accuracy is defined as the percentage of correct

predictions for the test data. It can be calculated
easily by dividing the number of correct predictions
by the number of total predictions.

Both the preceding and subsequent contextual

information can be accessed by BiGRU. As a result,
BiGRU can better understand the context of each

word in the text. The purpose of the attention
mechanism is to determine the impact of each word
on the phrase. It can capture the main semantic
components of a sentence by assigning attention
weights to each word. The combination of these
methods improves the accuracy of sentence semantic
understanding and the classification ability of the
proposed model. Thus, leading to better results in the
overall accuracy. Experimental results presented in
Table 1, Table 2, and Table 3 show that the attention
mechanism has a significant impact on the proposed
model’s performance. Adding the context vector has
added extra information that leads to better
performance.

As a result, we may say that the attention

mechanism may be used to precisely figure out the
differences in relevance in a document, which results
in upgrading the classification accuracy by acquiring
more effective information. The accuracy has
improved when adding the attention layer and when
modifying the attention layer by adding the context
vector has added extra information and leads to
better performance and this part addresses RQ2.

Scores for the third class shown in Table 2, and

Table 3, are relatively high because this class is the
minority class and it contains some redundant data
caused by oversampling the first and the second
classes (majority classes).

The F-score is a method of combining the model's

precision and recall, and it is defined as the harmonic
mean of the precision and recall of the model. To
calculate the F Score, you need to know the Precision
and Recall scores and input them into the following
formula:
F Score=2*((Precision*Recall)/(Precision+Recall). (16)
So, we can focus on f score.

Table 1. Classification Accuracy while using different
attention variation

Model with no
attention

Model with first
type attention

Model with second
type attention

0.81 0.83 0.87

Table 2. F score while using different attention variation.

Classes F score

 Model with
no attention

Model with first
type attention

Model with second
type attention

Class 1 0.69 0.73 0.79

Class 2 0.76 0.77 0.82

Class 3 0.99 0.99 0.99

Journal of Theoretical and Applied Information Technology

30th September 2022. Vol.100. No 18
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5317

Table 3. Precision while using different attention
variation.

Classes Precision

 Model with
no attention

Model with first
type attention

Model with second
type attention

Class 1 0.82 0.79 0.86

Class 2 0.68 0.72 0.77

Class 3 0.99 0.99 0.98

Table 4. Recall while using different attention variation.

Classes Recall

 Model with
no attention

Model with first
type attention

Model with second
type attention

Class 1 0.60 0.68 0.72

Class 2 0.87 0.82 0.88

Class 3 0.99 0.99 1.0

To the best of our knowledge, [64] is the only

approach testing the possibility of enhancing
planning poker estimation by finding supervised
learning models that might outperform manual
Planning Poker. Due to the unavailability of the data
used in [64], and in general, the scarcity of publicly
available data to study and train on, an experiment
was conducted to test the models used in [64] using
our dataset. The experiment uses TF-IDF (Term
Frequency – Inverse Document Frequency) of a
word as a metric to quantify the significance of a
word which takes into account word frequency and
the inverse of the counts of documents containing
that word.

Our result cannot be compared to other previous

works as they have worked on a regression problem
and they have their evaluation matrix.

Tables 5, 6 and 7, show comparison between the
proposed model with 2nd type attention against
classical classifiers.

Table 5. Comparison between the proposed Model with
2nd type attention against classical classifiers (F score).

Classes F score
 Naive

Bayes
Support
Vector
Machine

Decision
Tree

Logistic
Regression

Model with
2nd type
attention

Class 1 0.66 0.75 0.77 0.76 0.79

Class 2 0.71 0.76 0.81 0.76 0.82

Class 3 0.92 0.99 0.99 0.99 0.99

Table 6. Comparison between the proposed Model with
2nd type attention against classical classifiers (Precision).

Classes Precision

 Naive
Bayes

Support
Vector
Machine

Decision
Tree

Logistic
Regression

Model with
2nd type
attention

Class 1 0.80 0.78 0.86 0.79 0.86

Class 2 0.66 0.74 0.75 0.74 0.77

Class 3 0.86 0.98 0.97 0.97 0.98

Table 7. Comparison between the proposed Model with
2nd type attention against classical classifiers (Recall).

Classes Recall

 Naive
Bayes

Support
Vector
Machine

Decision
Tree

Logistic
Regression

Model with
2nd type
attention

Class 1 0.56 0.72 0.66 0.71 0.72

Class 2 0.76 0.78 0.88 0.77 0.88

Class 3 0.99 1.0 1.0 1.0 1.0

The second type of attention has better or at least

the same F score, Precision and Recall when
compared to classical classifiers like Naive Bayes,
Support Vector Machine, Decision Tree, and
Logistic Regression as shown in Tables 5, 6, and 7,
and this would answer the last research question
QR3. Obviously produced the highest results in
terms of classification accuracy, F score, precision,
and memory.

5.4 Threats to Validity

By using real-world data from issues reported in
large open source projects, we attempted to minimize
challenges to build validity. The title and description
provided with these issue reports, as well as the
actual story points assigned to them, were gathered.
We are aware that those story points were calculated
by human teams, and as a result, they may contain
biases and, in some situations, may be inaccurate.
We should acknowledge, however, that our dataset
may not reflect all types of software initiatives,
particularly in commercial environments (although
open source projects and commercial projects are
similar in many aspects). The nature of contributors,
developers, and project stakeholders is one of the
fundamental variations between open source and
commercial projects that may affect story point
estimation. For commercial agile projects, more
research is required. Datasets of various sizes were used
in this study. In order to reduce conclusion instability
[83], we carefully followed recent best practices in
evaluating effort estimation models [81], [82].

Journal of Theoretical and Applied Information Technology

30th September 2022. Vol.100. No 18
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5318

5.5 Implications
The fast emergence of agile development demand

more research on estimation at the issue or user story
level. To our knowledge, work on effort estimation
mainly focus on estimating the whole project with a
small number of data points (see the datasets in the
PROMISE repository [76]). The China dataset, for
example, comprises only 499 data points, whereas
Desharnais has 77 and Finish has 38. All of these
data sets are extensively utilized in existing effort
estimation studies [77], [78]. On the other hand, in
this work, we're dealing with 7,459 data points
actually more the data, the more robust the network
will be.

On other side, this paper uses hierarchical

attention networks (HAN) to automatically learn a
suitable representation of a problem issues and use
them to estimate the effort required to resolve it. The
evaluation findings show that (HAN) approach has
significantly improved predictive performance. This
is an important result since it encourages software
developers to abandon the manual feature
engineering method. Feature engineering is typically
done by domain specialists who use their in-depth
understanding of the data to build features that
machine learners can use. Features are automatically
learned from a textual description of an issue in our
method.

The goal isn't for the machine learner to take the

place of existing agile estimate methodologies.
Instead, the goal is to use the machine learner to
support existing methods by acting as a decision
support system. Teams would still meet, discuss user
stories, and develop estimates as usual, but with the
extra benefit of having access to the machine
learner's insights. As with any decision support
system, teams would be free to reject the machine
learner's recommendations. The actual estimates
created in every such estimating exercise are
recorded as data to be supplied to the machine
learner, regardless of whether these estimates are
based on the machine learner's suggestions or not.
This estimation approach assists the team in not just
understanding enough facts about what it will take to
address such challenges, but also in aligning with
previous estimates.

6. FUTURE WORK

The future work will involve comparing the
results of our model to other Pre-trained language
model like BERT [69], GPT [70] and XLNet [68].
These models have been shown to attain the state of

the art in a range of tasks such as question answering,
named entity recognition, and natural language
inference. Also, it is planned to test the proposed
model on other agile data sets.

7. CONCLUSION

The proposed model implemented the
hierarchical attention networks (HAN) for
classifying user stories according to a range of story
points. These ranges should provide a guide line for
the agile team in their estimation process. Three
scenarios were tested as part of the experiments. The
first was to remove the attention layer, after which
two attention variations were tested. The second type
of attention has achieved the best result for the
Classification Accuracy, F score, Precision & and
recall. The second type of attention has obviously
produced the highest results in terms of classification
accuracy, F score, precision, and memory. When
compared to classical classifiers such as Naive
Bayes, Support Vector Machine, Decision Tree, and
Logistic Regression, the second type of attention has
a superior or at least equal F score, Precision, and
Recall.

The novelty of our work is providing a range for

estimation instead of a unique value, make use of
transfer learning to reduce training time and
introducing a new balanced data set that can be used
for classification and contains enough data to train a
deep learning network. Our experiment has shown
that attention layer has improved the overall
accuracy and F score and the second type of attention
has achieved the best result.

REFERENCES:

[1] K. Beck, M. Beedle, A. Va Bennekum, A.
Cockburn, W. Cunningham, M. Fowler, J.
Grenning, J. Highsmith, A. Hunt, R. Je_ries, et
al. Manifesto for agile software devel-opment,
2001.

[2] L. C. Briand. On the many ways software
engineering can bene_t from knowledge
engineering. In Proceedings of the 2002
international conference on Software engi-
neering and knowledge engineering, pages 3{6.
ACM, 2002.

[3] J. W. Paulson, G. Succi, and A. Eberlein. An
empirical study of open-source and closed-
source software prod-ucts. IEEE Transactions
on Software Engineering, 30(4):246{256, 2004.

Journal of Theoretical and Applied Information Technology

30th September 2022. Vol.100. No 18
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5319

[4] What is a story point? https://goo.gl/Vfb9v1,
2007. Accessed: 2016-06-02.

[5] M. Cohn. It's e_ort, not complexity
https://goo.gl/nNYlL1, 2010. Accessed: 2016-
06-02.

[6] J. Grenning. Planning poker or how to avoid
analysis paralysis while release planning.
Hawthorn Woods: Re-naissance Software
Consulting, 3, 2002.

[7] R. Brown. Group Processes: Dynamics Within
and Be-tween Groups. Wiley-Blackwell, 2000

[8] E. Aronson, T. D. Wilson, and R. M. Akert.
Social Psy-chology (3rd Edition). Pearson,
1999.

[9] R. L. Atkinson, R. C. Atkinson, E. E. Smith, D.
J. Bem, and S. Nolen-Hoeksema. Hilgard's
Introduction to Psychology (12th Edition).
Orlando: Harcourt

[10] J. Aranda and S. Easterbrook. Anchoring and
adjust-ment in software estimation. In
Proceedings ofthe 2005 European Software
Engineering Conference Held Jointly with the
2005 International Symposium on Foundations
of Software Engineering, pages 346{355. ACM,
2005.

[11] Planning poker 3.0. https://goo.gl/Tl5mws.
Accessed: 2016-06-16.

[12] Why do the cards deviate slightly from the
_bonacci sequence? http://goo.gl/xgs7PF.
Accessed:2016-07-13.

[13] M. Usman, E. Mendes, F. Weidt, and R. Britto.
E_ort estimation in agile software development:
Asystematic literature review. In Proceedings of
the 2014 Internation-al Conference on
Predictive Models in Software Engi-neering,
pages 82{91. ACM, 2014.

[14] J. Schmidhuber, Deep learning in neural
networks: an overview, Neural Netw. 61
(January 01, 2015) (2015) 85–117.

[15] V. Campos, B. Jou, X. Giro-i Nieto, From pixels
to sentiment: Fine-tuning cnns for visual
sentiment predic-tion, Image Vis. Comput. 65
(September 2017) (2017) 15–22.

[16] L. Brocki, K. Marasek, Deep belief neural
networks and bidirectional long-short term
memory hybrid for speech recognition, Arch.
Acoust. 40 (2) (2015) 191–195.

[17] K.S. Tai, R. Socher, C.D. Manning, Improved
seman-tic representations from tree-structured
long short-term memory networks, in:
Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguis-tics and

the 7th International Joint Conference on Natu-
ral Language Processing of the Asian
Federation of Natu-ral Language Processing
ACL-IJCNLP 2015, Association for
Computational Linguistics (ACL), Beijing,
China, 2015, pp. 1556–1566.

[18] A. Krizhevsky, I. Sutskever, G.E. Hinton,
Imagenet classification with deep con-
volutional neural networks, in: Proceedings of
the Advances in Neural Infor- mation
Processing Systems 25: 26th Annual
Conference on Neu-ral Informa- tion Processing
Systems 2012 (NIPS’2012), Lake Tahoe, NV,
United states, 2012, pp. 1097–1105.

[19] K.-i. Funahashi, Y. Nakamura, Approximation
of dynamical systems by contin- uous time
recurrent neural networks, Neural Netw. 6 (6)
(1993) 801–806.

[20] Y. Kim, Convolutional neural networks for
sentence classification, in: Pro- ceedings of the
Conference on Empirical Methods in Natural
Language Pro- cessing, As-sociation for
Computational Linguistics (ACL), Doha, Qatar,
2014, pp. 1746–1751.

[21] S. Liao, J. Wang, R. Yu, K. Sato, Z. Cheng,
CNN for situations understanding based on
sentiment analysis of twitter data, in:
Proceedings of the 8th In- ternational
Conference on Advances in Information
Technology, Elsevier B.V., Macau, China,
2016, pp. 376–381.

[22] W. Cao, A. Song, J. Hu, Stacked residual
recurrent neural network with word weight for
text classification, IAENG Int. J. Comput. Sci.
44 (3) (2017) 277–284.

[23] Y. Zhang, M.J. Er, R. Venkatesan, N. Wang, M.
Pratama, Sentiment classification using
comprehensive attention recurrent models, in:
Proceedings of the International Joint
Conference on Neural Networks, IEEE,
Vancouver, BC, Canada, 2016, pp. 1562–1569.

[24] L. Wang, Z. Wang, S. Liu, An effective
multivariate time series classification ap-
proach using echo state network and adaptive
differential evolution algorithm, Expert Syst.
Appl. 43 (January 1, 2016) (2016) 237–249.

[25] Liu G, Guo J. Bidirectional LSTM with
attention mechanism and convolutional layer
for text classifica-tion. Neurocomputing. 2019
Apr 14;337:325-38. new

[26] M. Jorgensen, “A review of studies on expert
estima-tion of software development effort,” J.
Syst. Softw., vol. 70, no. 1/2, pp. 37–60, 2004.

Journal of Theoretical and Applied Information Technology

30th September 2022. Vol.100. No 18
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5320

[27] M. Jorgensen and T. M. Gruschke, “The impact
of lessons-learned sessions on effort estimation
and uncer-tainty assessments,” IEEE Trans.
Softw. Eng., vol. 35, no. 3, pp. 368–383,
May/Jun. 2009.

[28] B. W. Boehm, R. Madachy, and B. Steece,
Software Cost Estimation with Cocomo II.
Englewood Cliffs, NJ, USA: Prentice Hall,
2000.

[29] P. Sentas, L. Angelis, and I. Stamelos,
“Multinomial logistic regression applied on
software productivity pre-diction,” in Proc. 9th
Panhellenic Conf. Informat., 2003, pp. 1–12.

[30] P. Sentas, L. Angelis, I. Stamelos, and G. Bleris,
“Soft-ware productivity and effort prediction
with ordinal re-gression,” Inf. Softw. Technol.,
vol. 47, no. 1, pp. 17–29, 2005.

[31] S. Kanmani, J. Kathiravan, S. S. Kumar, M.
Shanmu-gam, and P. E. College, “Neural
network based effort es-timation using class
points for OO systems,” in Proc. Int. Conf.
Comput.: Theory Appl. (ICCTA), 2007, pp.
261–266.

[32] A. Panda, S. M. Satapathy, and S. K. Rath,
“Empirical validation of neural network models
for agile software effort estimation based on
story points,” Procedia Com-put. Sci., vol. 57,
pp. 772–781, 2015.

[33] S. Kanmani, J. Kathiravan, S. S. Kumar, and M.
Shanmugam, “Class point based effort
estimation of OO systems using fuzzy
subtractive clustering and artificial neural
networks,” in Proc. 1st India Softw. Eng. Conf.,
2008, pp. 141–142.

[34] S. Bibi, I. Stamelos, and L. Angelis, “Software
cost prediction with predefined interval
estimates,” in Proc. 1st Softw. Meas. Eur.
Forum, 2004, pp. 237–246.

[35] M. Shepperd and C. Schofield, “Estimating
software project effort using analogies,” IEEE
Trans. Softw. Eng., vol. 23, no. 11, pp. 736–743,
Nov. 1997.

[36] L. Angelis and I. Stamelos, “A simulation tool
for efficient analogy based cost estimation,”
Empirical Softw. Eng., vol. 5, no. 1, pp. 35–68,
2000.

[37] F. Sarro, A. Petrozziello, and M. Harman,
“Multi-objective software effort estimation,” in
Proc. 38th Int. Conf. Softw. Eng., 2016, pp.
619–630.

[38] M. Jørgensen and M. Shepperd, “A systematic
review of software development cost estimation

studies,” IEEE Trans. Softw. Eng., vol. 33, no.
1, pp. 33–53, Jan. 2007.

[39] E. Kocaguneli, T. Menzies, and J. W. Keung,
“On the value of ensemble effort estimation,”
IEEE Trans. Softw. Eng., vol. 38, no. 6, pp.
1403–1416, Nov./Dec. 2012.

[40] F. Collopy, “Difficulty and complexity as
factors in software effort estimation,” Int. J.
Forecasting, vol. 23, no. 3, pp. 469–471, 2007.

[41] E. Kocaguneli, T. Menzies, and J. W. Keung,
“On the value of ensemble effort estimation,”
IEEE Trans. Softw. Eng., vol. 38, no. 6, pp.
1403–1416, Nov./Dec. 2012.

[42] R. Valerdi, “Convergence of expert opinion via
the wideband delphi method: An application in
cost estima-tion models,” INCOSE Int. Symp.,
vol. 21, no. 1, pp. 1246–1259, 2011.

[43] S. Chulani, B. Boehm, and B. Steece, “Bayesian
anal-ysis of empirical software engineering cost
models,” IEEE Trans. Softw. Eng., vol. 25, no.
4, pp. 573–583, Jul./Aug. 1999.

[44] M. Cohn, Agile Estimating and Planning.
London, U.K.: Pearson Education, 2005.

[45] S. Porru, A. Murgia, S. Demeyer, M. Marchesi,
and R. Tonelli, “Estimating story points from
issue reports,” Proc. 12th Int. Conf. Predictive
Models Data Anal. Softw. Eng., 2016, Art. no.
2.

[46] R. Djouab, C. Commeyne, and A. Abran,
“Effort estimation with story points and
COSMIC function points - an industry case
study,” pp. 25–36, 2008. [Online]. Available:
http://cosmicsizing.org/wp-
content/uploads/2016/03/Estimation-model-v-
Print-Format-adapter.pdf

[47] ISO/IEC JTC 1/SC 7, INTERNATIONAL
STANDARD ISO/IEC Software Engineering
COSMIC: A Functional Size Measurement
Method, vol. 2011, 2011. [Online]. Available:
https://www.iso. org/standard/54849.html

[48] P. Abrahamsson, R. Moser, W. Pedrycz, A.
Sillitti, and G. Succi, “Effort prediction in
iterative software devel-opment processes—
incremental versus global prediction models,”
in Proc. 1st Int.Symp. Empirical Softw. Eng.
Meas., 2007, pp. 344–353.

[49] P. Hearty, N. Fenton, D. Marquez, and M. Neil,
“Pre-dicting project velocity in XP using a
learning dynamic Bayesian network model,”
IEEE Trans. Softw. Eng., vol. 35, no. 1, pp.
124–137, Jan./Feb. 2009.

Journal of Theoretical and Applied Information Technology

30th September 2022. Vol.100. No 18
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5321

[50] M. Perkusich, H. De Almeida, and A.
Perkusich, “A model to detect problems on
scrum-based software de-velopment projects,”
in Proc. ACM Symp. Appl. Com-put., 2013, pp.
1037–1042.

[51] E. Giger, M. Pinzger, and H. Gall, “Predicting
the fix time of bugs,” in Proc. 2nd Int.
Workshop Recommenda-tion Syst. Softw. Eng.,
2010, pp. 52–56.

[52] L. D. Panjer, “Predicting eclipse bug lifetimes,”
in Proc. 4th Int. Workshop Mining Softw.
Repositories, 2007, pp. 29–32.

[53] P. Bhattacharya and I. Neamtiu, “Bug-fix time
predic-tion models: Can we do better?” in Proc.
8th Working Conf. Mining Softw. Repositories,
2011, pp. 207–210.

[54] P. Hooimeijer and W. Weimer, “Modeling bug
report quality,” in Proc. 22 IEEE/ACM Int.
Conf. Automated Softw. Eng., Nov. 2007, pp.
34–44.

[55] Yang Z, Yang D, Dyer C, He X, Smola A, Hovy
E. Hierarchical attention networks for document
classifica-tion. InProceedings of the 2016
conference of the North American chapter of the
association for computational linguistics:
human language technologies 2016 Jun (pp.
1480-1489).

[56] Choetkiertikul M, Dam HK, Tran T, Pham T,
Ghose A, Menzies T. A deep learning model for
estimating story points. IEEE Transactions on
Software Engineering. 2018 Jan 12;45(7):637-
56.

[57] Pennington J, Socher R, Manning CD. Glove:
Global vectors for word representation.
InProceedings of the 2014 conference on
empirical methods in natural lan-guage
processing (EMNLP) 2014 Oct (pp. 1532-
1543).

[58] Raffel C, Ellis DP. Feed-forward networks with
atten-tion can solve some long-term memory
problems. arXiv preprint arXiv:1512.08756.
2015 Dec 29.

[59] Cho K, Courville A, Bengio Y. Describing
multimedia content using attention-based
encoder-decoder networks. IEEE Transactions
on Multimedia. 2015 Sep 4;17(11):1875-86.

[60] Bahdanau D, Cho K, Bengio Y. Neural machine
trans-lation by jointly learning to align and
translate. arXiv preprint arXiv:1409.0473. 2014
Sep 1.

[61] Cho K, Van Merriënboer B, Gulcehre C,
Bahdanau D, Bougares F, Schwenk H, Bengio

Y. Learning phrase rep-resentations using RNN
encoder-decoder for statistical machine
translation. arXiv preprint arXiv:1406.1078.
2014 Jun 3.

[62] Srivastava N, Hinton G, Krizhevsky A,
Sutskever I, Salakhutdinov R. Dropout: a simple
way to prevent neu-ral networks from
overfitting. The journal of machine learning
research. 2014 Jan 1;15(1):1929-58.

[63] Brownlee, Jason. Imbalanced classification
with Py-thon: better metrics, balance skewed
classes, cost-sensitive learning. Machine
Learning Mastery, 2020.

[64] Moharreri K, Sapre AV, Ramanathan J,
Ramnath R. Cost-effective supervised learning
models for software effort estimation in agile
environments. In2016 IEEE 40th Annual
Computer Software and Applications
Conference (COMPSAC) 2016 Jun 10 (Vol. 2,
pp. 135-140). IEEE.

[65] Larochelle H., Hinton G, (2010), Learning to
combine foveal glimpses with a third-order
Boltzmann machine

[66] Abrahamsson P, Fronza I, Moser R, Vlasenko
J, Pedrycz W. Predicting development effort
from user stories. In2011 International
Symposium on Empirical Software Engineering
and Measurement 2011 Sep 22 (pp. 400-403).
IEEE.

[67] Ionescu VS. An approach to software
development effort estimation using machine
learning. In2017 13th IEEE International
Conference on Intelligent Computer
Communication and Processing (ICCP) 2017
Sep 7 (pp. 197-203). IEEE.

[68] Yang Z, Dai Z, Yang Y, Carbonell J,
Salakhutdinov R, Le QV X. Generalized
autoregressive pretraining for lan-guage
understanding. 2019.

[69] Devlin J, Chang MW, Lee K, Toutanova K.
Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv
preprint arXiv:1810.04805. 2018 Oct 11.

[70] Radford, Alec, Karthik Narasimhan, Tim
Salimans, and Ilya Sutskever. Improving
language understanding by generative pre-
training. 2018.

[71] T. Mikolov, K. Chen, G. Corrado, and J. Dean,
“Effi-cient Estimation of Word Representations
in Vector Space,” arXiv:1301.3781 [cs], Jan.
2013.

Journal of Theoretical and Applied Information Technology

30th September 2022. Vol.100. No 18
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5322

[72] J. Pennington, R. Socher, and C. Manning,
“Glove: Global Vectors for Word
Representation,” in Proceedings of the 2014
Conference on Empirical Methods in Natural
Language Processing (EMNLP), Doha, Qatar,
2014, pp. 1532–1543

[73] S. J. Pan and Q. Yang, “A survey on transfer
learning,” IEEE Transactions on knowledge and
data engineering, vol. 22, no. 10, pp. 1345–
1359, 2010.

[74] B. Chikhaoui, F. Gouineau, and M. Sotir, “A
cnn based transfer learning model for automatic
activity recognition from accelerometer
sensors,” in International Conference on
Machine Learning and Data Mining in Pattern
Recogni-tion. Springer,2018, pp. 302–315.

[75] M. A. A. H. Khan and N. Roy, “Untran:
Recognizing unseen activities with unlabeled
data using transfer learn-ing,” in 2018
IEEE/ACM Third International Conference on
Internet-of-Things Design and Implementation
(IoTDI). IEEE, 2018, pp. 37–47.

[76] T. Menzies, et al., “The PROMISE Repository
of empirical software engineering data,” North
Carolina State University, Department of
Computer Science, 2015, [Online]. A

[77] P. L. Braga, A. L. I. Oliveira, and S. R. L. Meira,
“Software effort estimation using machine
learning techniques with robust confidence
intervals,” in Proc. 7th Int. Conf. Hybrid Intell.
Syst., 2007, pp. 352–357. vailable:
http://openscience.us/repo

[78] F. Sarro, A. Petrozziello, and M. Harman,
“Multi-objective software effort estimation,” in
Proc. 38th Int. Conf. Softw. Eng., 2016, pp.
619–630.

[79] Hossain, Md Rajib, Mohammed Moshiul
Hoque, Nazmul Siddique, and Iqbal H. Sarker.
"Bengali text document categorization based on
very deep convo-lution neural network." Expert
Systems with Applica-tions 184 (2021):
115394.

[80] Dunne, R.A. and Campbell, N.A., 1997, June.
On the pairing of the softmax activation and
cross-entropy penalty functions and the
derivation of the softmax activation function. In
Proc. 8th Aust. Conf. on the Neural Networks,
Melbourne (Vol. 181, p. 185). Citeseer

[81] M. Shepperd and S. MacDonell, “Evaluating
prediction systems in software project
estimation,” Inf. Softw. Technol., vol. 54, no. 8,
pp. 820–827, 2012. [Online]. Available:
http://dx.doi.org/ 10.1016/j.infsof.2011.12.008

[82] P. A. Whigham, C. A. Owen, and S. G.
Macdonell, “A baseline model for software
effort estimation,” ACM Trans. Softw. Eng.
Methodology, vol. 24, no. 3, 2015, Art. no. 20.

[83] T. Menzies and M. Shepperd, “Special issue on
repeatable results in software engineering
prediction,” Empirical Softw. Eng., vol. 17, no.
1/2, pp. 1–17, 2012.

