
Journal of Theoretical and Applied Information Technology 
15th September 2022. Vol.100. No 17 

© 2022 Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
5515 

 

OPTIMAL OMNIDIRECTIONAL OFFLOADING IN 
FEDERATED CLOUD-FOG SYSTEMS WITH COST 

MINIMIZATION 
 

SAUMYARANJAN DASH1, RAJ KUMAR PARIDA2, JYOTIPRAKASH DASH 3,  
ASIF UDDIN KHAN4, SANTOSH KUMAR SWAIN5 

1, 5 School of Computer Engineering, KIIT Deemed to be University, Bhubaneswar, India 
2 Department of Computer Science & Engineering, Koneru Lakshmaiah Education Foundation (KLEF), 

Vaddeswaram, Andhra Pradesh, India. 
3 Department of Computer Science and Engineering, Gandhi Institute For Technology, Bhubaneswar, India 

4 Department of Computer Science and Engineering, Silicon Institute of Technology, Bhubaneswar, India 
E-mail:  1 soumya@silicon.ac.in, 2 rajkumarparida@gmail.com, 3 jyotiprakash.dash@gift.edu.in, 

4asif.khan@silicon.ac.in, 5 sswainfcs@kiit.ac.in 
 

ABSTRACT 
 

Cloud computing technology has brought a significant impact on the field of technology. Similarly, fog 
computing provides similar facilities with a lesser coverage area but is closer to the user. In a federated 
environment, these technologies can complement each other by offloading their request to improve the 
services. In this paper, we propose a federated two-tier architecture consisting of cloud and fog, where the 
cloud has a higher cost and fog has a lower cost. In this architecture, omnidirectional offloading is considered 
in which offloading can be done vertically and horizontally, such as Fog to Cloud, Cloud to Fog, and Fog to 
Fog. We propose a capacity optimization problem in this federated architecture to optimize the capacities to 
minimize the total cost. We are using a modified simulated annealing algorithm to solve this optimization 
problem. The results show the performance of our algorithm is nearly optimal and better than the SA in terms 
of execution time, and our proposed architecture can save more cost than other existing architectures. 

Keywords: Cloud, Fog, Federation, Offloading, Cost, Capacity 
 
1. INTRODUCTION  

Cloud Computing facilitates computing, 
storage, and network resources for the users on 
demand through the network, reducing the overall 
cost of the user and enabling profit maximization of 
the service provider [1]. But the service delay in 
cloud computing is not acceptable for numerous 
numbers of delay-sensitive real-time applications 
where the task must be completed within a certain 
deadline. Since cloud servers are far away from the 
end-users,  it  is not possible to guarantee QoS and 
QoE for real-time applications at the edge of the 
network [2]. Further, with the advancement in 
computing, communication, and network techno-
logies, users want to use the computing services 
anywhere, anytime, and through any device. To 
address the issues of cloud computing, such as delay 
and bandwidth consumption, a new computing 
paradigm called Fog Computing was introduced, as 
shown in Fig. 1, where cloud resources are provided 
at the edge of the network [3]. Unlike cloud 
computing, fog computing is intended for distributed 
computing, where numerous peripheral devices with 
cloud like properties are closer to the users. The idea 

is to do as much processing as possible using 
computing units closer to the user rather than 
forwarded to the cloud, which requires bandwidth 
and latency [4]. Due to the tremendous growth in 
computing services and devices, processing requests 
at the fog are also increased. As fog devices are 
resource constrained, the requests are offloaded from 
the devices to other fog nodes and cloud server, if 
they are not able to be processed locally [5], [6], [7]. 

Various research has already been carried out on 
offloading from edge to fog and from fog to cloud, 
where offloading is done only in a unidirectional 
manner. In this paper, to further optimize the latency 
and cost, we propose a federated two-tier cloud-fog 
omnidirectional architecture consisting of cloud and 
fog, where the cloud has a higher cost and fog has a 
lower cost. In this context, “federation” means the 
collection of clouds cooperating to provide resources 
that are requested by users [8]. One can offload to 
another whenever required to provide better services 
to respective subscribers. In a federated cloud-fog 
system, the cloud and fog servers cooperate with 
each other to process their tasks by offloading 
service requests to each other. The federation has 
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various advantages, such as load balancing, dynamic 
resource scaling, and benefits in terms of economic 
perspective. 

 

 
Figure 1: Cloud-fog systems 

 
This paper proposes a capacity optimization 

problem in the cloud-fog federated system where the 
offloading scenario is omnidirectional. 
 

 

Figure 2: Omnidirectional cloud-fog offloading. 

In our proposed federated architecture, we have 
used Omnidirectional offloading in which 
offloading can be done both vertically and 
horizontally, such as fog to cloud, cloud to fog, and 
fog to fog offloading, as shown in Fig. 2(a), 2(b), 
and 2(c), respectively. We propose a modified 
simulated annealing algorithm to solve this 
optimization problem to minimize the total cost, 
which includes the computation and communication 
costs with latency as a constraint. The unique 
contribution of this paper is as follows. 

1) We proposed a novel cloud–fog federated 
architecture with Omnidirectional offloading. 

2) We proposed a capacity optimization problem 
in the proposed federated architecture to 
minimize the cost where latency is the 
constraint. 

3) Then we proposed a modified Simulated 
Annealing algorithm to solve this optimization 
problem, reduce execution time and save more 
cost. 

The remaining part of the paper is organized as 
follows. In Section 2, we present the research works 

related to offloading in fog computing environment 
and in cloud- fog federation. The proposed two-tier 
federated cloud fog architecture, the system model 
and the problem formulation are illustrated in 
Section 3. We put forward the detailed algorithm 
design and solution approach in Section 4. In 
Section 5, we discuss the performance analysis and 
simulation results. Finally, the paper is concluded in 
Section 6. 

 
2. RELATED WORK 
 
In this section, we present various works on 
offloading in different scenarios. [16], [25], and [30] 
present the offloading schemes in edge computing. 
[9], [11], [15], [17], [18], [29], and [31] present the 
offloading schemes in fog computing. [23], and [24] 
discuss the cloud federations. [21], and [27] illustrate 
the offloading schemes in mobile edge computing. 
[12], [20], and [26] describe the offloading schemes 
in edge-cloud systems. [13], [14], [19], [32], and 
[34] discuss the offloading schemes in fog-cloud 
systems. [10] presents an offloading mechanism in 
vehicular fog and cloud system. [35], and [37] present 
the offloading mechanisms in federated cloud-edge 
systems. [22], and [33] describe the offloading 
schemes in federated cloud-edge-fog. 
Lin et al. investigated edge computing offloading 
modeling by considering different edge computing 
architectures [16]. Cao et al. presented an integrated 
model for service provisioning between edge 
infrastructure providers by adopting a cost-efficient 
resource management scheme [25]. Bi et al. 
proposed a heterogeneous edge offloading scheme to 
minimize the total consumption of energy [30].  
Zaharia et al. presented a complete machine-
learning-based solution for offloading of traffic in 
the fog networks. [9]. Wei et al. proposed a downlink 
scheme for computation offloading in a fog 
environment consisting of multiple fog nodes and an 
IoT device with the aim of maximizing the system 
utility and meeting the energy and delay constraints 
[11]. Liu et al. proposed a dynamic game-theory-
based socially-aware computation offloading 
method to minimize the execution cost [15]. Jiang et 
al. presented a fog computing-based energy-efficient 
offloading mechanism by effective management of 
communication and computation resources to meet 
the response time [17]. Jiang et al. presented an 
offloading scheme in a shared fog network by 
proposing a non-linear integer model for efficient 
task scheduling [18]. The optimal offloading 
decision for achieving a better quality of experience 
(QoE) is perceived as a key research problem in [29] 
considering the inherent characteristic of tasks. 
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Aazam et al. in [31] discussed the recent schemes for 
offloading in the domains of cloud, fog, and IoT. The 
authors also explained the key factors important to 
consider offloading in each scenario.  
Mashayekhy et al. presented a game theory-based 
model in which business structure is reshaped among 
different cloud providers. A cloud federation 
mechanism was proposed by the authors where the 
cloud providers’ profit is maximized by reduced 
resource utilization [23]. Chen et al. described the 
integration of horizontal and vertical cloud 
federation [24].  
Arif et al. proposed an LSTM-based offloading 
architecture and presented a routing scheme for an 
efficient computational offloading strategy to reduce 
the delay and energy consumption and increase the 
security level of the devices [21]. Zhao et al. 
presented a MEC-Cloud collaborative offloading 
approach to optimize the allocation of computational 
resources and offloading decisions [27].  
Wang et al. presented a survey article that represents 
various challenges, techniques, and state-of-the-art 
regarding the offloading problem. The authors also 
briefly compared the performance of several 
offloading algorithms for edge-cloud-based 
scenarios [12]. Wang et al. presented a survey article 
on cooperative edge-cloud task offloading [20]. Thai 
et al. proposed a computing architecture for cloud 
edge that provides both horizontal and vertical 
offloading in order to optimize the capacity and 
workload to minimize the total cost [26].  
Mansouri et al. presented a fog-cloud hierarchical 
computation offloading paradigm to improve the 
QoE and reduce the delay and energy [13]. Meng et 
al. presented a hybrid computation offloading 
technique by taking into account the different 
capabilities of fog and cloud servers to optimize the 
energy consumption while meeting the delay 
constraint [14]. Du et al. addressed mixed fog-cloud 
offloading by optimizing resource allocation, 
bandwidth, and transmit power while satisfying the 
maximum delay [19]. Mahini et al. proposed 
architecture and devised an evolutionary model to 
address task offloading in an IoT environment [32]. 
Besharati et al. proposed an auction mechanism-
based fog-cloud offloading method by considering 
the physical infrastructure’s limitations and 
specifications [34].  
Wu et al. proposed a scheme for task offloading by 
considering the departure of occupied vehicles [10]. 
 Kar et al. presented an omnidirectional offloading 
architecture for a federated cloud-edge system with 
the objective of optimizing dual cost while 
considering latency constraints [35]. Akutsu et al. 
proposed two models namely VDV and VDHS for 

offloading based on queue-length thresholds at user 
equipment and edges [37].  
A comprehensive description of different offloading 
schemes used for various federated scenarios and 
also the current research status was discussed in [22]. 
This paper also presented a comparative study of 
traditional optimization and machine learning 
approaches on various federated architectures. 
Hwang et al. presented a delay constraint-based 
offloading optimization strategy for a federated 
three-tier environment [33].  
From the literature, we observed that various 
research has already been carried out on offloading 
from edge to fog, edge to cloud, and from fog to 
cloud, where offloading is done only in a 
unidirectional manner. In this paper, we propose a 
federated two-tier cloud-fog omnidirectional 
architecture in which offloading can be done both 
vertically and horizontally, such as fog to the cloud, 
cloud to fog, and fog to fog offloading.  
 

 

Figure 3: Two-tier federated cloud-fog architecture 

 
3. SYSTEM MODEL AND PROBLEM 

FORMULATION 

3.1 Two Tier Federated Cloud Fog Architecture 

Federated architecture is a collection of servers 
of different service providers, where the service 
providers co-operate with each other and share their 
resources. One service provider can rent its 
resources to other service providers. In some 
scenarios, a service provider can act as a service 
provider and a user simultaneously. In this 
architecture, the user’s request for a service provider 
can be processed by another service provider by 
offloading the requests. The federated architecture is 
very useful and economical in the cloud computing 
environment, where the nature of the user’s demand 
is very dynamic. The federated architecture is 
managed by an entity known as Federation Manager, 
which is the agent responsible for the federation 
agreement between two service providers. There are 
two types of the federation, namely, horizontal 
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federation and vertical federation. The service 
providers are on the same level in a horizontal 
federation, and in a vertical federation, they are on 
different levels. 

In our proposed federated architecture, we have 
used the cloud servers and fog servers as the 
federating nodes on two levels. Clouds are in the 
upper level and fogs are   in the lower level as shown 
in Fig. 3. Offloading can be done horizontally 
between cloud to cloud and fog to fog in a 
bidirectional manner, similarly vertical offloading 
can be done between cloud to fog and fog to cloud 
in the bidirectional manner as shown in Fig. 3. 

As per our proposed architecture, we consider a 
two-tier cloud-fog system, which consists of 
multiple clouds and fogs, as illustrated in Fig. 4. All 
fogs and clouds are connected vertically, and all fogs 
are connected horizontally. Here, not only fog can 
offload to the cloud, but the cloud can also offload to 
the fogs [22]. And fogs can offload to each other 
horizontally. Horizontal offloading is the scenario, 
where the request for fog is served by another fog. 
Vertical downward offloading is when the request 
for a cloud is served by the fog [26], while vertical 
upward offloading is when a request for the fog is 
served by the cloud [25]. 
 

 
 

Figure 4: Offloading in Two-tier federated cloud-fog 
architecture. 

 
3.2 System Model 

In this paper, the cloud is denoted by Ci, i = {1, 
2, …, m}, and m is the total number of clouds in the 
system. The fog is denoted by Fj, j = {1, 2, …, n}, 
where, n is the total number of fogs in the system. 
The arrival request coming to cloud node Ci with 
capacity 𝜇௜

஼ is denoted as 𝜆௜
஼ . The arrival request 

coming to fog Fj capacity 𝜇௝
ி is denoted as 𝜆௝

ி . As 
mentioned earlier, our architecture considered 

horizontal offloading between the fog, which means 
there will be channel bandwidth for communication 
between fogs denoted by BFj,Fj′ and offloading task 
between two fogs denoted as OFj,Fj′. The vertical 
offloading in this architecture consists of vertical 
upward offloading and vertical downward 
offloading. For the vertical offloading between cloud 
and fog, the channel bandwidth is denoted by BCi,Fj . 
For the vertical downward offloading, where a 
request is offloaded from the cloud to the fog, 
denoted by OCi,Fj, and for the vertical upward 
offloading, where requests are offloaded from the 
fog to the cloud, denoted by OFj,Ci . Each fog consists 
of several devices denoted as dj,k. All the variables 
and notations used in this paper are presented in 
Table I. 

We assume requests coming to the cloud and 
fog will be Poisson processes with an average arrival 
rate of 𝜆௜

஼  and 𝜆௝
ி . And for the traffic model at the 

cloud and fog in this research, we are considering the 
M/M/1 queue. Every request which comes either to 
the cloud or fog will need time to be processed which 
is the time to compute request or computation for 
latency can be denoted as 𝐿஼೔

 that can be expressed 
as 
 

𝐿஼೔
=  

ଵ

ఓ಴೔
ಾಲ೉ି(ఒ೔

಴ା∑ ைಷೕ,಴೔
ି∑ ை಴೔ಷೕ

೙
ೕసభ  ೙

ೕసభ

 (1) 

 
The cloud computing capacity is usually larger 

than the fog computing capacity, which explains 
computing latency in the cloud is faster than in fog. 
In fog, the time that is consumed to process the 
request in fog can be denoted as 𝐿ிೕ

 that can be 

expressed as 
 

𝐿ிೕ
=  

ଵ

ఓಷೕ
ಾಲ೉ି(ఒೕ

ಷା∑ ை಴೔,ಷೕ
ା∑ ைಷ

ೕᇲ,ಷೕ
ି∑ ைಷೕಷ

ೕᇲ
೙
ೕᇲసభ

 ೙
ೕᇲసభ

ି∑ ைಷೕ಴೔
೘
೔సభ  ೘

೔సభ

  

       

      (2) 

 
Either cloud or fog, when it can’t execute or handle 
requests efficiently, it will try to offload either 
horizontally or vertically. As we know cloud 
computing cost is much higher than the fog as a 
result requests are offloaded from cloud to fog. As 
we offload a request, communication latency is 
considered as a key performance indicator. 
Communication latency from cloud to fog can be 
denoted as 𝐿஼೔ ,ிೕ

 and expressed as 

𝐿஼೔ ,ிೕ
=  

ଵ

஻಴೔,ಷೕ
ି ை಴೔,ಷೕ

  (3) 

 
Table I: Variables and Notations 
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Notation Description 
System: 
Ci, 1 ≤ i ≤ m 
Fj, 1 ≤ j ≤ n 
dj,k, 1 ≤ j ≤ n, 

1 ≤ k ≤ nj 

ith cloud 
jth fog 
kth device in jth fog 

Traffic: 
𝜆௜

஼ , 𝜆௝
ி  traffic coming into the ith cloud 

and jth fog 
Capacity: 

 
𝐵஼೔,ி

ೕ ᇲ
 𝐵ிೕ,ி

ೕᇲ
 

 
𝜇஼೔

௎  , 𝜇஼೔

ா , 𝜇஼೔

ெ஺௑ 
 
 
𝜇ிೕ

௎  , 𝜇ிೕ

ா , 𝜇ிೕ

ெ஺௑ 

 

Communication capacity 
between Ci, Fj and Fj, Fj’ 

 
In use, exceeding and 
maximum computing 
capacity of ith cloud 
 
In use, exceeding and 
maximum computing 
capacity of jth fog 

Latency: 
𝑊஼೔

 , 𝑊ிೕ
 

𝐿஼೔
 , 𝐿ிೕ

 
 
𝐿௖೔,ிೕ

, 𝐿ிೕ஼೔
, 𝐿ிೕி

ೕᇲ
 

 
𝐿ெ஺௑  

Waiting time in the ith cloud and 
jth fog  
Computing latency at Ci and 
Fj  

Communicating latency from 
Ci to Fj, from Fj to Ci, and from 
Fj to Fj’ 

Maximum latenc 
Cost: 

τtotal, τcomm, τcomp, 
τwait    
 
τC, τF  

τwc, τwF 

 
τ F→F , τ C→F , τ F→C 
 
 
φCi, φFj  
 
wCi,Fj , wFj,Fj’   

 
𝑆஼೔

 , 𝑆ிೕ
 

 

Total cost, communication cost, 
computation cost, and waiting 
cost  
Total computing cost in cloud 
and fog 
Total waiting cost in cloud and 
fog  
Total communication cost 
from fog to fog, from cloud to 
fog, and from fog to cloud 
Unit computing cost of Ci and 
Fj 
Unit communication cost 
between Ci and Fj, between Fj 

and Fj’ 

Unit waiting cost for ith cloud 
and jth fog 

The communication latency, when requests are 
offloaded from fog to cloud denoted as  
𝐿ிೕ ,஼೔

 can expressed as 

𝐿ிೕ ,஼೔
=  

ଵ

஻಴೔,ಷೕ
ି ைಷೕ,಴೔

  (4) 

The fog to fog communication latency denoted as 
𝐿ிೕ ,ி

ೕᇲ
 can be calculated as 

𝐿ிೕ ,ி
ೕᇲ

=  
ଵ

஻ಷೕ,ಷ
ೕᇲ ି ைಷೕ,ಷ

ೕᇲ

  (5) 

 
In general, while using the cloud and fog, the 

resources such as CPU and storage are considered as 
entities that incurs cost. The computing cost in the 
cloud is usually much higher than fog [7]. Total 
computing cost τC for the clouds can be derived as 

𝜏஼ = ∑ ൫𝜇஼೔

௎ × 𝜑஼೔
൯௠

௜ୀଵ   (6) 

Then, the total computing cost for fogs denoted 
as τF can be expressed as  

𝑇ி = ∑ ቀ𝜇ிೕ

௎ × 𝜑ிೕ
ቁ௡

௝ୀଵ    (7) 

The total communication cost of cloud to fog 
offloading denoted as τC→F and can be calculated as 

𝜏஼→ி = ∑ ∑ ቀ𝑂஼೔,ிೕ
× 𝜔஼೔,ிೕ

ቁ௡
௝ୀଵ

௠
௜ୀଵ  (8) 

Similarly, communication cost from fog to 
cloud offloading denoted as τF→C will be 

𝜏ி→஼ = ∑ ∑ ቀ𝑂ிೕ,஼೔
× 𝜔஼೔,ிೕ

ቁ௡
௝ୀଵ

௠
௜ୀଵ  (9) 

Finally, the fog to fog communication cost 
denoted as τF→F can be expressed as  

𝜏ி→ி = ∑ ൬ቀ∑ 𝑂ிೕ,ிೕᇲ +௡
௝ᇲୀଵ ∑ 𝑂ிೕᇲ ,ிೕ

௡
௝ᇲୀଵ ቁ × 𝜔ி೔,ிೕᇲ ൰௡

௝ୀଵ

         (10) 

Along with the communication and computing 
cost, we introduce another cost that is called the 
waiting cost. The waiting cost appears in a special 
scenario, where requests arrive at a node, but neither 
get the required resources for processing nor get 
offloaded to other nodes. The total waiting cost for 
cloud, and fog denoted as 𝜏௪಴

 and 𝜏௪ಷ
, respectively, 

are expressed as 

𝜏௪಴
= ∑ ൫𝑊஼೔

×  𝜇஼೔

ா × 𝑆஼೔
൯௠

௜ୀଵ   (11) 
 

𝜏௪ಷ
= ∑ ቀ𝑊ிೕ

× 𝜇ிೕ

ா × 𝑆ிೕ
ቁ௡

௝ୀଵ   (12) 

The total waiting cost τwait, total communication 
cost τcomm, and total computing cost τcomp can be as 

𝜏௪௔௜௧ = 𝜏௪಴
+ 𝜏௪ಷ

,   (13) 

𝜏௖௢௠௠ = 𝜏஼→ி + 𝜏ி→஼ + 𝜏ி→ி,  (14) 

𝜏௖௢௠௣ = 𝜏஼ + 𝜏ி,    (15) 

Finally, the main objective is to minimize the 
total cost in the system denoted as τtotal = τcomm + τcomp 
+ τwait expressed as 

min τtotal ,  (16) 
subject to, 

𝐿஼೔
< 𝐿ெ஺௑   ,    (17) 

𝐿ிೕ
< 𝐿ெ஺௑   ,    (18) 
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𝐿஼೔,ிೕ
+  𝐿ிೕ

< 𝐿ெ஺௑   ,  (19) 

𝐿ிೕ,ி
ೕᇲ

+  𝐿ி
ೕᇲ

< 𝐿ெ஺௑   ,  (20) 

𝐿ிೕ,஼೔
+  𝐿஼೔

< 𝐿ெ஺௑   ,  (21) 

𝜇஼೔

௎ <  𝜇஼೔

ெ஺௑  ,     (22) 
𝜇ிೕ

௎ <  𝜇ிೕ

ெ஺௑  ,    (23) 

𝑂஼೔,ிೕ
< 𝐵஼೔,ிೕ

  ,    (24) 

𝑂ிೕ,஼೔
< 𝐵஼೔,ிೕ

  ,    (25) 

𝑂ிೕ,ி
ೕᇲ

< 𝐵ிೕ ,ி
ೕᇲ

  ,    (26) 

Equations (17) and (18) ensure that the request 
coming to the cloud and fog being processed at the 
same cloud and fog, respectively, do not exceed the 
maximum latency LMAX. The constraint (19) ensures 
that the request arriving at Ci and later on being 
executed at Fj do not exceed the maximum latency 
limit. Equations (20), and (21) ensure that the 
request arriving at Fj and executed at Fj′, and Ci, 
respectively, do not exceed the maximum latency. 
The capacity constraints in equations (22), and (23) 
ensure that the capacity in use in the cloud, and fog, 
respectively, do not exceed the respective maximum 
computing capacity. Equations (24), (25), and (26) 
ensure that the offloading request from cloud to fog, 
fog to the cloud, and fog to fog, respectively should 
not exceed the respective channel bandwidth. 

 
4. ALGORITHM DESIGN 

In this paper, we used a modified simulated 
annealing (SA) algorithm to handle the two-tier 
cloud-fog federated systems. The SA algorithm flow 
starts with setting up the initial and final 
temperatures which are set to 100 and 10, 
respectively. The cooling parameter α is set to 0.99. 
From the default parameter, we generate the solution 
𝕊 and check whether they satisfy the given latency 
and capacity constraints. In the next step, we 
generate a new solution 𝕊𝒏𝒆𝒘 that is explained in 
Algorithm 2. Then from 𝕊  and 𝕊𝒏𝒆𝒘 we compute the 
total computation cost of cloud and fog. Then 
estimate ΔC, and ΔF as given in Line 6. From Line 7-
15, we compare the old solution with the new 
solution. If the new solution is better, we accept it, if 
not, we still accept it with the probability given in 
Line 10, 12, and 14. In each iteration, we reduce the 
initial temperature by multiplying the α. The process 
will continue until it satisfies the condition given in 
Line 17. 

In Algorithm 2, we demonstrate the procedure 
of generating the new solution. It is executed in a 
loop that leads to checking three conditions. The first 
condition checks that the required capacity to be in 
use exceeds the maximum capacity of the fog. The 
neighboring fog has available capacity to process the 

requests; the task will be offloaded to the 
neighboring fog by Algorithm 3, provided it will not 
violate the given latency constraint. If the first 
condition does not satisfy, we will check the second 
condition i.e., the neighboring fog would not be able 
to process the requests and will be offloaded to the 
cloud by Algorithm 4. In the last condition, when the 
fog has enough capacity to process the request, the 
cloud will offload its requests by Algorithm 5 as the 
processing in the fog is cheaper, which helps reduce 
the cost. 

The fog to fog offloading scenario is explained 
in Algorithm 3. It ensures that requests from one fog 
would not be offloaded to the same fog. How many 
requests are offloaded is determined by value γ, 
which is the offloading ratio with a range from 0 to 
0.1. The offloading ratio would be multiplied by the 
capacity in that fog to obtain the total request to be 
offloaded to other fog. 
 
Algorithm 1 Modified Simulated Annealing           

1:  Set T = 100, Tend = 10 and α = 0.99 
2:  Generate 𝕊 from default parameter  
3:  Check ℒ and ℂ for initial solution  
4:  Generate 𝕊𝒏𝒆𝒘  by Algorithm 2 
5:  Compute the old τC and τF from 𝕊, and new 

τC and τF from 𝕊𝒏𝒆𝒘  

6:  Calculate ∆C by subtracting new τC and old τC, 
and ∆F by subtracting new τF and old τF 

7:  if ∆C ≤ 0 and ∆F ≤ 0 then 
8:     Accept 𝕊𝒏𝒆𝒘 
9:  else if ∆C ≤ 0 and ∆F > 0 then 

10:     Accept 𝕊𝒏𝒆𝒘 with probability expቀ−
୼ಷ

்
ቁ  

11: else if ∆C > 0 and ∆F ≤ 0 then 

12:    Accept 𝕊𝒏𝒆𝒘 with probability expቀ−
୼಴

்
ቁ 

13: else 
14:     Accept 𝕊𝒏𝒆𝒘 with probability exp ቀ−

∆಴ା୼ಷ

்
ቁ 

15: end if 
16: Compute T ← T ∗ α 
17: if T < Tend then 
18:      Return 𝕊𝒏𝒆𝒘 
19: else 
20:      go back to step 4 
21: end if 

 
Algorithm 2 Generate new solution 

Require: 𝜇஼೔

௎  , 𝜇ிೕ

௎  , 𝜇ிೕ

ெ஺௑ℒ, ℂ, 𝐹௝, 𝐶௜  

1:  while 𝕊𝒏𝒆𝒘 fail ℒ and ℂ do 
2: if  𝜇ிೕ

௎ > 𝜇ிೕ

ெ஺௑ and 𝜇ிೕ

௎ < 𝜇ிೕᇲ
ெ஺௑ and high ℒ then 

3:  Offload fog to fog by Algorithm 3 
4: else if 𝜇ிೕ

௎ > 𝜇ிೕ

ெ஺௑ and 𝜇ிೕ

௎ > 𝜇ி
ೕᇲ

ெ஺௑ or low ℒ then  

5: Offload fog to cloud by Algorithm 4 
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6: else if 𝜇ிೕ

௎ < 𝜇ிೕ

ெ஺௑then 

7: Offload cloud to fog by Algorithm 5 
8: end if 
9:  end while 
10: return 𝕊𝒏𝒆𝒘 
 

Algorithm 3   Offloading Fog-to-Fog 

Require: 𝜇ிೕ

௎  , 𝜇ிೕ

ெ஺௑ , 𝐹௝ 
1: for 𝑗 ← 0 to  𝐹௝ do 
2:  for 𝑗ᇱ ← 0 to  𝐹௝ do 
3:   Generate 𝛾 ← 0  
4:   if 𝑗 ≠ 𝑗ᇱand 𝜇ிೕ

௎ > 𝜇ிೕ

ெ஺௑ then 
5:    𝛾 ← 𝑟𝑎𝑛𝑑𝑜𝑚(0, 0.1) 
6:    𝑂ிೕ ,ி

ೕᇲ
←  𝑂ிೕ ,ி

ೕᇲ
+  𝜇ிೕ

௎ ∗ 𝛾 

7:    𝜇ிೕ

௎ ←  𝜇ிೕ

௎ −  𝑂ிೕ,ி
ೕᇲ

  

8:    𝜇ி
ೕᇲ

௎ ←  𝜇ி
ೕᇲ

௎ +  𝑂ிೕ ,ி
ೕᇲ

  

9:   end if 
10:  end for 
11: end for 

 
Algorithm 4   Offloading Fog-to-Cloud 

Require: 𝜇஼೔

௎  , 𝜇ிೕ

௎  , 𝜇ிೕ

ெ஺௑, 𝐹௝ , 𝐶௜ 
1: for 𝑖 ← 0 to  𝐶௜ do 
2:  for 𝑗 ← 0 to  𝐹௝ do 
3:   Generate 𝛾 ← 0  
4:   if 𝜇ிೕ

௎ > 𝜇ிೕ

ெ஺௑ ∗ 0.5 then 
5:    𝛾 ← 𝑟𝑎𝑛𝑑𝑜𝑚(0.01, 0.1) 
6:   else  
7:    𝛾 ← 𝑟𝑎𝑛𝑑𝑜𝑚(0, 0.01) 
8:   end if 
9:   𝑂ிೕ,஼೔

←  𝑂ிೕ ,஼೔
+  𝜇ிೕ

௎ ∗ 𝛾 
10:   𝜇஼೔

௎ ←  𝜇஼೔

௎ +  𝑂ிೕ ,஼೔
  

11:   𝜇ிೕ

௎ ←  𝜇ிೕ

௎ −  𝑂ிೕ,஼೔
 

12:  end for 
13: end for 
 

Algorithm 5   Offloading Cloud-to- Fog 

Require: 𝜇஼೔

௎  , 𝜇ிೕ

௎  , 𝜇ிೕ

ெ஺௑, 𝐹௝ , 𝐶௜ 
1: for 𝑖 ← 0 to  𝐶௜ do 
2:  for 𝑗 ← 0 to  𝐹௝ do 
3:   Generate 𝛾 ← 0  
4:   if 𝜇ிೕ

௎ > 𝜇ிೕ

ெ஺௑ ∗ 0.5 then 
5:    𝛾 ← 𝑟𝑎𝑛𝑑𝑜𝑚(0, 0.01) 
6:   else  

7:    𝛾 ← 𝑟𝑎𝑛𝑑𝑜𝑚(0.01, 0.1) 
8:   end if 
9:   𝑂஼೔,ிೕ

←  𝑂஼೔,ிೕ
+  𝜇஼೔

௎ ∗ 𝛾 
10:   𝜇஼೔

௎ ←  𝜇஼೔

௎ −  𝑂஼೔,ிೕ
  

11:   𝜇ிೕ

௎ ←  𝜇ிೕ

௎ +  𝑂஼೔,ிೕ
 

12:  end for 
13: end for 
 

The fog to cloud offloading scenario is 
explained in Algorithm 4. When the fog’s in-use 
computing capacity is fifty percent above the 
maximum computing capacity, it will offload more 
requests to the cloud, and when it is less than fifty 
percent, it offloads less. The value γ determines the 
offloading ratio in both cases. 

The cloud to fog offloading scenario is 
explained in Algorithm 5. When the fog’s in-use 
computing capacity is fifty percent above the 
maximum computing capacity, the cloud will 
offload fewer requests to the fog, and when it is less 
than fifty percent, it offloads more. Here, like 
Algorithm 4, the value γ determines the offloading 
ratio in both cases. 
 
5. PERFORMANCE ANALYSIS 

In this section, we will discuss the performance 
of our proposed architecture and algorithm. The 
parameters used for the simulation are presented in 
Table II. 

 

Figure. 5: Impact of different algorithms on total cost. 
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Figure 6: Impact of different algorithms on execution 

time compared to optimal solution. 

 

 

 

 

 

 

 

 

Table II: Simulation Parameters 

Notation Meaning Value Unit 
n Number of clouds 4 n/a 
m Number of fogs 10 n/a 
  𝜇஼೔

ெ஺௑ Computation Capacity of cloud 1000 CPU Cycles 

𝜇ிೕ

ெ஺௑ Computation Capacity of fog 100 CPU Cycles 

BCi ,Fj Communication capacity between cloud and 
fog 

500 Bytes/request 

𝐵ிೕ ,ிೕᇲ
   Communication capacity between fog and fog 100 Bytes/request 

φCi Cloud computing cost 100 Money units/cycles 

φFj Fog computing cost 10 Money units/cycles 

ωCi ,Fj Communication cost between cloud and fog 5 Money units/bytes 

ωFj ,Fj′ Communication cost between fog and fog 1 Money units/bytes 

SCi Cloud waiting cost 200 Money units/ms 

SFj Fog waiting cost 20 Money units/ms 

LMAX Maximum latency 0.1, 0.5, 1, 10, 100, 
1000 

ms 

 

Figure 7: Impact of simulated annealing and modified 
simulated annealing algorithm. 

Fig. 5 shows with the increase in arrival traffic, the 
total cost increases where the maximum latency limit 
was set to 1000ms. The performance of the proposed 
modified SA and SA are nearly similar to optimal 
results that are obtained using the IBM CPLEX [36]. 
Although the total cost of the algorithms is similar to 
the optimal results, their execution time is significantly 
better than the CIPLEX optimizer. As Fig. 6 shows, 
while the optimizer takes more than 25 seconds to 
produce the optimal results, the simulation can be done 
in less than 1 sec. Although the execution time of SA 
and modified SA look the same in Fig.6, Fig.7 

demonstrates their performance difference. The result 
in Fig. 7 shows with the increase in traffic, the modified 
SA outperforms the SA.  

Fig. 8 shows the performance of the proposed 
OMNI architecture in different latency constraints. As 
the result shows, with the tight latency, the cost is high, 
and the cost goes down with the loose latency. Because 
we know the cloud has low computing latency because 
of its high-power computing capacity but with a very 
high cost. Whereas the fog has high computing latency 
due to its low power computing resources with a lower 
cost. However, it adds extra communication latency 
when tasks are offloaded from fog to cloud or cloud to 
fog. Hence in loose latency, execution is done where 
computation is cheap, whereas, for tight latency, tasks 
are offloaded to one that can serve faster. 
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Figure 8: Impact of different latency on the total cost. 

 

 

Figure 9: Impact of different architectures on total cost with 
latency 100ms. 

 

Figure 10: Impact of different architectures on total cost 
with latency 1000ms. 

In Fig. 9, and 10, we compare the performance of 
our OMNI architecture with cloud to fog (C2F), fog to 
cloud (F2C), fog to fog(F2F), and no offloading 
(ZERO) models. In Fig. 9, the latency limit is set to 
100ms, and in Fig. 10 is 1000ms. As both the results 
show, our OMNI architecture has a lower cost than all 
other architectures. This is because it has the option to 
offload the tasks in all possible directions to where it 
can lower the cost without violating the given latency 
constraint. 

6. CONCLUSION 

In this work, we proposed a cloud-fog federated 
OMNI architecture and investigated the cost 
minimization problem with given latency limits. We 
used a modified SA algorithm as a solution. The results 
show the proposed algorithm performance is nearly 
optimal. It outperforms the SA algorithm in terms of 
execution time. We also compared the performance of 
the proposed OMNI architecture with other 
architectures. The results show that the OMNI 
architecture saves more cost than other architectures in 
different latency limits. 
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