

Journal of Theoretical and Applied Information Technology

30th September 2022. Vol.100. No 18
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5201

UTILIZATION DOCKER SWARMS IN A CONTAINER
TECHNOLOGY SYSTEM TO PROBLEM SOLVING LOAD

BALANCE

1NURUL KHAIRINA, 1SUSILAWATI, 2RAHMAD SYAH*

1Faculty of Engineering, Universitas Medan Area. Medan. Indonesia
2Excellent Centre of Innovation and New Science, Universitas Medan Area,
Jl. Kolam No. 1/Gedung PBSI, Medan, Sumatera Utara, Medan. Indonesia

e-mail: rahmadsyah@uma.ac.id*

ABSTRACT

Container technology is a type of virtualization technology that is used at the operating system level. This is
more in line with the need for long-term data storage for day-to-day operations. Data mining is becoming
increasingly important for everyone in order to gather relevant information. Large-scale data processing
slows down several operations, including data collection, processing, organization, modeling, analysis, and
storage. The most significant difference for most users is the use of a high-quality data-collection system and
its distribution, as well as the use of a complex data-analysis system. Docker Swarm is used for the
development of various types of distributed systems, which can aid in the resolution of all issues as well as
the optimization of results. Machine Learning was used to perform horizontal.
Keywords: Optimasi, Docker Swarm, Machine Learning, Raspberry pi, Support Vector Regression.

1. INTRODUCTION

The server is required to process a service when
the quantity of services requested by a client
exceeds the server's maximum load capacity. This
might enhance server performance and decrease
network latency. If the system receives more
requests than it can handle every hour, day, week,
and month, the server's performance declines, and
issues develop[1][2].
 The cluster computer system was created
using the boot method at the time of
implementation[3][4]. Balancing is a technique
for balancing traffic loads across multiple server
clusters so that traffic can run optimally and at
maximum speed[5]. To increase distributed
system scalability, load balancing must be
implemented on the web server cluster as a means
of managing a high volume of requests or the
server load brought on by numerous requests. The
goal of optimization is to produce the best results
within predetermined circumstances [6][7][8]. All
of these actions ultimately aim to increase
intended benefit while minimizing effort.
Optimization can be defined as the process of
figuring out the circumstances that give the
function's minimal or greatest value since the
amount of work necessary or the intended benefit

can be stated as a function of the choice
variable[9].

When utilizing a machine learning strategy
for regression, Support Vector Regression (SVR)
is an SVM technique. [10][11][12]. SVR is a
regression function that satisfies all data inputs
with an error and uses the function f(x) as a
dividing line(). This will be carried out in an effort
to optimize. The counterbalance is anticipated to
accept exceptionally large or congested
demand[13][14].

The amount of data generated when
providing services to applications increases along
with the scale of IoT, and there are strong
expectations for risk resistance and delay
sensitivity, which causes a significant
performance bottleneck in the technological
cloud. The main purpose of edge computing is to
stream data and sink services to the edge. This
approach would not only ease load on cloud
servers but also lessen delay brought on by remote
traffic and congestion, which was previously
borne by the edge side of the cloud. It has the
ability to implement the service locally,
enhancing risk resistance, particularly in cases of
unstable network conditions.

Container-based machine learning systems
can support container lifecycle management by
foreseeing real-time anomalies and failures

Journal of Theoretical and Applied Information Technology

30th September 2022. Vol.100. No 18
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5202

through monitoring management tools and
visualizations [15].

2. RELATED WORK

2.1 Docker Container
Docker is the most widely used container
platform. Because they virtualize hardware,
Docker containers are significantly lighter and
quicker. Docker is often 26 times quicker than
virtual machines and can run on anything from
small devices to huge servers (VMs) [16][17][18].

The most widely used open-source,
lightweight virtual machine-like solution for
application-oriented container virtualization is
called docker. Each independently running
container is isolated by docker. Less overhead is
produced when a straightforward docker design is
used. [19]. The hosts that make up Docker are
numerous. Docker running in cluster swarm mode
with a manager (to manage membership) a
worker, who manages the swarm service, and one
more[20]. The ability to change the configuration
of the service, including the network and volumes
connected to it, without having to manually restart
it is one of the key advantages of the swarm
service. [21].

2.2 Method
The Support Vector Regression (SVR) algorithm,
one of the machine learning algorithms, can
resolve the overfitting issue and generate accurate
predictions [22][23]. Overfitting is the tendency
of data to exhibit near-perfect prediction accuracy
during training or training phase. The optimal
dividing line or hyperplane is what the SVR
algorithm seeks to identify. by measuring the
magnin in the hyperplane and identifying the ideal
hyperplane. The margin is the separation between
the nearest data point and the hyperplane. The
data closest to the edge is the support vector [24].

3 RESEARCH AND METHODOLOGY

Machine learning model training tasks are carried
out on the cloud because cloud servers provide an
abundance of GPU/CPU, RAM, and other
resources. The model is subsequently sent across
the Internet to the edge. Models are run as services
on edge computing platforms after being
containerized by edge. Users can communicate
with the computing platform and make service
requests [25][26].

The core unit that delivers a service is a
pod, which can be made up of a group of tightly

coupled containers. Through a network of
bridges, these internal containers effectively
communicate with one another and share storage
volumes to house resources. Pod provides
machine learning prediction services[27][28].

The edge computing platform builds a

client container when it gets an image from a
client. Containers exchange messages with each
other. As shown in Figure 1, the expected
outcome is then communicated to the user, and the
client container is then destroyed.

3.1. Machine Learning
A container is made up of several image layers
stacked on top of one another to form a single
container. Heavy image layers are shared by
numerous containers and are read-only.
dependable system. Only the exclusive container
layer is removed when a container is deleted; the
shared image layer is left intact.
 to obtain the highest edge-side machine
learning deployment performance and
application coexistence. We create the edge
computing platform using lightweight Docker

Figure 2 User Request

Figure 1 Container Machine Learning

Journal of Theoretical and Applied Information Technology

30th September 2022. Vol.100. No 18
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5203

container technology and the Kubernetes
container choreography system, and we properly
account for heterogeneity and resource
constraints during the deployment process of the
machine learning model. Using Docker
technology, we package the machine learning
model and related resources into containers. On
the other hand, Kubernetes offers flexible
resource scheduling for computation, storage,
and other resources in addition to real-time
monitoring, operation, and maintenance of
containers [29][30]. As a result of the experiment,
we learned how to install machine learning
services on the edge side. The machine learning
container workflow is shown in Figure 2.

3.2. Kubernetes

An open-source container cluster management
system called Kubernetes can automate the
deployment, growth, and upkeep of container
clusters [31].
 A master component and component
nodes make up Kubernetes. Both host-installed
master components and host-installed node
components are referred to as Master and
Node.js, respectively. work managing the
platform's functionality Api-server offers a user
interface for managing activities across many
resources, whereas Kubectl is a tool for managing
clusters. The cluster's default storage system is
Kubernetes. While Controller Manager is in
charge of running numerous controllers and
assuring real-time service association and pod
information, Scheduler is responsible for
managing scheduled resources [32][33].
 The node component collaborates with
Master to handle Node.js while running on a
managed host. Node components include Kubelet
and Kube proxy. Running and maintaining the
pods on the Node is the responsibility of the
Kubelet. The fundamental component of a
service is a pod. The Kub-proxy is in charge of
facilitating communication within the cluster of
pods. Figure 3 illustrates a cluster with every pod
connected to the same Master.

4 EXPERIMENT

4.1 RaspberryPi
One laptop serves as the user, one laptop serves
as the host node, one laptop serves as the master
host, and one mobile wifi device serves as a
communication relay.

The following describes the current system's
operating principle [34][35]:
1. A request is made by the user.
2. The user agrees to the request and navigates

to the RaspberryPi Server section.
3. The Raspberry Pi server continues to accept

user requests and uses Haproxy as a load
balancer for this probe.

4. The Raspberry Pi cluster node is added to
the Haproxy load balancer.

5. RaspberryPi Node Cluster indicates
whether or not the Raspberry Pi Node
Cluster still has service availability or can
meet user demands.

6. If node 1 is ready, returns the result;
otherwise, notifies haproxy as the load
balancer.

7. Response Outcomes This section
differentiates between successful and error
response results and returns them to the
user.

8. Requests per second is a scalability metric
for the system's throughput.

9. Requests per second tests are carried out by
running a series of services per second from
the client.

10. This service is sent to the web server to use
the load balancer to determine the web
server's performance. This is intended to

Figure 3 Kubernetes

Journal of Theoretical and Applied Information Technology

30th September 2022. Vol.100. No 18
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5204

test how many requests a web server
running on a Docker Swarm container
cluster can handle.

11. R𝑒𝑞𝑢𝑒𝑠𝑡𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑 = ℎ𝑖𝑡𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑
(ℎ𝑖𝑡𝑠/𝑠)

12. Loss Requests is a request sent from a client
to an overloaded web server because the
web server cannot handle exceeding the
web server's maximum capacity and the
web server cannot accept the upgrade.
𝑹𝐿 = 𝒖 ∗ e

4.2 How to Apply Support Vector Regression

(SVR)[36][37]
1. Data sharing for training and testing.
2. Determine the kernel function and loss

function that will be used for forecasting.
3. Determine the C and kernel parameters'

values.
4. Determine the beta and bias values.
5. Predicting the results of the tests.
6. Using the best kernel functions, loss

functions, and parameters to forecast the
future

5 RESULT AND DISCUSSION

Following the modification of the formulation to
make the Support Vector Regression non-linear,
the following equation displays the best
approximation surface: [38][39][40]

𝐹(𝑥) = ∑ (𝑎௝ି

∗ 𝑎௝) (𝐾(𝑥௜
ଵ
௜ୀଵ , 𝑥) + 𝜆ଶ)

This method is helpful for finding the best
dividing line for the Support Vector Regression
function in each step of the calculation [41]. The
sequential learning process includes the following
steps:

Initialization 𝛼௜ = 0, 𝛼௜

∗ = 0, then calculate the
matrix 𝑅௜௝

𝑅௜௝ = (𝐾൫𝑥௜,𝑥൯ + 𝜆ଶ for i, j=1, ... n

Information:
Rij = matriks hessian
𝐾 = kernel function
𝑥௜, = data ke – i
𝑥௝, = data ke – j
λ = Scalar Variable

For each training data i – 1 until n calculated:

a. 𝐸௜ = 𝑦௜ − ∑ (𝑎௝
∗ − 𝑎௝

ଵ
௝ୀଵ) 𝑅௜௝

b. 𝛿𝛼௜
∗ = 𝑚𝑖𝑛 {𝑚𝑎𝑥[𝑦(𝐸௜ − 𝜀), −𝛼௜] , 𝐶 −

∝௜}
c. 𝛼௜

∗ = 𝛿𝛼௜
∗

In the regression there are residuals, for example
residuals (r) defined by
subtracting the scalar y output from the estimate
f(x) by r = y – f(x) :

𝐸(𝑟) = ൜
0

|𝑟| − 𝜀
 for |r| ≤ 𝜀

 For others

Use kernel functions while using Support Vector
Regression techniques to solve non-linear issues.
Replace the inner product (Xi and Xj) with kernel
functions for solving a linear problem in a high-
dimensional space. With this kernel function,
higher-dimensional feature spaces can be related
to without the need for explicit mapping
calculations [42][43]. The Support Vector
Algorithm Work regression is determined by the
type of kernel function to be employed and the
kernel parameter parameters.

The effectiveness of the system is assessed
under varied loads. By increasing the number of
containers from one to four, machine learning
applications and containers are measured. These
measurements for the scenarios in Table 1
comprise the following: memory usage for the
application container, application execution time,
memory usage during execution, and network I/O
blocks [44][45][46][47].

Table 1. User Data

User Ramp Up

Period
 Loop

Count
Total

500 30 40 20000
500 40 50 25000

1000 30 40 40000
1000 40 50 50000
1500 30 40 60000
1500 40 50 75000
2000 30 40 80000
2000 40 50 100000
2500 30 40 100000
2500 40 50 125000
3000 30 40 120000
3000 40 50 150000
5000 30 50 250000
8000 30 50 400000
10000 30 50 500000
20000 40 50 1000000

(1)

(2)

(3)

(5)

Journal of Theoretical and Applied Information Technology

30th September 2022. Vol.100. No 18
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5205

When Docker Containers are employed, ideal
performance increases from a minimum of 5
percent to a maximum of 9 percent, while CPU
overhead climbs from a minimum of 130 percent
to a high of 185 percent when they are not. Figure
4 illustrates how the Docker Container can
manage the load while lowering CPU use,
enabling the device to function optimally without
suffering any harm.

When Docker Container is used, the execution

time for a single container is 40 seconds, which is
not significantly different from when Docker
Container is not used. When Docker Container is
not used, the execution time for a single container
increase from 55 seconds to 135 seconds. The
exceptional outcomes are measured by a
considerable difference from when Docker

Containers are not employed when the number of
containers is increased to four. It has been shown
that executing programs in a lightweight
virtualization environment based on Docker
Containers saves time and money. Table 2 and
Figure 5 provide examples of this.

Table 2 User Time Period

User Ramp Up
Period

Loop
Count

Total

100 30 40 4000
200 40 50 10000

400 30 40 16000

600 40 50 30000

800 30 40 32000

1000 40 50 50000

6 CONCLUSION

This paper optimizes the development and
deployment of edge computing platforms by
combining machine learning, Docker, and
Kubernetes technologies. As a consequence of the
experiment, we learned that the computing
platform is capable of deploying machine learning
services. Due to improved network conditions
between the cloud and customers, edge computing
platforms can offer users more reliable machine
learning services. As a result, Docker containers
can be made horizontally elastic in response to
varying workloads for real-time applications. The
findings demonstrate that machine learning may
continue to perform well even when the workload
varies.

ACKNOWLEDGMENT

This research was completed in the lab. Faculty of
Engineering, University of Medan Area and
thanks to LP2M Medan Area University for
providing support and assistance.

REFERENCES

[1] K. Ye, Y. Kou, C. Lu, Y. Wang and C. -Z.
Xu, "Modeling Application Performance
in Docker Containers Using Machine
Learning Techniques," 2018 IEEE 24th
International Conference on Parallel and
Distributed Systems (ICPADS), 2018, pp.
1-6, doi: 10.1109/PADSW.2018.8644581

Figure 4 User Load 0

10000

20000

30000

40000

50000

60000

1 2 3 4 5 6

User Ramp Up Period

Loop Count Total

Figure 5 User Time Periode

Journal of Theoretical and Applied Information Technology

30th September 2022. Vol.100. No 18
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5206

[2] Buchs, D., Klikovits, S., Linard, A.,
Mencattini, R., & Racordon, D. (2018,
June). A model checker collection for the
model checking contest using docker and
machine learning. In International
Conference on Applications and Theory of
Petri Nets and Concurrency (pp. 385-
395). Springer, Cham.

[3] Yadav, M. P., & Yadav, D. K. (2021).
Maintaining container sustainability
through machine learning. Cluster
Computing, 24(4), 3725-3750.

[4] Abdullah, M., Iqbal, W., Bukhari, F., &
Erradi, A. (2020). Diminishing returns and
deep learning for adaptive CPU resource
allocation of containers. IEEE
Transactions on Network and Service
Management, 17(4), 2052-2063.

[5] Huang, Y., cai, K., Zong, R., & Mao, Y.
(2019, March). Design and
implementation of an edge computing
platform architecture using docker and
kubernetes for machine learning.
In Proceedings of the 3rd International
Conference on High Performance
Compilation, Computing and
Communications (pp. 29-32).

[6] Ramos, F., Viegas, E., Santin, A.,
Horchulhack, P., dos Santos, R. R., &
Espindola, A. (2021, June). A machine
learning model for detection of docker-
based APP overbooking on kubernetes.
In ICC 2021-IEEE International
Conference on Communications (pp. 1-6).
IEEE.

[7] Chiang, R. C. (2020). Contention-aware
container placement strategy for docker
swarm with machine learning based
clustering algorithms. Cluster Computing,
1-11.

[8] Kim, B. S., Lee, S. H., Lee, Y. R., Park, Y.
H., & Jeong, J. (2022). Design and
Implementation of Cloud Docker
Application Architecture Based on
Machine Learning in Container
Management for Smart
Manufacturing. Applied Sciences, 12(13),
6737.

[9] Xu, P., Shi, S., & Chu, X. (2017, August).
Performance evaluation of deep learning
tools in docker containers. In 2017 3rd
International Conference on Big Data
Computing and Communications
(BIGCOM) (pp. 395-403). IEEE.

[10] Awad, M., & Khanna, R. (2015). Support
vector regression. In Efficient learning
machines (pp. 67-80). Apress, Berkeley,
CA.

[11] Ceperic, E., Ceperic, V., & Baric, A.
(2013). A strategy for short-term load
forecasting by support vector regression
machines. IEEE Transactions on Power
Systems, 28(4), 4356-4364.

[12] Xu, S., An, X., Qiao, X., Zhu, L., & Li, L.
(2013). Multi-output least-squares support
vector regression machines. Pattern
Recognition Letters, 34(9), 1078-1084.

[13] Li, E., Yang, F., Ren, M., Zhang, X., Zhou,
J., & Khandelwal, M. (2021). Prediction of
blasting mean fragment size using support
vector regression combined with five
optimization algorithms. Journal of Rock
Mechanics and Geotechnical
Engineering, 13(6), 1380-1397.

[14] Jiang, H., Zhang, Y., Muljadi, E., Zhang,
J. J., & Gao, D. W. (2016). A short-term
and high-resolution distribution system
load forecasting approach using support
vector regression with hybrid parameters
optimization. IEEE Transactions on Smart
Grid, 9(4), 3341-3350.

[15] Kumar, K., & Kurhekar, M. (2017,
December). Sentimentalizer: Docker
container utility over Cloud. In 2017 Ninth
International Conference on Advances in
Pattern Recognition (ICAPR) (pp. 1-6).
IEEE.

[16] Kaewkasi, C., & Chuenmuneewong, K.
(2017, February). Improvement of
container scheduling for docker using ant
colony optimization. In 2017 9th
international conference on knowledge
and smart technology (KST) (pp. 254-
259). IEEE.

[17] Rad, B. B., Bhatti, H. J., & Ahmadi, M.
(2017). An introduction to docker and
analysis of its performance. International
Journal of Computer Science and Network
Security (IJCSNS), 17(3), 228.

[18] Naik, N. (2016, October). Building a
virtual system of systems using docker
swarm in multiple clouds. In 2016 IEEE
International Symposium on Systems
Engineering (ISSE) (pp. 1-3). IEEE.

[19] Al-Rakhami, M., Alsahli, M., Hassan, M.
M., Alamri, A., Guerrieri, A., & Fortino,
G. (2018, August). Cost efficient edge
intelligence framework using docker
containers. In 2018 IEEE 16th Intl Conf on

Journal of Theoretical and Applied Information Technology

30th September 2022. Vol.100. No 18
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5207

Dependable, Autonomic and Secure
Computing, 16th Intl Conf on Pervasive
Intelligence and Computing, 4th Intl Conf
on Big Data Intelligence and Computing
and Cyber Science and Technology
Congress
(DASC/PiCom/DataCom/CyberSciTech) (
pp. 800-807). IEEE.

[20] Brady, K., Moon, S., Nguyen, T., &
Coffman, J. (2020, January). Docker
container security in cloud computing.
In 2020 10th Annual Computing and
Communication Workshop and
Conference (CCWC) (pp. 0975-0980).
IEEE.

[21] Santos, E. A., McLean, C., Solinas, C., &
Hindle, A. (2018). How does Docker affect
energy consumption? Evaluating
workloads in and out of Docker
containers. Journal of Systems and
Software, 146, 14-25.

[22] Lee, Y., Oh, S., & Choi, D. H. (2008).
Design optimization using support vector
regression. Journal of Mechanical Science
and Technology, 22(2), 213-220.

[23] Li, E., Yang, F., Ren, M., Zhang, X., Zhou,
J., & Khandelwal, M. (2021). Prediction of
blasting mean fragment size using support
vector regression combined with five
optimization algorithms. Journal of Rock
Mechanics and Geotechnical
Engineering, 13(6), 1380-1397.

[24] Zhang, F., & O'Donnell, L. J. (2020).
Support vector regression. In Machine
Learning (pp. 123-140). Academic Press.

[25] Pahl, C., & Lee, B. (2015, August).
Containers and clusters for edge cloud
architectures--a technology review.
In 2015 3rd international conference on
future internet of things and cloud (pp.
379-386). IEEE.

[26] Park, M., Bhardwaj, K., & Gavrilovska, A.
(2020). Toward lighter containers for the
edge. In 3rd USENIX Workshop on Hot
Topics in Edge Computing (HotEdge 20).

[27] Ribeiro, M., Grolinger, K., & Capretz, M.
A. (2015, December). Mlaas: Machine
learning as a service. In 2015 IEEE 14th
International Conference on Machine
Learning and Applications (ICMLA) (pp.
896-902). IEEE.

[28] Doan, T. V., Nguyen, G. T., Salah, H.,
Pandi, S., Jarschel, M., Pries, R., & Fitzek,
F. H. (2019, September). Containers vs
virtual machines: Choosing the right

virtualization technology for mobile edge
cloud. In 2019 IEEE 2nd 5G World Forum
(5GWF) (pp. 46-52). IEEE.

[29] Bernstein, D. (2014). Containers and
cloud: From lxc to docker to
kubernetes. IEEE cloud computing, 1(3),
81-84.

[30] Marathe, N., Gandhi, A., & Shah, J. M.
(2019, April). Docker swarm and
kubernetes in cloud computing
environment. In 2019 3rd International
Conference on Trends in Electronics and
Informatics (ICOEI) (pp. 179-184). IEEE.

[31] Mao, Y., Fu, Y., Gu, S., Vhaduri, S.,
Cheng, L., & Liu, Q. (2020). Resource
management schemes for cloud-native
platforms with computing containers of
docker and kubernetes. arXiv preprint
arXiv:2010.10350.

[32] Oliveira, C., Lung, L. C., Netto, H., &
Rech, L. (2016, September). Evaluating
raft in docker on kubernetes.
In International Conference on Systems
Science (pp. 123-130). Springer, Cham.

[33] Luksa, M. (2017). Kubernetes in action.
Simon and Schuster.

[34] Bellavista, P., & Zanni, A. (2017,
January). Feasibility of fog computing
deployment based on docker
containerization over raspberrypi.
In Proceedings of the 18th international
conference on distributed computing and
networking (pp. 1-10).

[35] Pahl, C., Helmer, S., Miori, L., Sanin, J., &
Lee, B. (2016, August). A container-based
edge cloud paas architecture based on
raspberry pi clusters. In 2016 IEEE 4th
International Conference on Future
Internet of Things and Cloud Workshops
(FiCloudW) (pp. 117-124). IEEE.

[36] Lapins, M., Arvidsson, S., Lampa, S.,
Berg, A., Schaal, W., Alvarsson, J., &
Spjuth, O. (2018). A confidence predictor
for logD using conformal regression and a
support-vector machine. Journal of
cheminformatics, 10(1), 1-10.

[37] Cavalcanti, M., Inacio, P., & Freire, M.
(2021, August). Performance Evaluation
of Container-Level Anomaly-Based
Intrusion Detection Systems for Multi-
Tenant Applications Using Machine
Learning Algorithms. In The 16th
International Conference on Availability,
Reliability and Security (pp. 1-9).

Journal of Theoretical and Applied Information Technology

30th September 2022. Vol.100. No 18
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5208

[38] Verkerken, M., D’hooge, L., Wauters, T.,
Volckaert, B., & De Turck, F. (2020,
October). Unsupervised machine learning
techniques for network intrusion detection
on modern data. In 2020 4th Cyber
Security in Networking Conference
(CSNet) (pp. 1-8). IEEE.

[39] Gore, R., Banerjea, S., Tyagi, N., Saurav,
S., Acharya, D., & Verma, V. (2020,
December). An Efficient Edge Analytical
Model on Docker Containers for
Automated Monitoring of Public
Restrooms in India. In 2020 IEEE
International Conference on Advanced
Networks and Telecommunications
Systems (ANTS) (pp. 1-6). IEEE.

[40] Han, Q., Yang, S., Ren, X., Zhao, C.,
Zhang, J., & Yang, X. (2020). OL4EL:
Online Learning for Edge-Cloud
Collaborative Learning on Heterogeneous
Edges with Resource Constraints. IEEE
Communications Magazine, 58(5), 49-55.

[41] Anand, P., Rastogi, R., & Chandra, S.
(2020). A class of new support vector
regression models. Applied Soft
Computing, 94, 106446.

[42] Bhavsar, H., & Panchal, M. H. (2012). A
review on support vector machine for data
classification. International Journal of
Advanced Research in Computer
Engineering & Technology
(IJARCET), 1(10), 185-189.

[43] Kavitha, S., Varuna, S., & Ramya, R.
(2016, November). A comparative
analysis on linear regression and support
vector regression. In 2016 online
international conference on green
engineering and technologies (IC-
GET) (pp. 1-5). IEEE.

[44] Tharwat, A. (2019). Parameter
investigation of support vector machine
classifier with kernel
functions. Knowledge and Information
Systems, 61(3), 1269-1302.

[45] Toka, L., Dobreff, G., Fodor, B., &
Sonkoly, B. (2021). Machine learning-
based scaling management for kubernetes
edge clusters. IEEE Transactions on
Network and Service Management, 18(1),
958-972.

[46] Dartois, J. E., Boukhobza, J., Knefati, A.,
& Barais, O. (2019). Investigating
machine learning algorithms for modeling
ssd i/o performance for container-based
virtualization. IEEE transactions on cloud
computing, 9(3), 1103-1116.

[47] Marquez, J. D., & Castillo, M. (2021,
February). Performance comparison:
Virtual machines and containers running
artificial intelligence applications.
In International Conference on
Information Technology & Systems (pp.
199-209). Springer, Cham.marques

