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ABSTRACT 
 

Software plagiarism checkers can be important during coding competitions, to review, evaluate, and rank the 
participants. For a problem statement, if the number of submissions is relatively small then inspecting each 
code submission and being able to determine whether they are similar to the existing code segment or not is 
easy, but in the case of huge code submissions, it is very difficult to determine the presence of code clones in 
the submitted code snippet. Therefore, there is a need for plagiarism checkers to detect similar clones. In 
existing studies, we could use various approaches to detect code clones, but code clone detection using an 
abstract syntax tree is one of the popular approaches. Our proposed approach based on AST is experimented 
on a BigCloneBench dataset consisting of Java code fragments and implemented using recursive neural 
networks. The siamese networks were used to detect similarities between two code fragments and presented 
the influence of contrastive learning in source code clone detection with high accuracy. This paper showcases 
the improvement in precision, recall and F1-score at least with 5% compared to existing approaches.  

Keywords: Code similarity, Plagiarism detection, Siamese networks, Recursive Neural Networks, LSTM, 
Contrastive learning 

 
1. INTRODUCTION  
 

Sometimes, Source Code Plagiarism checkers can 
help academia to evaluate students’ programming 
assignments and judge their work. The participant’s 
work can easily be inspected against plagiarism 
checkers even in coding competitions. Code clone 
detection is the base work to design such as 
plagiarism checkers. But in the industrial field, 
programmers look for particular source code, by 
which their task is highly satisfied. They will not 
bother about plagiarism or author details. There are 
too many online platforms to host projects’ source 
code, even researchers sharing their work publicly. 
This makes it easy for developers to easily search for 
code and copy the code for their software 
implementations. Of course, copy-paste approach in 
software development has advantages and 
disadvantages. However, to check for the similarity 
in code segments, we followed an Abstract Syntax 
Tree (AST) based approach, employed deep learning 
models, and evaluated on an open-source large 
dataset available publicly.  

Most of the research studies addressed the 
problem with clone detection. An existing research 
work [1] proposed AST-based neural networks to 
extract abstract syntax trees from code fragments and 
transform them into code vectors. The vector 
representation of ASTs then processed by a 
bidirectional Gated Rectifier Unit (GRU) to get 
source code embedding. Such embeddings help train 
recurrent neural networks and detect syntactically 
accurate and similar representations of source codes. 
Comparatively, this ASTNN approach showed better 
results than the previous traditional approaches. 
However, this model was evaluated on two publicly 
available datasets namely OJClone and 
BigCloneBench. Another model ASTNN-c [2] 
proposed Siamese-Networks [9] to identify code 
clones of the C language. In this approach, a 
contrastive study was provided between cross 
entropic loss function and contrastive loss function.  

Our main contribution to work is to detect java 
source code similarity by supervised contrastive 
learning [3] by modifying the ASTNN model. 
Contrastive learning was mostly used in image 
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classification work by many researchers. The 
Siamese neural network architecture consists of two 
or more identical networks [9] that can help in the 
prediction of code similarities. 

The structure of our paper is as follows. Section II 
covers related work toward the detection of similar 
code fragments, Section III covers methodology of 
proposed approach, section IV covers conclusion 
and limitations of work, section V gives the overall 
discussion of the model and its results, and finally 
conclusion and future enhancement of our work. 

2. RELATED WORK 

              Code clone can be similar or identical 
fragments of code which refers to the duplication of 
source code. Basically, code clones are of 4 types 
[8], such as exact clone, which have no changes in 
code fragments except blank spaces, comments, 
remarks.   Renamed clones, are syntactically similar 
clones may vary in variable names, identifier names. 
Near miss clones, can have changes in statements of 
codes such as modifications, adding or removal of 
statements in source codes. Semantic clone, which 
are syntactically different but semantically similar 
clones. Among them identifying semantic clones is 
still a challenging problem to solve. Of course, Code 
clone detection is not a novel task in the software 
engineering field. Many existing research 
contributions made it easy with traditional 
approaches. Still, there are challenges in the 
detection of code clones. The technique we use to 
transform a source code into computable form and 
similarity findings between code fragments. 
 
2.1 Source Code Transformation  

 
The major approaches followed by existing 

techniques were Tree-based and graph-based 
approaches to represent source codes. Abstract 
Syntax Trees (ASTs) provide lexical and syntactical 
information on source code [4]. Control flow graphs 
(CFGs) give structural or semantic information 
about the source code [5]. However, most of the 
approaches use either Syntax trees (ASTs) or Graphs 
(CFGs) of source codes, and few word embeddings 
used to represent them. But, handling a large syntax 
tree or huge graph to train a model may lose some 
sensitive semantic information. Therefore, some 
other optimized approaches must be followed to 
achieve better results.  

   
2.2 Source Code Similarity  

    
The existing techniques use various similarity 

measures to detect similarity between code vectors. 

The Euclidean distance metric is used to cluster the 
vectors. The vectors in one clone cluster can be 
treated as similar. Levenshtein distance is a metric 
for measuring the distance between two sequences, 
such distance is defined as the minimum edits 
required to transform one to the other. Some 
approaches use cosine similarity to identify code 
clones. Most of the techniques develop a model to 
compare and detect similar code snippets. K means 
clustering algorithm used to cluster the source code 
representations and calculates the similarities. In 
image classification techniques Siamese network is 
used to identify similar faces, which takes two inputs 
(images) and forms two sub-networks to process the 
inputs to predict similarity scores based on similarity 
function as: 
 Ssim = Fsim(I1, I2) 

 
 
2.3 Recurrent Neural Networks 

 
Recurrent Neural networks RNN) are one of the 

artificial neural networks. RNNs are mainly used for 
Natural Language Processing tasks. To handle 
sequence-related problems, the issues we identify 
are the variable size of input/output neurons, too 
much computation, and no parameter sharing. RNNs 
address such issues by adapting to work with time-
series data or data that involves sequences. In our 
research work code sequence data is also to be 
handled similarly without losing the syntactic and 
structural flow of code fragments Therefore, LSTM 
is a type of RNN used in our work, which is suitable 
to handle tree structures. 
 
2.4 Siamese Neural Networks 

 
Sometimes, learning similarities between java 

code clones can be useful. Siamese neural network 
is an artificial neural network composed of two 
subnetworks that give two output embeddings.  

 
 
 
 
 
 
 
  

Figure 1: Example of Siamese architecture  
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These embeddings will be used as inputs to a 
loss function. This twin encoding network shares 
weights but of course, the same network is used 
twice. Such loss function is implemented to 
minimize the distance between similar inputs (code 
fragments). 

 

2.5 Contrastive Loss Function 
 
Cross entropic loss or log Loss function is 

commonly used for classification problems to 
minimize the loss. While this Cross entropy works 
well for both binary classification and multi-
classification problems, also helpful for similarity 
detection problems. Mostly, this approach was used 
for image classification to correctly separate image 
embeddings from various classes. Though this 
learning method performs well, the contrastive 
learning method shows better performance and 
predicts the distance between code fragments is 
shown to outperform the cross entropic method. 
 
3. METHODOLOGY 

 
In this chapter, the detailed approach for 

java code clone detection is explained in each of the 
sub-sections. Our proposed work is based on the 
ASTNN model [1]. Firstly, the dataset description is 
elaborated in detail, then in the second sub-section, 
preprocessing steps used in the ASTNN model, and 
in the third sub-section, the proposed approach 
implemented with Siamese neural networks is 
described with little modification of the ASTNN 
model. 

 

3.1 Dataset Description 
We have chosen a large dataset, the 

BigcloneBench (BCB) [6] dataset for Java 
Language. It is a public dataset benchmark for code 
classification and clone detection. This dataset 
consists of known true and false positive clones from 
a big data inter-project Java repository, which has 
been majorly used by researchers concerning clone 
detection. BCB dataset consists of 6 million true 
clone pairs and 260 thousand false clone pairs.  
3.2 Data Preprocessing 

 
We cannot feed the model directly with the 

dataset, so preprocessing is required. We have to 
transform each source code into an intermediate 
form, such that each code fragment is converted into 
a statement tree with the help of python library 
javalang. Instead of processing large syntax trees of 
code fragments, split them into small statement trees 
as shown in Figure 2. In this model the steps 
followed for preprocessing the dataset are: 

 

Figure 2: Preprocessing framework for the input code snippets 

Figure 3: Representation of token indexes 
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Step 1: Parse the source codes to extract lexical 
information from code fragments. 
 
Step 2: Read pairs of code fragments (ASTs) and 
split them into statement sequences. 
  
Step 3: split the data into training, validation, and 
testing sets, and train word embeddings using the 
word2vec model. 
 
Step 4: Generate block sequences for the dataset to 
process the model. 
 

We extract the tokens from each statement 
block and generate its corresponding vectors as 
shown in Figure 4, such as ForStatement, 
whilestatement, MethodDeclaration, etc. Word2Vec 
model is used to extract token indexes as shown in 
Figure 3. As the deep learning model cannot use 
actual tokens to process, token indexes of them used 
to work with deep learning model. In the end, to form 
a sequence of preprocessed statement trees as shown 
in figure 2, each statement block of code fragment is 
joined together.  

 
3.3 Clone Detection Model 

 
In this section, detailed description of the 

model given, that helps detect java code clones. 
Siamese networks are mostly used to predict the 
similarity distance between inputs such as images, 
texts, code fragments. Our model also implemented 
with Siamese networks; it takes two source codes 
through loss function. When training a Siamese 
network, two or more inputs are encoded and the 
output features are compared through the loss 
functions such as cross-entropy loss and contrastive 
loss.  

To encode the sequence of statement trees 
into vector representations, the statement tree 
encoder is used as discussed above in the 3.2 section.  
 
Table 1: Sample representation of blocks for source code. 
 

Sample code in Java Blocks obtained for 
Source code 

public class Factorial {   
public static void main 
(String[] args) {       int fact 
= 1;   
        int i = 1;   
        Scanner sc = new 
Scanner (System.in);      
        
System.out.println("Enter 
a number whose factorial is 
to be found: ");   
        int num = sc.nextInt();        
        while( i <= num ){   
            fact = fact * i;    
            i++;    
        }             
        
System.out.println("Factor
ial of " + num + " is: " + 
fact);   
    }   
}   

block 1: 
MethodDeclaration 
block 2: 
LocalVariableDeclarati
on 
block 3: 
LocalVariableDeclarati
on 
block 4: 
LocalVariableDeclarati
on 
block 5: 
StatementExpression 
block 6: 
LocalVariableDeclarati
on 
block 7: WhileStatement 
block 8: BlockStatement 
block 9: 
StatementExpression 
block 10: 
StatementExpression 
block 11: End 
block 12: 
StatementExpression 

 
With the batch tree encoder, particular 

block of source code is given with a sequence of tree 
nodes, by performing recursive calls on the root of 
each statement tree, it is encoded into vector 
representation [1], which is represented as per the 
below algorithm Figure 6. Bidirectional GRU used 
in the model, which takes the output of the batch tree 
encoder as input and is used to learn the 
dependencies of the statement trees of actual code in 
blocks as per table 1, in which it transforms the 
syntax tree into a structure of nested arrays 
representing blocks of the source code, then it 
returns vector representation of the total source code 
as shown in Figure 2. 

The process of retrieving the AST of a 
source code and splitting them into subtrees to 
extract the more syntactic and semantic information 
about the source code is mentioned in the model [1]. 
Few modifications were made to this model to 
predict similar java source codes. As stated earlier 
Siamese networks are used for prediction and 
contrastive learning is used to minimize the loss for 
comparison of input code fragments.  

token:  ForStatement 
vector:  [0.8975477  0.30159312 2.0667598  

0.09544923] 
token:  WhileStatement 

vector:  [ 0.2084294  -0.29155913  1.2945276  -
0.6455277 ] 

token:  MethodDeclaration 
vector:  [ 0.97751176 -2.2895794   1.3722514   

1.5088714 ] 
token:  IfStatement 

vector:  [-0.677365    0.23554918  1.4510689  -
0.4594793 ] 

Corresponding vector for the following tokens 

Figure4: Representation of vectors for tokens 
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Contrastive loss takes the output from the 
twin network for a code fragment and calculates its 
distance from the same class (True Positive) of code 
fragments and contrasts with the distance to another 
class (False positive or False-negative or True 
negative) of code fragments. Hence, instead of the 
binary cross entropic loss function, we used the 
contrastive loss to predict the relative distance 
between two code fragments (inputs).   
  
The contrastive loss function is defined as L: 
𝑀𝑒𝑎𝑛(𝑇 + 𝐷ଶ × (1 − 𝑇) × (max(0, 𝑚 − 𝐷))ଶ)  

-----(1)                                            
Where T is True values, D is the labels we used for 
training, and m is the margin value provided for 
contrastive function. 

Figure 6: Algorithm for batch tree encoder [1]. 
 
3.4 Evaluation Metrics 
  

The evaluation metrics used in our 
approach are precision, recall, and F1-score are 
given below:  

Precision = 
்௨ ௦௧௩

்௨ ௦௧௩ାி  ௦௧௩
             -------(2) 

 

Recall = 
்௨ ௦௧௩

்௨ ௦௧௩ାி௦  ே௧௩
              -------(3) 

 

F1-Score = 2 ×
௦ ×ோ

௦ାோ
                   -------(4) 

 
While evaluating the model true positives, true 
negatives, false positives, and false negative values 
can be made.  

Siamese network takes input source codes 
and generates statement trees for them as per Figure 
2. Then, these statement trees are passed to the 
statement tree encoder which outputs vector for each 
input source code. The Figure 6 shows the overall 
working process of Siamese networks to detect java 
code clones. For each code vector, ASTNN based 
sub network formed, which is tree-based LSTM 
network to process the code vector. Both binary 
cross entropic loss and contrastive loss scores 
compared to get best evaluation.  
 
3.5 Evaluation of Model 
  

In this section, extensive evaluation of the 
approach used in this work is explained. Basically, 
the model is evaluated by splitting the dataset into 3 
sets, 60% for a training set, 20% for a validation set, 
and 20% into a test set. The model performance 
evaluated with the specific experiments on java code 
fragments and also help to show the performance 
between binary cross-entropy and contrastive 
learning. 
 
3.5.1 Performance with Java Source codes 
 

We evaluated our model using two learning 
approaches called binary-cross-entropy and 
contrastive learning on the test dataset with respect 
to precision, recall, and F1- Score. In table 2, the 
performances with these learning approaches are 
shown.  We used the top performance (F1-score) of 
the model and threshold distance used to predict 
similar input source codes. The figures 7,8 show 
confusion matrices for the model evaluation. 

Algorithm: Batch Tree Encoder 
Input: Array of Statement trees, A 
Output: Vectors for batched Statement Trees, BV 
Function BatchProcess(ns, ids ) //ns=node sequence, 
ids=their indexes 
 Initialize two array lists C, CI ← φ to record child 
nodes and their batch indexes; 
             for each node ∈ ns do 
                for each children node, the child node 
does group the child by its position, and records the 
child to C and its batch index to CI; 
end for 

Figure 5: Working process of Siamese networks in detection of similar source codes 
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Table 2: Performances with different learning approaches 
 

 
We calculated the precision, recall, and F1-score of 
the models mentioned in Table 3, on the test dataset 
and compared them. 
 
Table 3: Performances of different ASTNN models 
 

Model Precision Recall F1-
Score 

ASTNN 0.972 0.899 0.935 
ASTNN-C 0.975 0.992 0.983 
ASTNN-Java 1.000 0.993 0.938 

 
As per the results mentioned above, Contrastive 
learning performs better than the cross-entropic 
learning approach.  

3.5.2 Results and discussion 

We also recorded training and validation 
loss. The following graphs show that contrastive 
learning converges faster than binary cross-entropic 
training. However, contrastive learning loss value 
may seem lower but this is because loss is calculated 
differently for each type of learning. As a result of 
converging faster than binary cross entropic 
learning, contrastive learning reaches higher training 
accuracy values faster than binary cross entropic 
training.  

 

 
 

(a) 

(b) 
 

 
 

3.5.3 Interface Design 

The user interface can be implemented with 
HTML and CSS. Flask is a web framework, which 
is a python module used to develop web 
applications. Our application runs using the ngrok 
website. Create an app instance to handle web 
requests and send responses to the user. ngrok is a 
cross-platform application that enables developers to 
expose a local development server to the Internet 
with minimal effort. The following figures are 
shown for predicting java code clones with the 
threshold distance of 0.5. We can upload two code 
files to predict the similarity between them using 
Siamese networks as shown in Figure 9. We can 

Approach Precision Recall F1-Score 
BCE 0.993 0.884 0.936 
Contrastive 1.000 0.993 0.938 

Figure 7: Confusion matrix of the model using 
Binary Cross Entropy learning approach 

 

Figure 8: Confusion matrix of the model using 
Contrastive learning approach 

Figure 9: (a) Graph represents Loss Vs Epochs (b) 
Graph represents Accuracy Vs Epochs 
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change the margin and threshold values to predict 
accurate results. 
 
4. CONCLUSION AND LIMITATIONS 

In this paper, we give a modified version of 
the ASTNN model proposed for java source code 
similarity detection [1]. There are three major phases 
in our model, firstly, the embedding network to 
convert tokens of source code into word 
embeddings. Secondly, transforming the source code 
into a tree structure. Our approach outperformed the 
proposed model. Abstract Syntax Tree 
representation is used for code and deep neural 
networks for determining similar code fragments. At 
last, The LSTM-based Siamese Neural Networks 
predict code clones. Of course, Code clone detection 
is still a challenging problem to be solved. The 
proposed model can be extended to different 
programming languages available. The major 
limitation is OJClone dataset, which is not collected 
from real environment. There are the chances to 
identify false clone pairs as there are the programs 
under the same problem can belong to same clone 
pair. BigCloneBench java codes collected from large 
repositories of SourceForge [6], which can be 
helpful in identifying true clone pairs.  
 

 

5. FUTURE SCOPE 

In the future, we can further evaluate our model 
on big datasets of different or various programming 
languages. The work can be extended for different 
software engineering tasks like similar code clone 
detection for maintenance of software, and bug 
detection in software [7] so that able to reduce error 
propagation in software. However, recursive neural 
networks are more computationally expensive. 
Therefore, we will explore other neural network 
models along with intermediate code representations 

such as dependency graphs, etc. to extract more 
semantics from source codes. 
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