
Journal of Theoretical and Applied Information Technology
15th September 2022. Vol.100. No 17

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5507

JAVA SOURCE CODE SIMILARITY DETECTION USING
SIAMESE NETWORKS

DIVYA KUMARI TANKALA1, Dr. T. VENUGOPAL2, VIKAS B3
1Assistant Professor, G. Narayanamma Institute of Technology and Science, Department of CSE,

Hyderabad, Telangana, India

2Professor, JNTUH UCE, Department of CSE, Jagitya, Telangana, India

3Assistant Professor, GITAM School of Technology, Vishakhapatnam, Andhra Pradesh, India

E-mail: 10000-0002-2842-4898, 20000-0001-7782-7311, 3vboddu2@gitam.edu

ABSTRACT

Software plagiarism checkers can be important during coding competitions, to review, evaluate, and rank the
participants. For a problem statement, if the number of submissions is relatively small then inspecting each
code submission and being able to determine whether they are similar to the existing code segment or not is
easy, but in the case of huge code submissions, it is very difficult to determine the presence of code clones in
the submitted code snippet. Therefore, there is a need for plagiarism checkers to detect similar clones. In
existing studies, we could use various approaches to detect code clones, but code clone detection using an
abstract syntax tree is one of the popular approaches. Our proposed approach based on AST is experimented
on a BigCloneBench dataset consisting of Java code fragments and implemented using recursive neural
networks. The siamese networks were used to detect similarities between two code fragments and presented
the influence of contrastive learning in source code clone detection with high accuracy. This paper showcases
the improvement in precision, recall and F1-score at least with 5% compared to existing approaches.

Keywords: Code similarity, Plagiarism detection, Siamese networks, Recursive Neural Networks, LSTM,
Contrastive learning

1. INTRODUCTION

Sometimes, Source Code Plagiarism checkers can
help academia to evaluate students’ programming
assignments and judge their work. The participant’s
work can easily be inspected against plagiarism
checkers even in coding competitions. Code clone
detection is the base work to design such as
plagiarism checkers. But in the industrial field,
programmers look for particular source code, by
which their task is highly satisfied. They will not
bother about plagiarism or author details. There are
too many online platforms to host projects’ source
code, even researchers sharing their work publicly.
This makes it easy for developers to easily search for
code and copy the code for their software
implementations. Of course, copy-paste approach in
software development has advantages and
disadvantages. However, to check for the similarity
in code segments, we followed an Abstract Syntax
Tree (AST) based approach, employed deep learning
models, and evaluated on an open-source large
dataset available publicly.

Most of the research studies addressed the
problem with clone detection. An existing research
work [1] proposed AST-based neural networks to
extract abstract syntax trees from code fragments and
transform them into code vectors. The vector
representation of ASTs then processed by a
bidirectional Gated Rectifier Unit (GRU) to get
source code embedding. Such embeddings help train
recurrent neural networks and detect syntactically
accurate and similar representations of source codes.
Comparatively, this ASTNN approach showed better
results than the previous traditional approaches.
However, this model was evaluated on two publicly
available datasets namely OJClone and
BigCloneBench. Another model ASTNN-c [2]
proposed Siamese-Networks [9] to identify code
clones of the C language. In this approach, a
contrastive study was provided between cross
entropic loss function and contrastive loss function.

Our main contribution to work is to detect java
source code similarity by supervised contrastive
learning [3] by modifying the ASTNN model.
Contrastive learning was mostly used in image

Journal of Theoretical and Applied Information Technology
15th September 2022. Vol.100. No 17

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5508

classification work by many researchers. The
Siamese neural network architecture consists of two
or more identical networks [9] that can help in the
prediction of code similarities.

The structure of our paper is as follows. Section II
covers related work toward the detection of similar
code fragments, Section III covers methodology of
proposed approach, section IV covers conclusion
and limitations of work, section V gives the overall
discussion of the model and its results, and finally
conclusion and future enhancement of our work.

2. RELATED WORK

 Code clone can be similar or identical
fragments of code which refers to the duplication of
source code. Basically, code clones are of 4 types
[8], such as exact clone, which have no changes in
code fragments except blank spaces, comments,
remarks. Renamed clones, are syntactically similar
clones may vary in variable names, identifier names.
Near miss clones, can have changes in statements of
codes such as modifications, adding or removal of
statements in source codes. Semantic clone, which
are syntactically different but semantically similar
clones. Among them identifying semantic clones is
still a challenging problem to solve. Of course, Code
clone detection is not a novel task in the software
engineering field. Many existing research
contributions made it easy with traditional
approaches. Still, there are challenges in the
detection of code clones. The technique we use to
transform a source code into computable form and
similarity findings between code fragments.

2.1 Source Code Transformation

The major approaches followed by existing

techniques were Tree-based and graph-based
approaches to represent source codes. Abstract
Syntax Trees (ASTs) provide lexical and syntactical
information on source code [4]. Control flow graphs
(CFGs) give structural or semantic information
about the source code [5]. However, most of the
approaches use either Syntax trees (ASTs) or Graphs
(CFGs) of source codes, and few word embeddings
used to represent them. But, handling a large syntax
tree or huge graph to train a model may lose some
sensitive semantic information. Therefore, some
other optimized approaches must be followed to
achieve better results.

2.2 Source Code Similarity

The existing techniques use various similarity

measures to detect similarity between code vectors.

The Euclidean distance metric is used to cluster the
vectors. The vectors in one clone cluster can be
treated as similar. Levenshtein distance is a metric
for measuring the distance between two sequences,
such distance is defined as the minimum edits
required to transform one to the other. Some
approaches use cosine similarity to identify code
clones. Most of the techniques develop a model to
compare and detect similar code snippets. K means
clustering algorithm used to cluster the source code
representations and calculates the similarities. In
image classification techniques Siamese network is
used to identify similar faces, which takes two inputs
(images) and forms two sub-networks to process the
inputs to predict similarity scores based on similarity
function as:
 Ssim = Fsim(I1, I2)

2.3 Recurrent Neural Networks

Recurrent Neural networks RNN) are one of the

artificial neural networks. RNNs are mainly used for
Natural Language Processing tasks. To handle
sequence-related problems, the issues we identify
are the variable size of input/output neurons, too
much computation, and no parameter sharing. RNNs
address such issues by adapting to work with time-
series data or data that involves sequences. In our
research work code sequence data is also to be
handled similarly without losing the syntactic and
structural flow of code fragments Therefore, LSTM
is a type of RNN used in our work, which is suitable
to handle tree structures.

2.4 Siamese Neural Networks

Sometimes, learning similarities between java

code clones can be useful. Siamese neural network
is an artificial neural network composed of two
subnetworks that give two output embeddings.

Figure 1: Example of Siamese architecture

Where I1, I2

are inputs

Code
fragment 1

Code
fragment 2

Siamese
network

Siamese
network

Same or
different

Journal of Theoretical and Applied Information Technology
15th September 2022. Vol.100. No 17

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5509

These embeddings will be used as inputs to a
loss function. This twin encoding network shares
weights but of course, the same network is used
twice. Such loss function is implemented to
minimize the distance between similar inputs (code
fragments).

2.5 Contrastive Loss Function

Cross entropic loss or log Loss function is

commonly used for classification problems to
minimize the loss. While this Cross entropy works
well for both binary classification and multi-
classification problems, also helpful for similarity
detection problems. Mostly, this approach was used
for image classification to correctly separate image
embeddings from various classes. Though this
learning method performs well, the contrastive
learning method shows better performance and
predicts the distance between code fragments is
shown to outperform the cross entropic method.

3. METHODOLOGY

In this chapter, the detailed approach for

java code clone detection is explained in each of the
sub-sections. Our proposed work is based on the
ASTNN model [1]. Firstly, the dataset description is
elaborated in detail, then in the second sub-section,
preprocessing steps used in the ASTNN model, and
in the third sub-section, the proposed approach
implemented with Siamese neural networks is
described with little modification of the ASTNN
model.

3.1 Dataset Description
We have chosen a large dataset, the

BigcloneBench (BCB) [6] dataset for Java
Language. It is a public dataset benchmark for code
classification and clone detection. This dataset
consists of known true and false positive clones from
a big data inter-project Java repository, which has
been majorly used by researchers concerning clone
detection. BCB dataset consists of 6 million true
clone pairs and 260 thousand false clone pairs.
3.2 Data Preprocessing

We cannot feed the model directly with the

dataset, so preprocessing is required. We have to
transform each source code into an intermediate
form, such that each code fragment is converted into
a statement tree with the help of python library
javalang. Instead of processing large syntax trees of
code fragments, split them into small statement trees
as shown in Figure 2. In this model the steps
followed for preprocessing the dataset are:

Figure 2: Preprocessing framework for the input code snippets

Figure 3: Representation of token indexes

Journal of Theoretical and Applied Information Technology
15th September 2022. Vol.100. No 17

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5510

Step 1: Parse the source codes to extract lexical
information from code fragments.

Step 2: Read pairs of code fragments (ASTs) and
split them into statement sequences.

Step 3: split the data into training, validation, and
testing sets, and train word embeddings using the
word2vec model.

Step 4: Generate block sequences for the dataset to
process the model.

We extract the tokens from each statement
block and generate its corresponding vectors as
shown in Figure 4, such as ForStatement,
whilestatement, MethodDeclaration, etc. Word2Vec
model is used to extract token indexes as shown in
Figure 3. As the deep learning model cannot use
actual tokens to process, token indexes of them used
to work with deep learning model. In the end, to form
a sequence of preprocessed statement trees as shown
in figure 2, each statement block of code fragment is
joined together.

3.3 Clone Detection Model

In this section, detailed description of the

model given, that helps detect java code clones.
Siamese networks are mostly used to predict the
similarity distance between inputs such as images,
texts, code fragments. Our model also implemented
with Siamese networks; it takes two source codes
through loss function. When training a Siamese
network, two or more inputs are encoded and the
output features are compared through the loss
functions such as cross-entropy loss and contrastive
loss.

To encode the sequence of statement trees
into vector representations, the statement tree
encoder is used as discussed above in the 3.2 section.

Table 1: Sample representation of blocks for source code.

Sample code in Java Blocks obtained for
Source code

public class Factorial {
public static void main
(String[] args) { int fact
= 1;
 int i = 1;
 Scanner sc = new
Scanner (System.in);

System.out.println("Enter
a number whose factorial is
to be found: ");
 int num = sc.nextInt();
 while(i <= num){
 fact = fact * i;
 i++;
 }

System.out.println("Factor
ial of " + num + " is: " +
fact);
 }
}

block 1:
MethodDeclaration
block 2:
LocalVariableDeclarati
on
block 3:
LocalVariableDeclarati
on
block 4:
LocalVariableDeclarati
on
block 5:
StatementExpression
block 6:
LocalVariableDeclarati
on
block 7: WhileStatement
block 8: BlockStatement
block 9:
StatementExpression
block 10:
StatementExpression
block 11: End
block 12:
StatementExpression

With the batch tree encoder, particular

block of source code is given with a sequence of tree
nodes, by performing recursive calls on the root of
each statement tree, it is encoded into vector
representation [1], which is represented as per the
below algorithm Figure 6. Bidirectional GRU used
in the model, which takes the output of the batch tree
encoder as input and is used to learn the
dependencies of the statement trees of actual code in
blocks as per table 1, in which it transforms the
syntax tree into a structure of nested arrays
representing blocks of the source code, then it
returns vector representation of the total source code
as shown in Figure 2.

The process of retrieving the AST of a
source code and splitting them into subtrees to
extract the more syntactic and semantic information
about the source code is mentioned in the model [1].
Few modifications were made to this model to
predict similar java source codes. As stated earlier
Siamese networks are used for prediction and
contrastive learning is used to minimize the loss for
comparison of input code fragments.

token: ForStatement
vector: [0.8975477 0.30159312 2.0667598

0.09544923]
token: WhileStatement

vector: [0.2084294 -0.29155913 1.2945276 -
0.6455277]

token: MethodDeclaration
vector: [0.97751176 -2.2895794 1.3722514

1.5088714]
token: IfStatement

vector: [-0.677365 0.23554918 1.4510689 -
0.4594793]

Corresponding vector for the following tokens

Figure4: Representation of vectors for tokens

Journal of Theoretical and Applied Information Technology
15th September 2022. Vol.100. No 17

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5511

Contrastive loss takes the output from the
twin network for a code fragment and calculates its
distance from the same class (True Positive) of code
fragments and contrasts with the distance to another
class (False positive or False-negative or True
negative) of code fragments. Hence, instead of the
binary cross entropic loss function, we used the
contrastive loss to predict the relative distance
between two code fragments (inputs).

The contrastive loss function is defined as L:
𝑀𝑒𝑎𝑛(𝑇 + 𝐷ଶ × (1 − 𝑇) × (max(0, 𝑚 − 𝐷))ଶ)

-----(1)
Where T is True values, D is the labels we used for
training, and m is the margin value provided for
contrastive function.

Figure 6: Algorithm for batch tree encoder [1].

3.4 Evaluation Metrics

The evaluation metrics used in our
approach are precision, recall, and F1-score are
given below:

Precision =
்௨ ௦௧௩

்௨ ௦௧௩ାி ௦௧௩
 -------(2)

Recall =
்௨ ௦௧௩

்௨ ௦௧௩ାி௦ ே௧௩
 -------(3)

F1-Score = 2 ×
௦ ×ோ

௦ାோ
 -------(4)

While evaluating the model true positives, true
negatives, false positives, and false negative values
can be made.

Siamese network takes input source codes
and generates statement trees for them as per Figure
2. Then, these statement trees are passed to the
statement tree encoder which outputs vector for each
input source code. The Figure 6 shows the overall
working process of Siamese networks to detect java
code clones. For each code vector, ASTNN based
sub network formed, which is tree-based LSTM
network to process the code vector. Both binary
cross entropic loss and contrastive loss scores
compared to get best evaluation.

3.5 Evaluation of Model

In this section, extensive evaluation of the
approach used in this work is explained. Basically,
the model is evaluated by splitting the dataset into 3
sets, 60% for a training set, 20% for a validation set,
and 20% into a test set. The model performance
evaluated with the specific experiments on java code
fragments and also help to show the performance
between binary cross-entropy and contrastive
learning.

3.5.1 Performance with Java Source codes

We evaluated our model using two learning
approaches called binary-cross-entropy and
contrastive learning on the test dataset with respect
to precision, recall, and F1- Score. In table 2, the
performances with these learning approaches are
shown. We used the top performance (F1-score) of
the model and threshold distance used to predict
similar input source codes. The figures 7,8 show
confusion matrices for the model evaluation.

Algorithm: Batch Tree Encoder
Input: Array of Statement trees, A
Output: Vectors for batched Statement Trees, BV
Function BatchProcess(ns, ids) //ns=node sequence,
ids=their indexes
 Initialize two array lists C, CI ← φ to record child
nodes and their batch indexes;
 for each node ∈ ns do
 for each children node, the child node
does group the child by its position, and records the
child to C and its batch index to CI;
end for

Figure 5: Working process of Siamese networks in detection of similar source codes

Journal of Theoretical and Applied Information Technology
15th September 2022. Vol.100. No 17

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5512

Table 2: Performances with different learning approaches

We calculated the precision, recall, and F1-score of
the models mentioned in Table 3, on the test dataset
and compared them.

Table 3: Performances of different ASTNN models

Model Precision Recall F1-
Score

ASTNN 0.972 0.899 0.935
ASTNN-C 0.975 0.992 0.983
ASTNN-Java 1.000 0.993 0.938

As per the results mentioned above, Contrastive
learning performs better than the cross-entropic
learning approach.

3.5.2 Results and discussion

We also recorded training and validation
loss. The following graphs show that contrastive
learning converges faster than binary cross-entropic
training. However, contrastive learning loss value
may seem lower but this is because loss is calculated
differently for each type of learning. As a result of
converging faster than binary cross entropic
learning, contrastive learning reaches higher training
accuracy values faster than binary cross entropic
training.

(a)

(b)

3.5.3 Interface Design

The user interface can be implemented with
HTML and CSS. Flask is a web framework, which
is a python module used to develop web
applications. Our application runs using the ngrok
website. Create an app instance to handle web
requests and send responses to the user. ngrok is a
cross-platform application that enables developers to
expose a local development server to the Internet
with minimal effort. The following figures are
shown for predicting java code clones with the
threshold distance of 0.5. We can upload two code
files to predict the similarity between them using
Siamese networks as shown in Figure 9. We can

Approach Precision Recall F1-Score
BCE 0.993 0.884 0.936
Contrastive 1.000 0.993 0.938

Figure 7: Confusion matrix of the model using
Binary Cross Entropy learning approach

Figure 8: Confusion matrix of the model using
Contrastive learning approach

Figure 9: (a) Graph represents Loss Vs Epochs (b)
Graph represents Accuracy Vs Epochs

Journal of Theoretical and Applied Information Technology
15th September 2022. Vol.100. No 17

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5513

change the margin and threshold values to predict
accurate results.

4. CONCLUSION AND LIMITATIONS

In this paper, we give a modified version of
the ASTNN model proposed for java source code
similarity detection [1]. There are three major phases
in our model, firstly, the embedding network to
convert tokens of source code into word
embeddings. Secondly, transforming the source code
into a tree structure. Our approach outperformed the
proposed model. Abstract Syntax Tree
representation is used for code and deep neural
networks for determining similar code fragments. At
last, The LSTM-based Siamese Neural Networks
predict code clones. Of course, Code clone detection
is still a challenging problem to be solved. The
proposed model can be extended to different
programming languages available. The major
limitation is OJClone dataset, which is not collected
from real environment. There are the chances to
identify false clone pairs as there are the programs
under the same problem can belong to same clone
pair. BigCloneBench java codes collected from large
repositories of SourceForge [6], which can be
helpful in identifying true clone pairs.

5. FUTURE SCOPE

In the future, we can further evaluate our model
on big datasets of different or various programming
languages. The work can be extended for different
software engineering tasks like similar code clone
detection for maintenance of software, and bug
detection in software [7] so that able to reduce error
propagation in software. However, recursive neural
networks are more computationally expensive.
Therefore, we will explore other neural network
models along with intermediate code representations

such as dependency graphs, etc. to extract more
semantics from source codes.

REFERENCES:

[1] J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang,

and X. Liu, “A novel neural source code
representation based on abstract syntax tree,”
in Proceedings of the 41st International
Conference on Software Engineering. IEEE
Press, 2019, pp. 783–794.

[2] M. A. Fokam and R. Ajoodha, "Influence of
Contrastive Learning on Source Code
Plagiarism Detection through Recursive
Neural Networks," 2021 3rd International
Multidisciplinary Information Technology and
Engineering Conference (IMITEC), 2021, pp.
1-6, doi:
10.1109/IMITEC52926.2021.9714688.

[3] Prannay Khosla, Piotr Teterwak, Chen Wang,
Aaron Sarna, Yonglong Tian, Phillip Isola,
Aaron Maschinot, Ce Liu, Dilip Krishnan
“Supervised Contrastive Learning”
https://doi.org/10.48550/arXiv.2004.11362

[4] Ira D. Baxter, Andrew Yahin, Leonardo Moura,
Marcelo Sant’Anna, Lorraine Bier, Clone
Detection Using Abstract Syntax Trees, IEEE/
International Conference on Software
Maintenance 1998.

[5] Gang Zhao and Jeff Huang. DeepSim: Deep
Learning Code Functional Similarity. In
Proceedings of the 26th ACM Joint European
Software Engineering Conference and
Symposium on the Foundations of Software
Engineering (ESEC/FSE ’18), November 4–9,
2018.

[6] J. Svajlenko, J. F. Islam, I. Keivanloo, C. K. Roy,
and M. Mia, “Towards a big data curated
benchmark of inter-project code clones,” in
ICSME, 2014, p. 5

 [7] Chen, J., Alalfi, M.H., Dean, T.R. et al.
Detecting Android Malware Using Clone

Figure 10: top figure- UI to predict dissimilar code
clones and bottom figure- UI to detect similar code

clones

Journal of Theoretical and Applied Information Technology
15th September 2022. Vol.100. No 17

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5514

Detection. J. Comput. Sci. Technol. 30, 942–
956 (2015).

[8] Dr. T. Venu Gopal, Divya Kumari Tankala “A
Systematic Review Of Code Search And Clone
Detection Techniques” Journal of Critical
Reviews (JCR). 2020. Pp 7573-7588.

[9] I. Melekhov, J. Kannala and E. Rahtu, "Siamese
network features for image matching," 2016
23rd International Conference on Pattern
Recognition (ICPR), 2016, pp. 378-383, doi:
10.1109/ICPR.2016.7899663.

