
Journal of Theoretical and Applied Information Technology
15th September 2022. Vol.100. No 17

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5515

OPTIMAL OMNIDIRECTIONAL OFFLOADING IN
FEDERATED CLOUD-FOG SYSTEMS WITH COST

MINIMIZATION

SAUMYARANJAN DASH1, RAJ KUMAR PARIDA2, JYOTIPRAKASH DASH 3,
ASIF UDDIN KHAN4, SANTOSH KUMAR SWAIN5

1, 5 School of Computer Engineering, KIIT Deemed to be University, Bhubaneswar, India
2 Department of Computer Science & Engineering, Koneru Lakshmaiah Education Foundation (KLEF),

Vaddeswaram, Andhra Pradesh, India.
3 Department of Computer Science and Engineering, Gandhi Institute For Technology, Bhubaneswar, India

4 Department of Computer Science and Engineering, Silicon Institute of Technology, Bhubaneswar, India
E-mail: 1 soumya@silicon.ac.in, 2 rajkumarparida@gmail.com, 3 jyotiprakash.dash@gift.edu.in,

4asif.khan@silicon.ac.in, 5 sswainfcs@kiit.ac.in

ABSTRACT

Cloud computing technology has brought a significant impact on the field of technology. Similarly, fog
computing provides similar facilities with a lesser coverage area but is closer to the user. In a federated
environment, these technologies can complement each other by offloading their request to improve the
services. In this paper, we propose a federated two-tier architecture consisting of cloud and fog, where the
cloud has a higher cost and fog has a lower cost. In this architecture, omnidirectional offloading is considered
in which offloading can be done vertically and horizontally, such as Fog to Cloud, Cloud to Fog, and Fog to
Fog. We propose a capacity optimization problem in this federated architecture to optimize the capacities to
minimize the total cost. We are using a modified simulated annealing algorithm to solve this optimization
problem. The results show the performance of our algorithm is nearly optimal and better than the SA in terms
of execution time, and our proposed architecture can save more cost than other existing architectures.

Keywords: Cloud, Fog, Federation, Offloading, Cost, Capacity

1. INTRODUCTION

Cloud Computing facilitates computing,
storage, and network resources for the users on
demand through the network, reducing the overall
cost of the user and enabling profit maximization of
the service provider [1]. But the service delay in
cloud computing is not acceptable for numerous
numbers of delay-sensitive real-time applications
where the task must be completed within a certain
deadline. Since cloud servers are far away from the
end-users, it is not possible to guarantee QoS and
QoE for real-time applications at the edge of the
network [2]. Further, with the advancement in
computing, communication, and network techno-
logies, users want to use the computing services
anywhere, anytime, and through any device. To
address the issues of cloud computing, such as delay
and bandwidth consumption, a new computing
paradigm called Fog Computing was introduced, as
shown in Fig. 1, where cloud resources are provided
at the edge of the network [3]. Unlike cloud
computing, fog computing is intended for distributed
computing, where numerous peripheral devices with
cloud like properties are closer to the users. The idea

is to do as much processing as possible using
computing units closer to the user rather than
forwarded to the cloud, which requires bandwidth
and latency [4]. Due to the tremendous growth in
computing services and devices, processing requests
at the fog are also increased. As fog devices are
resource constrained, the requests are offloaded from
the devices to other fog nodes and cloud server, if
they are not able to be processed locally [5], [6], [7].

Various research has already been carried out on
offloading from edge to fog and from fog to cloud,
where offloading is done only in a unidirectional
manner. In this paper, to further optimize the latency
and cost, we propose a federated two-tier cloud-fog
omnidirectional architecture consisting of cloud and
fog, where the cloud has a higher cost and fog has a
lower cost. In this context, “federation” means the
collection of clouds cooperating to provide resources
that are requested by users [8]. One can offload to
another whenever required to provide better services
to respective subscribers. In a federated cloud-fog
system, the cloud and fog servers cooperate with
each other to process their tasks by offloading
service requests to each other. The federation has

Journal of Theoretical and Applied Information Technology
15th September 2022. Vol.100. No 17

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5516

various advantages, such as load balancing, dynamic
resource scaling, and benefits in terms of economic
perspective.

Figure 1: Cloud-fog systems

This paper proposes a capacity optimization

problem in the cloud-fog federated system where the
offloading scenario is omnidirectional.

Figure 2: Omnidirectional cloud-fog offloading.

In our proposed federated architecture, we have
used Omnidirectional offloading in which
offloading can be done both vertically and
horizontally, such as fog to cloud, cloud to fog, and
fog to fog offloading, as shown in Fig. 2(a), 2(b),
and 2(c), respectively. We propose a modified
simulated annealing algorithm to solve this
optimization problem to minimize the total cost,
which includes the computation and communication
costs with latency as a constraint. The unique
contribution of this paper is as follows.

1) We proposed a novel cloud–fog federated
architecture with Omnidirectional offloading.

2) We proposed a capacity optimization problem
in the proposed federated architecture to
minimize the cost where latency is the
constraint.

3) Then we proposed a modified Simulated
Annealing algorithm to solve this optimization
problem, reduce execution time and save more
cost.

The remaining part of the paper is organized as
follows. In Section 2, we present the research works

related to offloading in fog computing environment
and in cloud- fog federation. The proposed two-tier
federated cloud fog architecture, the system model
and the problem formulation are illustrated in
Section 3. We put forward the detailed algorithm
design and solution approach in Section 4. In
Section 5, we discuss the performance analysis and
simulation results. Finally, the paper is concluded in
Section 6.

2. RELATED WORK

In this section, we present various works on
offloading in different scenarios. [16], [25], and [30]
present the offloading schemes in edge computing.
[9], [11], [15], [17], [18], [29], and [31] present the
offloading schemes in fog computing. [23], and [24]
discuss the cloud federations. [21], and [27] illustrate
the offloading schemes in mobile edge computing.
[12], [20], and [26] describe the offloading schemes
in edge-cloud systems. [13], [14], [19], [32], and
[34] discuss the offloading schemes in fog-cloud
systems. [10] presents an offloading mechanism in
vehicular fog and cloud system. [35], and [37] present
the offloading mechanisms in federated cloud-edge
systems. [22], and [33] describe the offloading
schemes in federated cloud-edge-fog.
Lin et al. investigated edge computing offloading
modeling by considering different edge computing
architectures [16]. Cao et al. presented an integrated
model for service provisioning between edge
infrastructure providers by adopting a cost-efficient
resource management scheme [25]. Bi et al.
proposed a heterogeneous edge offloading scheme to
minimize the total consumption of energy [30].
Zaharia et al. presented a complete machine-
learning-based solution for offloading of traffic in
the fog networks. [9]. Wei et al. proposed a downlink
scheme for computation offloading in a fog
environment consisting of multiple fog nodes and an
IoT device with the aim of maximizing the system
utility and meeting the energy and delay constraints
[11]. Liu et al. proposed a dynamic game-theory-
based socially-aware computation offloading
method to minimize the execution cost [15]. Jiang et
al. presented a fog computing-based energy-efficient
offloading mechanism by effective management of
communication and computation resources to meet
the response time [17]. Jiang et al. presented an
offloading scheme in a shared fog network by
proposing a non-linear integer model for efficient
task scheduling [18]. The optimal offloading
decision for achieving a better quality of experience
(QoE) is perceived as a key research problem in [29]
considering the inherent characteristic of tasks.

Journal of Theoretical and Applied Information Technology
15th September 2022. Vol.100. No 17

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5517

Aazam et al. in [31] discussed the recent schemes for
offloading in the domains of cloud, fog, and IoT. The
authors also explained the key factors important to
consider offloading in each scenario.
Mashayekhy et al. presented a game theory-based
model in which business structure is reshaped among
different cloud providers. A cloud federation
mechanism was proposed by the authors where the
cloud providers’ profit is maximized by reduced
resource utilization [23]. Chen et al. described the
integration of horizontal and vertical cloud
federation [24].
Arif et al. proposed an LSTM-based offloading
architecture and presented a routing scheme for an
efficient computational offloading strategy to reduce
the delay and energy consumption and increase the
security level of the devices [21]. Zhao et al.
presented a MEC-Cloud collaborative offloading
approach to optimize the allocation of computational
resources and offloading decisions [27].
Wang et al. presented a survey article that represents
various challenges, techniques, and state-of-the-art
regarding the offloading problem. The authors also
briefly compared the performance of several
offloading algorithms for edge-cloud-based
scenarios [12]. Wang et al. presented a survey article
on cooperative edge-cloud task offloading [20]. Thai
et al. proposed a computing architecture for cloud
edge that provides both horizontal and vertical
offloading in order to optimize the capacity and
workload to minimize the total cost [26].
Mansouri et al. presented a fog-cloud hierarchical
computation offloading paradigm to improve the
QoE and reduce the delay and energy [13]. Meng et
al. presented a hybrid computation offloading
technique by taking into account the different
capabilities of fog and cloud servers to optimize the
energy consumption while meeting the delay
constraint [14]. Du et al. addressed mixed fog-cloud
offloading by optimizing resource allocation,
bandwidth, and transmit power while satisfying the
maximum delay [19]. Mahini et al. proposed
architecture and devised an evolutionary model to
address task offloading in an IoT environment [32].
Besharati et al. proposed an auction mechanism-
based fog-cloud offloading method by considering
the physical infrastructure’s limitations and
specifications [34].
Wu et al. proposed a scheme for task offloading by
considering the departure of occupied vehicles [10].
 Kar et al. presented an omnidirectional offloading
architecture for a federated cloud-edge system with
the objective of optimizing dual cost while
considering latency constraints [35]. Akutsu et al.
proposed two models namely VDV and VDHS for

offloading based on queue-length thresholds at user
equipment and edges [37].
A comprehensive description of different offloading
schemes used for various federated scenarios and
also the current research status was discussed in [22].
This paper also presented a comparative study of
traditional optimization and machine learning
approaches on various federated architectures.
Hwang et al. presented a delay constraint-based
offloading optimization strategy for a federated
three-tier environment [33].
From the literature, we observed that various
research has already been carried out on offloading
from edge to fog, edge to cloud, and from fog to
cloud, where offloading is done only in a
unidirectional manner. In this paper, we propose a
federated two-tier cloud-fog omnidirectional
architecture in which offloading can be done both
vertically and horizontally, such as fog to the cloud,
cloud to fog, and fog to fog offloading.

Figure 3: Two-tier federated cloud-fog architecture

3. SYSTEM MODEL AND PROBLEM

FORMULATION

3.1 Two Tier Federated Cloud Fog Architecture

Federated architecture is a collection of servers
of different service providers, where the service
providers co-operate with each other and share their
resources. One service provider can rent its
resources to other service providers. In some
scenarios, a service provider can act as a service
provider and a user simultaneously. In this
architecture, the user’s request for a service provider
can be processed by another service provider by
offloading the requests. The federated architecture is
very useful and economical in the cloud computing
environment, where the nature of the user’s demand
is very dynamic. The federated architecture is
managed by an entity known as Federation Manager,
which is the agent responsible for the federation
agreement between two service providers. There are
two types of the federation, namely, horizontal

Journal of Theoretical and Applied Information Technology
15th September 2022. Vol.100. No 17

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5518

federation and vertical federation. The service
providers are on the same level in a horizontal
federation, and in a vertical federation, they are on
different levels.

In our proposed federated architecture, we have
used the cloud servers and fog servers as the
federating nodes on two levels. Clouds are in the
upper level and fogs are in the lower level as shown
in Fig. 3. Offloading can be done horizontally
between cloud to cloud and fog to fog in a
bidirectional manner, similarly vertical offloading
can be done between cloud to fog and fog to cloud
in the bidirectional manner as shown in Fig. 3.

As per our proposed architecture, we consider a
two-tier cloud-fog system, which consists of
multiple clouds and fogs, as illustrated in Fig. 4. All
fogs and clouds are connected vertically, and all fogs
are connected horizontally. Here, not only fog can
offload to the cloud, but the cloud can also offload to
the fogs [22]. And fogs can offload to each other
horizontally. Horizontal offloading is the scenario,
where the request for fog is served by another fog.
Vertical downward offloading is when the request
for a cloud is served by the fog [26], while vertical
upward offloading is when a request for the fog is
served by the cloud [25].

Figure 4: Offloading in Two-tier federated cloud-fog
architecture.

3.2 System Model

In this paper, the cloud is denoted by Ci, i = {1,
2, …, m}, and m is the total number of clouds in the
system. The fog is denoted by Fj, j = {1, 2, …, n},
where, n is the total number of fogs in the system.
The arrival request coming to cloud node Ci with
capacity 𝜇௜

஼ is denoted as 𝜆௜
஼ . The arrival request

coming to fog Fj capacity 𝜇௝
ி is denoted as 𝜆௝

ி . As
mentioned earlier, our architecture considered

horizontal offloading between the fog, which means
there will be channel bandwidth for communication
between fogs denoted by BFj,Fj′ and offloading task
between two fogs denoted as OFj,Fj′. The vertical
offloading in this architecture consists of vertical
upward offloading and vertical downward
offloading. For the vertical offloading between cloud
and fog, the channel bandwidth is denoted by BCi,Fj .
For the vertical downward offloading, where a
request is offloaded from the cloud to the fog,
denoted by OCi,Fj, and for the vertical upward
offloading, where requests are offloaded from the
fog to the cloud, denoted by OFj,Ci . Each fog consists
of several devices denoted as dj,k. All the variables
and notations used in this paper are presented in
Table I.

We assume requests coming to the cloud and
fog will be Poisson processes with an average arrival
rate of 𝜆௜

஼ and 𝜆௝
ி . And for the traffic model at the

cloud and fog in this research, we are considering the
M/M/1 queue. Every request which comes either to
the cloud or fog will need time to be processed which
is the time to compute request or computation for
latency can be denoted as 𝐿஼೔

 that can be expressed
as

𝐿஼೔
=

ଵ

ఓ಴೔
ಾಲ೉ି(ఒ೔

಴ା∑ ைಷೕ,಴೔
ି∑ ை಴೔ಷೕ

೙
ೕసభ ೙

ೕసభ

 (1)

The cloud computing capacity is usually larger

than the fog computing capacity, which explains
computing latency in the cloud is faster than in fog.
In fog, the time that is consumed to process the
request in fog can be denoted as 𝐿ிೕ

 that can be

expressed as

𝐿ிೕ
=

ଵ

ఓಷೕ
ಾಲ೉ି(ఒೕ

ಷା∑ ை಴೔,ಷೕ
ା∑ ைಷ

ೕᇲ,ಷೕ
ି∑ ைಷೕಷ

ೕᇲ
೙
ೕᇲసభ

 ೙
ೕᇲసభ

ି∑ ைಷೕ಴೔
೘
೔సభ ೘

೔సభ

 (2)

Either cloud or fog, when it can’t execute or handle
requests efficiently, it will try to offload either
horizontally or vertically. As we know cloud
computing cost is much higher than the fog as a
result requests are offloaded from cloud to fog. As
we offload a request, communication latency is
considered as a key performance indicator.
Communication latency from cloud to fog can be
denoted as 𝐿஼೔ ,ிೕ

 and expressed as

𝐿஼೔ ,ிೕ
=

ଵ

஻಴೔,ಷೕ
ି ை಴೔,ಷೕ

 (3)

Table I: Variables and Notations

Journal of Theoretical and Applied Information Technology
15th September 2022. Vol.100. No 17

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5519

Notation Description
System:
Ci, 1 ≤ i ≤ m
Fj, 1 ≤ j ≤ n
dj,k, 1 ≤ j ≤ n,

1 ≤ k ≤ nj

ith cloud
jth fog
kth device in jth fog

Traffic:
𝜆௜

஼ , 𝜆௝
ி traffic coming into the ith cloud

and jth fog
Capacity:

𝐵஼೔,ி

ೕ ᇲ
 𝐵ிೕ,ி

ೕᇲ

𝜇஼೔

௎ , 𝜇஼೔

ா , 𝜇஼೔

ெ஺௑

𝜇ிೕ

௎ , 𝜇ிೕ

ா , 𝜇ிೕ

ெ஺௑

Communication capacity
between Ci, Fj and Fj, Fj’

In use, exceeding and
maximum computing
capacity of ith cloud

In use, exceeding and
maximum computing
capacity of jth fog

Latency:
𝑊஼೔

 , 𝑊ிೕ

𝐿஼೔
 , 𝐿ிೕ

𝐿௖೔,ிೕ

, 𝐿ிೕ஼೔
, 𝐿ிೕி

ೕᇲ

𝐿ெ஺௑

Waiting time in the ith cloud and
jth fog
Computing latency at Ci and
Fj

Communicating latency from
Ci to Fj, from Fj to Ci, and from
Fj to Fj’

Maximum latenc
Cost:

τtotal, τcomm, τcomp,
τwait

τC, τF

τwc, τwF

τ F→F , τ C→F , τ F→C

φCi, φFj

wCi,Fj , wFj,Fj’

𝑆஼೔

 , 𝑆ிೕ

Total cost, communication cost,
computation cost, and waiting
cost
Total computing cost in cloud
and fog
Total waiting cost in cloud and
fog
Total communication cost
from fog to fog, from cloud to
fog, and from fog to cloud
Unit computing cost of Ci and
Fj
Unit communication cost
between Ci and Fj, between Fj

and Fj’

Unit waiting cost for ith cloud
and jth fog

The communication latency, when requests are
offloaded from fog to cloud denoted as
𝐿ிೕ ,஼೔

 can expressed as

𝐿ிೕ ,஼೔
=

ଵ

஻಴೔,ಷೕ
ି ைಷೕ,಴೔

 (4)

The fog to fog communication latency denoted as
𝐿ிೕ ,ி

ೕᇲ
 can be calculated as

𝐿ிೕ ,ி
ೕᇲ

=
ଵ

஻ಷೕ,ಷ
ೕᇲ ି ைಷೕ,ಷ

ೕᇲ

 (5)

In general, while using the cloud and fog, the

resources such as CPU and storage are considered as
entities that incurs cost. The computing cost in the
cloud is usually much higher than fog [7]. Total
computing cost τC for the clouds can be derived as

𝜏஼ = ∑ ൫𝜇஼೔

௎ × 𝜑஼೔
൯௠

௜ୀଵ (6)

Then, the total computing cost for fogs denoted
as τF can be expressed as

𝑇ி = ∑ ቀ𝜇ிೕ

௎ × 𝜑ிೕ
ቁ௡

௝ୀଵ (7)

The total communication cost of cloud to fog
offloading denoted as τC→F and can be calculated as

𝜏஼→ி = ∑ ∑ ቀ𝑂஼೔,ிೕ
× 𝜔஼೔,ிೕ

ቁ௡
௝ୀଵ

௠
௜ୀଵ (8)

Similarly, communication cost from fog to
cloud offloading denoted as τF→C will be

𝜏ி→஼ = ∑ ∑ ቀ𝑂ிೕ,஼೔
× 𝜔஼೔,ிೕ

ቁ௡
௝ୀଵ

௠
௜ୀଵ (9)

Finally, the fog to fog communication cost
denoted as τF→F can be expressed as

𝜏ி→ி = ∑ ൬ቀ∑ 𝑂ிೕ,ிೕᇲ +௡
௝ᇲୀଵ ∑ 𝑂ிೕᇲ ,ிೕ

௡
௝ᇲୀଵ ቁ × 𝜔ி೔,ிೕᇲ ൰௡

௝ୀଵ

 (10)

Along with the communication and computing
cost, we introduce another cost that is called the
waiting cost. The waiting cost appears in a special
scenario, where requests arrive at a node, but neither
get the required resources for processing nor get
offloaded to other nodes. The total waiting cost for
cloud, and fog denoted as 𝜏௪಴

 and 𝜏௪ಷ
, respectively,

are expressed as

𝜏௪಴
= ∑ ൫𝑊஼೔

× 𝜇஼೔

ா × 𝑆஼೔
൯௠

௜ୀଵ (11)

𝜏௪ಷ
= ∑ ቀ𝑊ிೕ

× 𝜇ிೕ

ா × 𝑆ிೕ
ቁ௡

௝ୀଵ (12)

The total waiting cost τwait, total communication
cost τcomm, and total computing cost τcomp can be as

𝜏௪௔௜௧ = 𝜏௪಴
+ 𝜏௪ಷ

, (13)

𝜏௖௢௠௠ = 𝜏஼→ி + 𝜏ி→஼ + 𝜏ி→ி, (14)

𝜏௖௢௠௣ = 𝜏஼ + 𝜏ி, (15)

Finally, the main objective is to minimize the
total cost in the system denoted as τtotal = τcomm + τcomp
+ τwait expressed as

min τtotal , (16)
subject to,

𝐿஼೔
< 𝐿ெ஺௑ , (17)

𝐿ிೕ
< 𝐿ெ஺௑ , (18)

Journal of Theoretical and Applied Information Technology
15th September 2022. Vol.100. No 17

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5520

𝐿஼೔,ிೕ
+ 𝐿ிೕ

< 𝐿ெ஺௑ , (19)

𝐿ிೕ,ி
ೕᇲ

+ 𝐿ி
ೕᇲ

< 𝐿ெ஺௑ , (20)

𝐿ிೕ,஼೔
+ 𝐿஼೔

< 𝐿ெ஺௑ , (21)

𝜇஼೔

௎ < 𝜇஼೔

ெ஺௑ , (22)
𝜇ிೕ

௎ < 𝜇ிೕ

ெ஺௑ , (23)

𝑂஼೔,ிೕ
< 𝐵஼೔,ிೕ

 , (24)

𝑂ிೕ,஼೔
< 𝐵஼೔,ிೕ

 , (25)

𝑂ிೕ,ி
ೕᇲ

< 𝐵ிೕ ,ி
ೕᇲ

 , (26)

Equations (17) and (18) ensure that the request
coming to the cloud and fog being processed at the
same cloud and fog, respectively, do not exceed the
maximum latency LMAX. The constraint (19) ensures
that the request arriving at Ci and later on being
executed at Fj do not exceed the maximum latency
limit. Equations (20), and (21) ensure that the
request arriving at Fj and executed at Fj′, and Ci,
respectively, do not exceed the maximum latency.
The capacity constraints in equations (22), and (23)
ensure that the capacity in use in the cloud, and fog,
respectively, do not exceed the respective maximum
computing capacity. Equations (24), (25), and (26)
ensure that the offloading request from cloud to fog,
fog to the cloud, and fog to fog, respectively should
not exceed the respective channel bandwidth.

4. ALGORITHM DESIGN

In this paper, we used a modified simulated
annealing (SA) algorithm to handle the two-tier
cloud-fog federated systems. The SA algorithm flow
starts with setting up the initial and final
temperatures which are set to 100 and 10,
respectively. The cooling parameter α is set to 0.99.
From the default parameter, we generate the solution
𝕊 and check whether they satisfy the given latency
and capacity constraints. In the next step, we
generate a new solution 𝕊𝒏𝒆𝒘 that is explained in
Algorithm 2. Then from 𝕊 and 𝕊𝒏𝒆𝒘 we compute the
total computation cost of cloud and fog. Then
estimate ΔC, and ΔF as given in Line 6. From Line 7-
15, we compare the old solution with the new
solution. If the new solution is better, we accept it, if
not, we still accept it with the probability given in
Line 10, 12, and 14. In each iteration, we reduce the
initial temperature by multiplying the α. The process
will continue until it satisfies the condition given in
Line 17.

In Algorithm 2, we demonstrate the procedure
of generating the new solution. It is executed in a
loop that leads to checking three conditions. The first
condition checks that the required capacity to be in
use exceeds the maximum capacity of the fog. The
neighboring fog has available capacity to process the

requests; the task will be offloaded to the
neighboring fog by Algorithm 3, provided it will not
violate the given latency constraint. If the first
condition does not satisfy, we will check the second
condition i.e., the neighboring fog would not be able
to process the requests and will be offloaded to the
cloud by Algorithm 4. In the last condition, when the
fog has enough capacity to process the request, the
cloud will offload its requests by Algorithm 5 as the
processing in the fog is cheaper, which helps reduce
the cost.

The fog to fog offloading scenario is explained
in Algorithm 3. It ensures that requests from one fog
would not be offloaded to the same fog. How many
requests are offloaded is determined by value γ,
which is the offloading ratio with a range from 0 to
0.1. The offloading ratio would be multiplied by the
capacity in that fog to obtain the total request to be
offloaded to other fog.

Algorithm 1 Modified Simulated Annealing

1: Set T = 100, Tend = 10 and α = 0.99
2: Generate 𝕊 from default parameter
3: Check ℒ and ℂ for initial solution
4: Generate 𝕊𝒏𝒆𝒘 by Algorithm 2
5: Compute the old τC and τF from 𝕊, and new

τC and τF from 𝕊𝒏𝒆𝒘

6: Calculate ∆C by subtracting new τC and old τC,
and ∆F by subtracting new τF and old τF

7: if ∆C ≤ 0 and ∆F ≤ 0 then
8: Accept 𝕊𝒏𝒆𝒘
9: else if ∆C ≤ 0 and ∆F > 0 then

10: Accept 𝕊𝒏𝒆𝒘 with probability expቀ−
୼ಷ

்
ቁ

11: else if ∆C > 0 and ∆F ≤ 0 then

12: Accept 𝕊𝒏𝒆𝒘 with probability expቀ−
୼಴

்
ቁ

13: else
14: Accept 𝕊𝒏𝒆𝒘 with probability exp ቀ−

∆಴ା୼ಷ

்
ቁ

15: end if
16: Compute T ← T ∗ α
17: if T < Tend then
18: Return 𝕊𝒏𝒆𝒘
19: else
20: go back to step 4
21: end if

Algorithm 2 Generate new solution

Require: 𝜇஼೔

௎ , 𝜇ிೕ

௎ , 𝜇ிೕ

ெ஺௑ℒ, ℂ, 𝐹௝, 𝐶௜

1: while 𝕊𝒏𝒆𝒘 fail ℒ and ℂ do
2: if 𝜇ிೕ

௎ > 𝜇ிೕ

ெ஺௑ and 𝜇ிೕ

௎ < 𝜇ிೕᇲ
ெ஺௑ and high ℒ then

3: Offload fog to fog by Algorithm 3
4: else if 𝜇ிೕ

௎ > 𝜇ிೕ

ெ஺௑ and 𝜇ிೕ

௎ > 𝜇ி
ೕᇲ

ெ஺௑ or low ℒ then

5: Offload fog to cloud by Algorithm 4

Journal of Theoretical and Applied Information Technology
15th September 2022. Vol.100. No 17

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5521

6: else if 𝜇ிೕ

௎ < 𝜇ிೕ

ெ஺௑then

7: Offload cloud to fog by Algorithm 5
8: end if
9: end while
10: return 𝕊𝒏𝒆𝒘

Algorithm 3 Offloading Fog-to-Fog

Require: 𝜇ிೕ

௎ , 𝜇ிೕ

ெ஺௑ , 𝐹௝
1: for 𝑗 ← 0 to 𝐹௝ do
2: for 𝑗ᇱ ← 0 to 𝐹௝ do
3: Generate 𝛾 ← 0
4: if 𝑗 ≠ 𝑗ᇱand 𝜇ிೕ

௎ > 𝜇ிೕ

ெ஺௑ then
5: 𝛾 ← 𝑟𝑎𝑛𝑑𝑜𝑚(0, 0.1)
6: 𝑂ிೕ ,ி

ೕᇲ
← 𝑂ிೕ ,ி

ೕᇲ
+ 𝜇ிೕ

௎ ∗ 𝛾

7: 𝜇ிೕ

௎ ← 𝜇ிೕ

௎ − 𝑂ிೕ,ி
ೕᇲ

8: 𝜇ி
ೕᇲ

௎ ← 𝜇ி
ೕᇲ

௎ + 𝑂ிೕ ,ி
ೕᇲ

9: end if
10: end for
11: end for

Algorithm 4 Offloading Fog-to-Cloud

Require: 𝜇஼೔

௎ , 𝜇ிೕ

௎ , 𝜇ிೕ

ெ஺௑, 𝐹௝ , 𝐶௜
1: for 𝑖 ← 0 to 𝐶௜ do
2: for 𝑗 ← 0 to 𝐹௝ do
3: Generate 𝛾 ← 0
4: if 𝜇ிೕ

௎ > 𝜇ிೕ

ெ஺௑ ∗ 0.5 then
5: 𝛾 ← 𝑟𝑎𝑛𝑑𝑜𝑚(0.01, 0.1)
6: else
7: 𝛾 ← 𝑟𝑎𝑛𝑑𝑜𝑚(0, 0.01)
8: end if
9: 𝑂ிೕ,஼೔

← 𝑂ிೕ ,஼೔
+ 𝜇ிೕ

௎ ∗ 𝛾
10: 𝜇஼೔

௎ ← 𝜇஼೔

௎ + 𝑂ிೕ ,஼೔

11: 𝜇ிೕ

௎ ← 𝜇ிೕ

௎ − 𝑂ிೕ,஼೔

12: end for
13: end for

Algorithm 5 Offloading Cloud-to- Fog

Require: 𝜇஼೔

௎ , 𝜇ிೕ

௎ , 𝜇ிೕ

ெ஺௑, 𝐹௝ , 𝐶௜
1: for 𝑖 ← 0 to 𝐶௜ do
2: for 𝑗 ← 0 to 𝐹௝ do
3: Generate 𝛾 ← 0
4: if 𝜇ிೕ

௎ > 𝜇ிೕ

ெ஺௑ ∗ 0.5 then
5: 𝛾 ← 𝑟𝑎𝑛𝑑𝑜𝑚(0, 0.01)
6: else

7: 𝛾 ← 𝑟𝑎𝑛𝑑𝑜𝑚(0.01, 0.1)
8: end if
9: 𝑂஼೔,ிೕ

← 𝑂஼೔,ிೕ
+ 𝜇஼೔

௎ ∗ 𝛾
10: 𝜇஼೔

௎ ← 𝜇஼೔

௎ − 𝑂஼೔,ிೕ

11: 𝜇ிೕ

௎ ← 𝜇ிೕ

௎ + 𝑂஼೔,ிೕ

12: end for
13: end for

The fog to cloud offloading scenario is
explained in Algorithm 4. When the fog’s in-use
computing capacity is fifty percent above the
maximum computing capacity, it will offload more
requests to the cloud, and when it is less than fifty
percent, it offloads less. The value γ determines the
offloading ratio in both cases.

The cloud to fog offloading scenario is
explained in Algorithm 5. When the fog’s in-use
computing capacity is fifty percent above the
maximum computing capacity, the cloud will
offload fewer requests to the fog, and when it is less
than fifty percent, it offloads more. Here, like
Algorithm 4, the value γ determines the offloading
ratio in both cases.

5. PERFORMANCE ANALYSIS

In this section, we will discuss the performance
of our proposed architecture and algorithm. The
parameters used for the simulation are presented in
Table II.

Figure. 5: Impact of different algorithms on total cost.

Journal of Theoretical and Applied Information Technology
15th September 2022. Vol.100. No 17

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5522

Figure 6: Impact of different algorithms on execution

time compared to optimal solution.

Table II: Simulation Parameters

Notation Meaning Value Unit
n Number of clouds 4 n/a
m Number of fogs 10 n/a
 𝜇஼೔

ெ஺௑ Computation Capacity of cloud 1000 CPU Cycles

𝜇ிೕ

ெ஺௑ Computation Capacity of fog 100 CPU Cycles

BCi ,Fj Communication capacity between cloud and
fog

500 Bytes/request

𝐵ிೕ ,ிೕᇲ
 Communication capacity between fog and fog 100 Bytes/request

φCi Cloud computing cost 100 Money units/cycles

φFj Fog computing cost 10 Money units/cycles

ωCi ,Fj Communication cost between cloud and fog 5 Money units/bytes

ωFj ,Fj′ Communication cost between fog and fog 1 Money units/bytes

SCi Cloud waiting cost 200 Money units/ms

SFj Fog waiting cost 20 Money units/ms

LMAX Maximum latency 0.1, 0.5, 1, 10, 100,
1000

ms

Figure 7: Impact of simulated annealing and modified
simulated annealing algorithm.

Fig. 5 shows with the increase in arrival traffic, the
total cost increases where the maximum latency limit
was set to 1000ms. The performance of the proposed
modified SA and SA are nearly similar to optimal
results that are obtained using the IBM CPLEX [36].
Although the total cost of the algorithms is similar to
the optimal results, their execution time is significantly
better than the CIPLEX optimizer. As Fig. 6 shows,
while the optimizer takes more than 25 seconds to
produce the optimal results, the simulation can be done
in less than 1 sec. Although the execution time of SA
and modified SA look the same in Fig.6, Fig.7

demonstrates their performance difference. The result
in Fig. 7 shows with the increase in traffic, the modified
SA outperforms the SA.

Fig. 8 shows the performance of the proposed
OMNI architecture in different latency constraints. As
the result shows, with the tight latency, the cost is high,
and the cost goes down with the loose latency. Because
we know the cloud has low computing latency because
of its high-power computing capacity but with a very
high cost. Whereas the fog has high computing latency
due to its low power computing resources with a lower
cost. However, it adds extra communication latency
when tasks are offloaded from fog to cloud or cloud to
fog. Hence in loose latency, execution is done where
computation is cheap, whereas, for tight latency, tasks
are offloaded to one that can serve faster.

Journal of Theoretical and Applied Information Technology
15th September 2022. Vol.100. No 17

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5523

Figure 8: Impact of different latency on the total cost.

Figure 9: Impact of different architectures on total cost with
latency 100ms.

Figure 10: Impact of different architectures on total cost
with latency 1000ms.

In Fig. 9, and 10, we compare the performance of
our OMNI architecture with cloud to fog (C2F), fog to
cloud (F2C), fog to fog(F2F), and no offloading
(ZERO) models. In Fig. 9, the latency limit is set to
100ms, and in Fig. 10 is 1000ms. As both the results
show, our OMNI architecture has a lower cost than all
other architectures. This is because it has the option to
offload the tasks in all possible directions to where it
can lower the cost without violating the given latency
constraint.

6. CONCLUSION

In this work, we proposed a cloud-fog federated
OMNI architecture and investigated the cost
minimization problem with given latency limits. We
used a modified SA algorithm as a solution. The results
show the proposed algorithm performance is nearly
optimal. It outperforms the SA algorithm in terms of
execution time. We also compared the performance of
the proposed OMNI architecture with other
architectures. The results show that the OMNI
architecture saves more cost than other architectures in
different latency limits.

REFERENCES

[1] B. Furht, A. Escalante et al., Handbook of cloud
computing. Springer,2010, vol. 3.

[2] M. Othman, S. A. Madani, S. U. Khan et al., “A
survey of mobile cloud computing application
models,” IEEE communications surveys &
tutorials, vol. 16, no. 1, pp. 393–413, 2013.

[3] M. Mukherjee, L. Shu, and D. Wang, “Survey of
fog computing: Fundamental, network
applications, and research challenges,” IEEE
Communications Surveys & Tutorials, vol. 20,
no. 3, pp. 1826–1857, 2018.

[4] R. Mahmud, R. Kotagiri, and R. Buyya, “Fog
computing: A taxonomy, survey and future
directions,” in Internet of everything. Springer,
2018, pp. 103–130.

[5] G. Zhang, F. Shen, Z. Liu, Y. Yang, K. Wang,
and M.-T. Zhou, “Femto: Fair and energy-
minimized task offloading for fogenabled iot
networks,” IEEE Internet of Things Journal, vol.
6, no. 3, pp. 4388–4400, 2018.

[6] S. El Kafhali and K. Salah, “Efficient and
dynamic scaling of fog nodes for iot devices,”
The Journal of Supercomputing, vol. 73, no. 12,
pp. 5261–5284, 2017.

[7] L. Liu, Z. Chang, X. Guo, S. Mao, and T.
Ristaniemi, “Multiobjective optimization for
computation offloading in fog computing,” IEEE
Internet of Things Journal, vol. 5, no. 1, pp. 283–
294, 2017.

[8] C. A. Lee, R. B. Bohn, M. Michel, A. Delaitre, B.
Stivalet, and P. E. Black, “The nist cloud
federation reference architecture 5,” NIST
Special Publication, vol. 500, p. 332, 2020.

[9] G.-E. Zaharia, R.-I. Ciobanu, C. Dobre et al.,
“Machine learning based traffic offloading in fog
networks,” Simulation Modelling Practice and
Theory, vol. 101, p. 102045, 2020.

Journal of Theoretical and Applied Information Technology
15th September 2022. Vol.100. No 17

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5524

[10] Q. Wu, H. Ge, H. Liu, Q. Fan, Z. Li, and Z.
Wang, “A task offloading scheme in vehicular
fog and cloud computing system,” IEEE Access,
vol. 8, pp. 1173–1184, 2019.

[11] Z. Wei and H. Jiang, “Optimal offloading in fog
computing systems with non-orthogonal multiple
access,” IEEE Access, vol. 6, pp. 49 767–49 778,
2018.

[12] J. Wang, J. Pan, F. Esposito, P. Calyam, Z. Yang,
and P. Mohapatra, “Edge cloud offloading
algorithms: Issues, methods, and perspectives,”
ACM Computing Surveys (CSUR), vol. 52, no. 1,
pp. 1–23, 2019.

[13] H. Shah-Mansouri and V. W. Wong,
“Hierarchical fog-cloud computing for iot
systems: A computation offloading game,” IEEE
Internet of Things Journal, vol. 5, no. 4, pp.
3246–3257, 2018.

[14] X. Meng, W. Wang, and Z. Zhang, “Delay-
constrained hybrid computation offloading with
cloud and fog computing,” IEEE Access, vol. 5,
pp. 21 355–21 367, 2017.

[15] L. Liu, Z. Chang, and X. Guo, “Socially aware
dynamic computation offloading scheme for fog
computing system with energy harvesting
devices,” IEEE Internet of Things Journal, vol. 5,
no. 3, pp. 1869–1879, 2018.

[16] H. Lin, S. Zeadally, Z. Chen, H. Labiod, and L.
Wang, “A survey on computation offloading
modeling for edge computing,” Journal of
Network and Computer Applications, vol. 169, p.
102781, 2020.

[17] Y.-L. Jiang, Y.-S. Chen, S.-W. Yang, and C.-
H.Wu, “Energy-efficient task offloading for
time-sensitive applications in fog computing,”
IEEE Systems Journal, vol. 13, no. 3, pp. 2930–
2941, 2018.

[18] Y. Jiang and D. H. Tsang, “Delay-aware task
offloading in shared fog networks,” IEEE
Internet of Things Journal, vol. 5, no. 6, pp.
4945–4956, 2018.

[19] J. Du, L. Zhao, J. Feng, and X. Chu,
“Computation offloading and resource allocation
in mixed fog/cloud computing systems with min-
max fairness guarantee,” IEEE Transactions on
Communications, vol. 66, no. 4, pp. 1594–1608,
2017.

[20] B. Wang, C. Wang, W. Huang, Y. Song, and X.
Qin, “A survey and taxonomy on task offloading
for edge-cloud computing,” IEEE Access, vol. 8,
pp. 186 080–186 101, 2020.

[21] M. Arif, F. Ajesh, S. Shamsudheen, and M.
Shahzad, “Secure and energy-efficient
computational offloading using lstm in mobile
edge computing,” Security and Communication
Networks, vol. 2022, 2022.

[22] B. Kar, W. Yahya, Y.-D. Lin, and A. Ali, “A
survey on offloading in federated cloud-edge-fog
systems with traditional optimization and
machine learning,” arXiv preprint
arXiv:2202.10628, 2022.

[23] L. Mashayekhy, M. M. Nejad, and D. Grosu,
“Cloud federations in the sky: Formation game
and mechanism,” IEEE Transactions on Cloud
Computing, vol. 3, no. 1, pp. 14–27, 2014.

[24] H. Chen, B. An, D. Niyato, Y. C. Soh, and C.
Miao, “Workload factoring and resource sharing
via joint vertical and horizontal cloud federation
networks,” IEEE Journal on Selected Areas in
Communications, vol. 35, no. 3, pp. 557–570,
2017.

[25] X. Cao, G. Tang, D. Guo, Y. Li, and W. Zhang,
“Edge federation: Towards an integrated service
provisioning model,” IEEE/ACM Transactions
on Networking, vol. 28, no. 3, pp. 1116–1129,
2020.

[26] M.-T. Thai, Y.-D. Lin, Y.-C. Lai, and H.-T.
Chien, “Workload and capacity optimization for
cloud-edge computing systems with vertical and
horizontal offloading,” IEEE Transactions on
Network and Service Management, vol. 17, no. 1,
pp. 227–238, 2019.

[27] J. Zhao, Q. Li, Y. Gong, and K. Zhang,
“Computation offloading and resource allocation
for cloud assisted mobile edge computing in
vehicular networks,” IEEE Transactions on
Vehicular Technology, vol. 68, no. 8, pp. 7944–
7956, 2019.

[28] Y. Wen, Q. Zhang, H. Yuan, and J. Bi, “Multi-
stage pso-based cost minimization for
computation offloading in vehicular edge
networks,” in 2021 IEEE International
Conference on Networking, Sensing and Control
(ICNSC), vol. 1. IEEE, 2021, pp. 1–6.

[29] Q. Luo, W. Shi, and P. Fan, “Qoe-driven
computation offloading: Performance analysis
and adaptive method,” in 2021 13th International
Conference on Wireless Communications and
Signal Processing (WCSP). IEEE, 2021, pp. 1–5.

[30] J. Bi, H. Yuan, K. Zhang, and M. Zhou, “Energy-
minimized partial computation offloading for
delay-sensitive applications in heterogeneous
edge networks,” IEEE Transactions on Emerging
Topics in Computing, 2022.

Journal of Theoretical and Applied Information Technology
15th September 2022. Vol.100. No 17

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5525

[31] M. Aazam, S. Zeadally, and K. A. Harras,
“Offloading in fog computing for iot: Review,
enabling technologies, and research
opportunities,” Future Generation Computer
Systems, vol. 87, pp. 278–289, 2018.

[32] H. Mahini, A. M. Rahmani, and S. M.
Mousavirad, “An evolutionary game approach to
iot task offloading in fog-cloud computing,” The
Journal of Supercomputing, vol. 77, no. 6, pp.
5398–5425, 2021.

[33] R.-H. Hwang, Y.-C. Lai, and Y.-D. Lin,
“Offloading optimization with delay constraint in
the 3-tier federated cloud, edge, and fog
systems,” in 2021 IEEE Global Communications
Conference (GLOBECOM). IEEE, 2021, pp. 1–
6.

[34] R. Besharati and M. H. Rezvani, “A prototype
auction-based mechanism for computation
offloading in fog-cloud environments,” in 2019
5th conference on knowledge based engineering
and innovation (KBEI). IEEE, 2019, pp. 542–
547.

[35] B. Kar, Y.-D. Lin, and Y.-C. Lai, “Omni: Omni-
directional dual cost optimization of two-tier
federated cloud-edge systems,” in ICC 2020-
2020 IEEE International Conference on
Communications (ICC). IEEE, 2020, pp. 1–7.

[36] C. U. Manual, “Ibm ilog cplex optimization
studio,” Version, vol. 12, pp. 1987–2018, 1987.
[Online]. Available:
http://www.ibm.com/software/integration/
optimization/cplex-optimizer

[37] Akutsu, K., Phung-Duc, T., Lai, Y.C. and Lin,
Y.D., 2022. Analyzing vertical and horizontal
offloading in federated cloud and edge computing
systems. Telecommunication Systems, 79(3),
pp.447-459.

