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ABSTRACT 
 

Component Based Software Engineering (CBSE) is a software development approach used for rapid 
development. This involves the use of existing, mature components, which might have been developed for 
other software or product, along with new components to speed up the software development process. 
Component based development is being increasingly adopted to reduce costs, manage the increasing 
complexity of software products, and faster time to market. A major challenge posed by the adoption of 
Component Based Software (CBS) is to ensure the reliability of software products developed using this 
approach. The reliability of CBS is dependent upon the individual component reliability as well as software 
architecture. In this paper, a deep learning-based model is designed to predict the reliability of components. 
The results show that the designed model is well predicting the reliability with high accuracy. Comparison 
with other machine learning models justified the use of deep learning models in reliability prediction. 

Keywords: CBS, Component, Deep Learning, Prediction, Reliability 
 
 
1. INTRODUCTION  
 

Software engineering can be defined as the 
process of designing, developing, and testing 
software programs and products. All the phases of 
software engineering are required every time a new 
product is developed. This means that all the 
activities are to be recurring, even if there is 
considerable overlap between product functionality. 
To overcome this duplication of efforts and long 
development cycles, concepts like code reusability 
were developed. This led to the development of 
Component-Based Software Engineering (CBSE) 
which involves the development of reusable 
components that could be used across different 
software products by configuring interactions and 
dependencies between components [[1]]. CBSE is 
used to fast-track the software development process 
by using existing software components. A 
component can be thought of as a part of the software 
that is used to apply logic and can interact with other 
components using interfaces for data exchange. This 
allows for the reusability of components resulting in 
low costs, higher quality, and shorter development 
time [Error! Reference source not found.]. The 

widespread use of components for software 
development led to concerns reliability of software. 
Software reliability is a key parameter that assists 
developers in planning adequate testing activities 
before developing new software by quantifying the 
failure behavior of a software system. CBSE is 
extremely beneficial in increasing productivity. 
However, to maintain the quality, the reusable 
software components must be reliable. The 
challenges faced in component selection from 
component repository include time, performance, 
fault tolerance, compatibility of components, 
reliability, functionality, and available component 
subset [3]. Among all the challenges, the main focus 
of this study is on the reliability of components.  

The current study focuses on the use of 
computational intelligence techniques for predicting 
the reliability of software components. This research 
work focuses on predicting reliability of individual 
components using deep learning. As, it is concluded 
from the previous work that reliability model based 
on components is very rare. Several techniques like 
genetic algorithms, machine learning, and deep 
learning have been used by different researchers in 
various studies. This paper aims to design a model 
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for predicting the reliability of software components 
using deep learning based fully connected neural 
network model on different datasets. 

The rest of the paper is structured into four more 
sections. Section 2 discusses the existing studies on 
the software reliability prediction models using 
computational intelligence techniques for software 
reliability prediction. The fully connected neural 
network based on deep learning with results is 
presented in section 3 while the comparison of the 
model with other machine learning models is given 
in section 4 and finally, section 5 concludes the paper 
along with the future scope. 

2. BACKGROUND STUDY 

Computational Intelligence techniques are 
popularized by Zadeh [[4]] in 1994 for modeling 
imprecision and uncertainty to determine robustness 
and tractability with low cost for software reliability 
estimation. In 2005, Madsen et al. [[5]] proposed a 
method for supporting evolutionary computing, data 
mining techniques, and fuzzy approaches for 
software reliability modeling. Kamei et al. [[6]] 
performed a comparison of several computational 
intelligence approaches in terms of software failure 
prediction. The authors evaluate the performance of 
an SVM-based prediction approach against that of 
other methods like neural networks, classification 
trees, linear discriminant analysis, and logistic 
regression. The analysis reveals that the SVM-based 
software fault prediction model outperforms other 
traditional approaches. In 2010, Marcia et al. 
analyzed different computational intelligence 
techniques like fuzzy systems, neural networks, and 
stochastic methods which help in reliability 
modeling intending to improve reliability. CBS 
study on reliability majorly includes component 
interaction, dependency, reusability, failure, etc. In 
2006, Pai and Hong [[7]] examined existing 
literature on reliability prediction and proposed the 
use of Support Vector Machines (SVM) for the 
same. The authors used Simulated Annealing (SA) 
technique to determine SVM constraints and 
compared the results with numerous other models. 
The proposed model showed better prediction 
capabilities due to the usage of SA algorithms in 
parameter selection. Sharma [Error! Reference 
source not found.] modeled a metric for interface 
complexity between different components. This was 
done by studying the properties of different 
components, including the methods used, 
arguments, and return types. The complexity metric 
was determined for components in Java Beans. 
Subsequently, the metric was evaluated against 
component metrics like readability, customizability, 

and execution time. The researchers concluded that 
components scoring higher on the complexity metric 
took more effort to maintain and more time to 
execute. Zheng [[8]] proposed a non-parametric 
model which used an ensemble of neural networks 
for reliability prediction. The model was then 
evaluated on two datasets and compared with a 
single neural network and three other parametric 
prediction models. Prediction accuracy was higher 
for non-parametric models as compared to 
parametric models. Further, the ensemble of neural 
networks performs better than a single neural 
network. Singh and Kumar [[9]] described a feed-
forward neural network-based reliability prediction 
model. The proposed model used failure history as 
input and used back-propagation to adjust network 
weights. The proposed model was evaluated on 
seven data sets containing failure information and 
the results were compared with three other reliability 
prediction models. It was found that the proposed 
artificial neural network model yielded better results 
than conventional parametric models. Tyagi and 
Sharma [[10]] suggested that soft computing 
techniques like neural networks and fuzzy logic are 
better suited for the reliability prediction of 
Component-Based Software Systems (CBSS) since 
real-world reliability is difficult to predict. They 
proposed an Adaptive Neuro Fuzzy Inference 
System (ANFIS) model and compared its reliability 
prediction ability with a Fuzzy Inference System 
(FIS). The result showed that ANFIS has a higher 
prediction ability, based on Root Mean Square Error 
(RMSE) values. The proposed model is also 
computationally efficient as compared to the FIS 
model. However, the model’s limitation was the fact 
that there were only four factors considered since the 
datasets were obtained from classroom-based 
projects. Diwaker and Tomar [[11]] analyzed the 
importance of component interaction and the path 
used for component reuse. They used Ant Colony 
Optimization (ACO) for determining the optimal 
path between components that increases reusability 
and reliability. The results showed that component 
efficiency and dependency value increased with the 
application of ACO. Sharma and Gandhi [[12]] 
described the application of the Modified Neuro-
Fuzzy Inference System (MNFIS) approach for CBS 
reliability prediction. The model uses the advantages 
of neural network and fuzzy logic and takes four 
factors into account, i.e., component reusability, 
operational profile, dependency, and fault density. 
The results were compared with FIS, and it was 
found that MNFIS had better reliability prediction 
based on sensitivity analysis. Kulamala et al. [[13]] 
studied computational intelligence techniques like 
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SVM, MLP, Bagging, Feed Forward Back 
Propagation Neural Network, Cascade Forward 
Back Propagation Neural Network, Adaptive Neuro 
Fuzzy Inference System, Generalized Regression 
Neural Network, Regression, Neural Network 
ensembles, Non-Homogeneous Poisson Process, 
Instance-based learning, Radial-Bias Neural 
Networks, etc. for software reliability prediction. 
These techniques are surveyed, applied, and 
evaluated for software reliability prediction under 
different criteria for different techniques. Diwaker et 
al. [[1]] proposed a novel mathematical model using 
parallel and series reliability models to estimate CBS 
reliability. Then, evaluation is done using 
computational intelligence techniques, namely 
Fuzzy logic, and Particle Swarm Optimization. The 
result concluded that the Fuzzy logic-based model 
predicts reliability better than PSO. Bharathi et al. 
[[14]] described a new, logic error-based approach 
for reliability prediction. The framework is called 
Software Failure Estimation with Logic Error. The 
research was focused on studying the impact of a 
logic error on a critical system like ABS in 
automotive. They used a Hidden Markov Model to 
estimate failures across the system due to the 
introduction of a logic error. The authors then 
studied the different error states, types of failures 
that occurred in the system, and the worst-case 
outcome. This approach can be used to understand 
the impact of a single error at the design stage itself. 
However, the proposed framework is very selective 
in its approach and may not apply to other systems. 
Similarly, Chau Pattnaik et al. [[15]] proposed the 
use of the Discrete Time Markov Chain for 
designing a reliability estimation framework. The 
model is then applied to a queue management 
application under different execution scenarios with 
average execution time and component reliabilities 
as input parameters. The mean and variance of visits 
to each component from the initial component are 
calculated to determine component reliability. It was 
found that the component reliability decreases with 
an increase in mean and variance. The system 
reliability is estimated using component reliability, 
component dependency graph, and component 
transition probabilities. Shivani et al. 
[16][17][18][19][20] studied various quality models 
related to components and role of computational 
intelligence in improving the reliability of 
components. Omdev et al. [21][22][23][24][25] 
research concludes how important is testing during 
the development phase of software using 
computational techniques to improve the quality of 
software. 

The literature reveals various 
computational techniques used by researchers in 
reliability prediction which are listed in table 1 along 
with their tasks.  

Table 1: Computational Intelligence Techniques With 
Their Implication 

Technique Implication 
Artificial 
Neural 
Network 

Helps in prediction, classification, 
and non parametric model 

Fuzzy Logic Helps in prediction and 
classification, apprehends abstract 
data of software metrics since the 
initial phase of software 
development 

Genetic 
Programming 

Helps in optimization and prediction 
for computational intelligence 
technique  

Naïve Bayes Helps in the classification of 
problems 

Particle 
Swarm 
Optimization 

Helps in optimization and prediction 
for computational intelligence 
technique 

Regression 
Analysis 

Helps in estimating problems and 
resolving the relationship between 
variables 

Statistical 
Modeling 
Technique 

Used for resolving estimation issues, 
parametric models, faults in software 
are treated as a random aspect 

Support 
Vector 
Machine 

Used for the classification problem, 
Regression problem 

Deep 
Learning 

Helps in automatic feature 
engineering, the classification 
problem 

 

It has been observed from the literature review that a 
lot of work has been done by various researchers in 
the fields of reliability prediction as software 
reliability is one of the major attributes for improving 
software quality, but it is also observed that very less 
work has been done to predict the reliability of 
software components. Therefore, there is much 
scope in designing models for predicting the 
reliability of components. Another observation from 
the literature review is that the deep learning model 
is becoming the preferred choice for reliability 
prediction because of the high potential in prediction 
with more accuracy. 

3. DESIGN AND IMPLEMENTATION OF 
MODEL  

3.1 Workflow of the model 
The model for component reliability 

prediction is designed using an artificial neural 
network to implement a deep learning approach. 
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Many types of neural networks, consisting of 
different numbers of hidden layers, exist in the deep 
learning domain. Each neuron in a layer act as a 
computational unit, applying an activation function 
on the input and passing the output to the next layer. 
Every input is provided weight and the product of 
input, and its weight is fed to the activation function. 
The major parameters for a neural network are batch 
size, number of neurons, number of hidden layers, 
learning rate, and epoch. These parameters need to 
be optimized to improve the neural network's ability 
to find patterns in the data. A smaller number of 
neurons and hidden layers can result in poor 
prediction ability whereas a high number of neurons 
and hidden layers can result in excessive 
computation effort and time depending upon the 
dataset. Generally, it is observed that the number of 
neurons in each hidden layer should be the same or 
decreased towards the direction of the output. Batch 
size refers to the number of training examples 
processed in one pass of the network. It is directly 
proportional to the time taken for training the neural 
network. However, the batch size should not be too 

small either as it might reduce the estimation 
accuracy of the network. 
 

Learning rate is a hyper-parameter that 
controls the step size for adjusting weights in the 
network to adjust the loss gradient for optimization. 
If the step sizes for the learning rate are big, it will 
yield a sub-optimal result whereas a very small step 
size can extend the training time. An epoch is said to 
be completed when a dataset has completed both a 
forward and backward pass. For large datasets, this 
is usually done by dividing the dataset into batches 
and running iterations. More epochs can lead to 
improved performance at the cost of increased 
training time. 
 

The model is validated to determine its 
performance on validation data. The model design 
can then be tweaked for finding improved models by 
changing the hyper-parameters if needed. The 
workflow for a neural network is shown in fig 1  
 

 

Figure 1: Workflow Of Deep Learning Based Model 

3.2 Configuration and Results 
In this paper, a dense neural network based 

on deep learning is used which is appropriate for 
taking numeric data as input. The model is designed 
for predicting the reliability of components on two 
different datasets. The first dataset (dataset1) used in 
this study consist of five metrics i.e., complexity, 
component interaction, component dependency, 
failure, and reusability [[1]]. The given reliability in 
the dataset is used as a target feature. The reliability 
values are given in the range from 0 to 1 which are 
further bifurcated as low, medium, and high [0, 
0.35], (0.35, 0.6], (0.6 ,1] respectively [[1]]. 
Multiclass classification is applied to predict 
reliability. Dataset is divided among training, 

validation, and testing in the ratio of 70%, 10%, and 
20% respectively. Hyper parameters are fine-tuned, 
after many attempts’ best configuration with the 
highest accuracy is chosen. The best accuracy 
configuration is specified in table 2 where the model 
is trained with four hidden layers with a different 
number of neurons. Tanh, adam, cross-entropy 
function is used as activation function, optimizer, 
loss function respectively for evaluating the model.  
Fig.1&2 shows the accuracy and loss graph of 
dataset1 over the number of epochs. The results in 
terms of accuracy, precision, recall, and f1-score are 
achieved as 96%, 95%, 96%, and 95% respectively. 
Table 4 shows the result and comparison with the 
other models on dataset1. 
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The second dataset (dataset2) [26] is built 
using 15 Java projects for bug prediction. The total 
instances used in this dataset are 1,82,671 and 103 
attributes are used for predicting the bugs. Fig. 3 and 
4 represents the loss and accuracy graph for dataset2. 
Dataset2 in table 3 shows different configurations, 
and table 5 shows results for all performance metrics 
along with other models. The result shows accuracy, 
precision, recall, and f1-score as 93%, 92%, 93%, 
and 92% respectively with three numbers of hidden 

layers, tanh as activation function, adam as an 
optimizer, and the number of bugs is taken as a target 

feature where data is predicted as faulty/non-faulty 
for predicting reliability. 

 

Figure 2: Accuracy Graph For Dataset1 

 

Figure 3: Loss Graph For Dataset1  

 

Figure 4: Accuracy Graph For Dataset2 

 

Figure 5: Accuracy Graph For Dataset2 

Table 2: Different Configurations Of Deep Learning 
Based Model For Dataset1 

Number 
of 

Layers 

Activation 
Function 

Accur
acy 
(%) 

Precis
ion 
(%) 

Rec
all 

(%) 
[5,32,6
4,8,3] 

Tanh + 
Dropout 

96 96 96 

[5,10,1
5,3] 

Tanh+  
Dropout 

94 95 94 

[5,10,1
5,3] 

ReLu + 
Dropout 

74 55 74 

[5,15,3] Tanh + 
Dropout 

91 92 91 

[5,32,1
6,8,3] 

ReLu 74 55 74 
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Table 3: Different Configurations Of Deep Learning 
Based Model For Dataset2 

Number of 
Layers 

Activa
tion 

Functi
on 

Accur
acy 
(%) 

Pre
cisi
on 

(%) 

Rec
all 

(%) 

[103,512,1
024,128,2] 

ReLu 92 96 96 

[103,256,5
12,64,2] 

ReLu 90 93 90 

[103,256,5
12,64,2] 

ReLu 
+ 
Dropo
ut 

90 93 90 

[103,512,1
28,2] 

ReLu 83 93 83 

 

4. COMPARISON WITH EXISTING 
MODELS 

The designed model is compared with other 
machine learning models such as K- Nearest 
Neighbor (KNN), SVM, Gaussian Naive Bayes, 
Component Naive Bayes, Decision Tree, Ensemble 
method, Random Forest, and deep learning-based 
model. The comparison is done by applying all the 
models on the same dataset using performance 
metrics such as accuracy, precision, recall, and f1-
score. A brief description of the models used for 
comparison is given below: 

4.1 KNN 
The KNN is a non-parametric approach for 

classifying data points based on their distance and 
correlation with other available data [27]. After 
experimenting with different values of k, finally, k is 
taken as 8 for dataset1 and five hundred for dataset2.  

4.2 Naïve Bayes 
For multi-class prediction issues, Naive Bayes 

is the option made by developers. It requires less 
training data if the assumption of feature 
independence is correct. For categorical input 
variables, Naive Bayes is a better fit and makes real-
time predictions [27]. In this study, the two different 
types of Naive Bayes are used: 
4.2.1 Complement NB (CNB) 
As the dataset is slightly imbalanced that’s why 
CNB, a variation of the Multinomial Naïve Bayes 
(MNB) algorithm, is used. CNB is especially suited 
for application in imbalanced data sets, as is our 
case. In this study, the value of the additive (Laplace/ 
lidstone) smoothing parameter for dataset1 is five 
and for dataset2 is .0005. 
4.2.2 Gaussian NB (CNB) 

This algorithm follows Gaussian normal distribution 
and supports continuous data.  

4.3 SVM 

Support Vector Machines (SVMs) are a group of 
supervised machine learning models that can be 
used for classification or regression.  
4.3.1 SVC 
Support Vector Classification (SVC) 
implementation in scikit-learn is based on libsvm. It 
is essentially a wrapper around SVM which support 
multiple kernels and can be used for binary or multi-
class classification. 
4.3.2 Linear Support Vector Classification 
Linear SVC only supports a linear kernel. It is faster 
and easier to scale due to which it can be used when 
the number of samples is large [27].  

When applying the dataset for SVM model (Linear 
SVC and SVC) the configuration results were not 
satisfactory due to the imbalanced nature of the 
dataset, for better results we added class weights to 
the model. 

4.4 Random Forest 
Random Forest algorithms are widely used 

for classification and regression. It is a type of 
ensemble technique since it combines results from 
multiple decision trees to arrive at the final 
classification [27]. In this study, for dataset1 
maximum depth of the tree is limited to four and the 
maximum number of leaf nodes of the grown trees 
has been limited to three without using the bootstrap 
sampling method. For dataset2 maximum depth is 
fifteen, the number of trees in the forest is fifty, and 
class weight is balanced. 

4.5 Decision Tree 

Decision Trees (DTs) are supervised 
learning algorithms that work by successively 
applying decision rules based on data features [27]. 
The outcome is reflected in the leaf nodes, whereas 
the decision nodes reflect the feature on which splits 
are made. In this study, maximum depth is limited to 
four for dataset1 and the minimum number of 
samples required to split an internal node has been 
set to 8. For dataset2 maximum depth is twenty, and 
class weight is balanced. 

 

 



Journal of Theoretical and Applied Information Technology 
15th September 2022. Vol.100. No 17 

© 2022 Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
5464 

 

Table 3: Dataset1 model results with other models. 

Model Accur
acy 
(%) 

Preci
sion 
(%) 

Rec
all 

(%) 

F1-
Score 
(%) 

Deep 
Learning 
Based 
Model 
(Dataset1) 

95 93 93 93 

Random 
Forest 

88 86 65 64 

Decision 
Tree 

85 73 68 65 

SVC 92 87 83 85 

KNN 81 73 55 60 

Gaussian 
NB 

95 93 89 91 

Linear 
SVC 

88 82 75 74 

Compleme
nt NB 

72 60 74 63 

 

 

Figure 6: Comparison Graph With Other Models For 
Dataset1 

 

 

 

 

 

Table 3: Dataset2 model results with other models. 

Model Accur
acy 
(%) 

Preci
sion 
(%) 

Rec
all 

(%) 

F1-
Score 
(%) 

Deep 
Learning 
Based 
Model 
(Dataset2) 
 

93 92 93 92 

Random 
Forest 

90 97 90 93 

SVC 78 95 78 84 

KNN 81 73 55 60 

Gaussian 
NB 

88 93 88 90 

Linear 
SVC 

79 94 79 85 

Compleme
nt NB 

57 93 57 69 

 

 

Figure 7: Comparison Graph With Other Models For 
Dataset2 

It is observed that the proposed deep learning-based 
model obtains better accuracy among all the models 
for both dataset1 and dataset2.  

5. CONCLUSION 

Predicting the component's reliability in 
CBS is an important activity as the quality of the 
software highly depends on the reliability of 
individual components. The reliability prediction 
models for CBS are highly in demand due to their 
less availability. The model designed in this study 
predicts the software reliability using a deep learning 
approach. The performance of the designed model 
on the datasets is on the higher side. Results of the 
component reliability prediction help to improve its 
quality by taking corrective actions. The comparison 
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with other well-known models such as KNN, 
random forest, decision tree, SVC, linear SVC, 
Gaussian NB, and complement NB shows that the 
designed model outperforms in terms of accuracy, 
precision, recall, and f1-score. The accuracy of the 
proposed techniques can still be challenged 
considering components and integration changes. 
The study can be extended with more datasets for 
improving the predictability of software reliability 
and to test the other parameters that can help in 
reliability prediction. 
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