
Journal of Theoretical and Applied Information Technology
15th September 2022. Vol.100. No 17

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5458

DEEP LEARNING BASED SOFTWARE RELIABILITY
PREDICTION MODEL FOR COMPONENT BASED

SOFTWARE

SHIVANI YADAV1, BALKISHAN2
1Research Scholar, Department of Computer Science & Applications, Maharshi Dayanand University,

India
 2Assistant Professor, Department of Computer Science & Applications, Maharshi Dayanand University,

India
E-mail: 1shivaniyadav17@gmail.com, 2balkishan248@gmail.com

ABSTRACT

Component Based Software Engineering (CBSE) is a software development approach used for rapid
development. This involves the use of existing, mature components, which might have been developed for
other software or product, along with new components to speed up the software development process.
Component based development is being increasingly adopted to reduce costs, manage the increasing
complexity of software products, and faster time to market. A major challenge posed by the adoption of
Component Based Software (CBS) is to ensure the reliability of software products developed using this
approach. The reliability of CBS is dependent upon the individual component reliability as well as software
architecture. In this paper, a deep learning-based model is designed to predict the reliability of components.
The results show that the designed model is well predicting the reliability with high accuracy. Comparison
with other machine learning models justified the use of deep learning models in reliability prediction.

Keywords: CBS, Component, Deep Learning, Prediction, Reliability

1. INTRODUCTION

Software engineering can be defined as the
process of designing, developing, and testing
software programs and products. All the phases of
software engineering are required every time a new
product is developed. This means that all the
activities are to be recurring, even if there is
considerable overlap between product functionality.
To overcome this duplication of efforts and long
development cycles, concepts like code reusability
were developed. This led to the development of
Component-Based Software Engineering (CBSE)
which involves the development of reusable
components that could be used across different
software products by configuring interactions and
dependencies between components [[1]]. CBSE is
used to fast-track the software development process
by using existing software components. A
component can be thought of as a part of the software
that is used to apply logic and can interact with other
components using interfaces for data exchange. This
allows for the reusability of components resulting in
low costs, higher quality, and shorter development
time [Error! Reference source not found.]. The

widespread use of components for software
development led to concerns reliability of software.
Software reliability is a key parameter that assists
developers in planning adequate testing activities
before developing new software by quantifying the
failure behavior of a software system. CBSE is
extremely beneficial in increasing productivity.
However, to maintain the quality, the reusable
software components must be reliable. The
challenges faced in component selection from
component repository include time, performance,
fault tolerance, compatibility of components,
reliability, functionality, and available component
subset [3]. Among all the challenges, the main focus
of this study is on the reliability of components.

The current study focuses on the use of
computational intelligence techniques for predicting
the reliability of software components. This research
work focuses on predicting reliability of individual
components using deep learning. As, it is concluded
from the previous work that reliability model based
on components is very rare. Several techniques like
genetic algorithms, machine learning, and deep
learning have been used by different researchers in
various studies. This paper aims to design a model

Journal of Theoretical and Applied Information Technology
15th September 2022. Vol.100. No 17

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5459

for predicting the reliability of software components
using deep learning based fully connected neural
network model on different datasets.

The rest of the paper is structured into four more
sections. Section 2 discusses the existing studies on
the software reliability prediction models using
computational intelligence techniques for software
reliability prediction. The fully connected neural
network based on deep learning with results is
presented in section 3 while the comparison of the
model with other machine learning models is given
in section 4 and finally, section 5 concludes the paper
along with the future scope.

2. BACKGROUND STUDY

Computational Intelligence techniques are
popularized by Zadeh [[4]] in 1994 for modeling
imprecision and uncertainty to determine robustness
and tractability with low cost for software reliability
estimation. In 2005, Madsen et al. [[5]] proposed a
method for supporting evolutionary computing, data
mining techniques, and fuzzy approaches for
software reliability modeling. Kamei et al. [[6]]
performed a comparison of several computational
intelligence approaches in terms of software failure
prediction. The authors evaluate the performance of
an SVM-based prediction approach against that of
other methods like neural networks, classification
trees, linear discriminant analysis, and logistic
regression. The analysis reveals that the SVM-based
software fault prediction model outperforms other
traditional approaches. In 2010, Marcia et al.
analyzed different computational intelligence
techniques like fuzzy systems, neural networks, and
stochastic methods which help in reliability
modeling intending to improve reliability. CBS
study on reliability majorly includes component
interaction, dependency, reusability, failure, etc. In
2006, Pai and Hong [[7]] examined existing
literature on reliability prediction and proposed the
use of Support Vector Machines (SVM) for the
same. The authors used Simulated Annealing (SA)
technique to determine SVM constraints and
compared the results with numerous other models.
The proposed model showed better prediction
capabilities due to the usage of SA algorithms in
parameter selection. Sharma [Error! Reference
source not found.] modeled a metric for interface
complexity between different components. This was
done by studying the properties of different
components, including the methods used,
arguments, and return types. The complexity metric
was determined for components in Java Beans.
Subsequently, the metric was evaluated against
component metrics like readability, customizability,

and execution time. The researchers concluded that
components scoring higher on the complexity metric
took more effort to maintain and more time to
execute. Zheng [[8]] proposed a non-parametric
model which used an ensemble of neural networks
for reliability prediction. The model was then
evaluated on two datasets and compared with a
single neural network and three other parametric
prediction models. Prediction accuracy was higher
for non-parametric models as compared to
parametric models. Further, the ensemble of neural
networks performs better than a single neural
network. Singh and Kumar [[9]] described a feed-
forward neural network-based reliability prediction
model. The proposed model used failure history as
input and used back-propagation to adjust network
weights. The proposed model was evaluated on
seven data sets containing failure information and
the results were compared with three other reliability
prediction models. It was found that the proposed
artificial neural network model yielded better results
than conventional parametric models. Tyagi and
Sharma [[10]] suggested that soft computing
techniques like neural networks and fuzzy logic are
better suited for the reliability prediction of
Component-Based Software Systems (CBSS) since
real-world reliability is difficult to predict. They
proposed an Adaptive Neuro Fuzzy Inference
System (ANFIS) model and compared its reliability
prediction ability with a Fuzzy Inference System
(FIS). The result showed that ANFIS has a higher
prediction ability, based on Root Mean Square Error
(RMSE) values. The proposed model is also
computationally efficient as compared to the FIS
model. However, the model’s limitation was the fact
that there were only four factors considered since the
datasets were obtained from classroom-based
projects. Diwaker and Tomar [[11]] analyzed the
importance of component interaction and the path
used for component reuse. They used Ant Colony
Optimization (ACO) for determining the optimal
path between components that increases reusability
and reliability. The results showed that component
efficiency and dependency value increased with the
application of ACO. Sharma and Gandhi [[12]]
described the application of the Modified Neuro-
Fuzzy Inference System (MNFIS) approach for CBS
reliability prediction. The model uses the advantages
of neural network and fuzzy logic and takes four
factors into account, i.e., component reusability,
operational profile, dependency, and fault density.
The results were compared with FIS, and it was
found that MNFIS had better reliability prediction
based on sensitivity analysis. Kulamala et al. [[13]]
studied computational intelligence techniques like

Journal of Theoretical and Applied Information Technology
15th September 2022. Vol.100. No 17

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5460

SVM, MLP, Bagging, Feed Forward Back
Propagation Neural Network, Cascade Forward
Back Propagation Neural Network, Adaptive Neuro
Fuzzy Inference System, Generalized Regression
Neural Network, Regression, Neural Network
ensembles, Non-Homogeneous Poisson Process,
Instance-based learning, Radial-Bias Neural
Networks, etc. for software reliability prediction.
These techniques are surveyed, applied, and
evaluated for software reliability prediction under
different criteria for different techniques. Diwaker et
al. [[1]] proposed a novel mathematical model using
parallel and series reliability models to estimate CBS
reliability. Then, evaluation is done using
computational intelligence techniques, namely
Fuzzy logic, and Particle Swarm Optimization. The
result concluded that the Fuzzy logic-based model
predicts reliability better than PSO. Bharathi et al.
[[14]] described a new, logic error-based approach
for reliability prediction. The framework is called
Software Failure Estimation with Logic Error. The
research was focused on studying the impact of a
logic error on a critical system like ABS in
automotive. They used a Hidden Markov Model to
estimate failures across the system due to the
introduction of a logic error. The authors then
studied the different error states, types of failures
that occurred in the system, and the worst-case
outcome. This approach can be used to understand
the impact of a single error at the design stage itself.
However, the proposed framework is very selective
in its approach and may not apply to other systems.
Similarly, Chau Pattnaik et al. [[15]] proposed the
use of the Discrete Time Markov Chain for
designing a reliability estimation framework. The
model is then applied to a queue management
application under different execution scenarios with
average execution time and component reliabilities
as input parameters. The mean and variance of visits
to each component from the initial component are
calculated to determine component reliability. It was
found that the component reliability decreases with
an increase in mean and variance. The system
reliability is estimated using component reliability,
component dependency graph, and component
transition probabilities. Shivani et al.
[16][17][18][19][20] studied various quality models
related to components and role of computational
intelligence in improving the reliability of
components. Omdev et al. [21][22][23][24][25]
research concludes how important is testing during
the development phase of software using
computational techniques to improve the quality of
software.

The literature reveals various
computational techniques used by researchers in
reliability prediction which are listed in table 1 along
with their tasks.

Table 1: Computational Intelligence Techniques With
Their Implication

Technique Implication
Artificial
Neural
Network

Helps in prediction, classification,
and non parametric model

Fuzzy Logic Helps in prediction and
classification, apprehends abstract
data of software metrics since the
initial phase of software
development

Genetic
Programming

Helps in optimization and prediction
for computational intelligence
technique

Naïve Bayes Helps in the classification of
problems

Particle
Swarm
Optimization

Helps in optimization and prediction
for computational intelligence
technique

Regression
Analysis

Helps in estimating problems and
resolving the relationship between
variables

Statistical
Modeling
Technique

Used for resolving estimation issues,
parametric models, faults in software
are treated as a random aspect

Support
Vector
Machine

Used for the classification problem,
Regression problem

Deep
Learning

Helps in automatic feature
engineering, the classification
problem

It has been observed from the literature review that a
lot of work has been done by various researchers in
the fields of reliability prediction as software
reliability is one of the major attributes for improving
software quality, but it is also observed that very less
work has been done to predict the reliability of
software components. Therefore, there is much
scope in designing models for predicting the
reliability of components. Another observation from
the literature review is that the deep learning model
is becoming the preferred choice for reliability
prediction because of the high potential in prediction
with more accuracy.

3. DESIGN AND IMPLEMENTATION OF
MODEL

3.1 Workflow of the model
The model for component reliability

prediction is designed using an artificial neural
network to implement a deep learning approach.

Journal of Theoretical and Applied Information Technology
15th September 2022. Vol.100. No 17

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5461

Many types of neural networks, consisting of
different numbers of hidden layers, exist in the deep
learning domain. Each neuron in a layer act as a
computational unit, applying an activation function
on the input and passing the output to the next layer.
Every input is provided weight and the product of
input, and its weight is fed to the activation function.
The major parameters for a neural network are batch
size, number of neurons, number of hidden layers,
learning rate, and epoch. These parameters need to
be optimized to improve the neural network's ability
to find patterns in the data. A smaller number of
neurons and hidden layers can result in poor
prediction ability whereas a high number of neurons
and hidden layers can result in excessive
computation effort and time depending upon the
dataset. Generally, it is observed that the number of
neurons in each hidden layer should be the same or
decreased towards the direction of the output. Batch
size refers to the number of training examples
processed in one pass of the network. It is directly
proportional to the time taken for training the neural
network. However, the batch size should not be too

small either as it might reduce the estimation
accuracy of the network.

Learning rate is a hyper-parameter that
controls the step size for adjusting weights in the
network to adjust the loss gradient for optimization.
If the step sizes for the learning rate are big, it will
yield a sub-optimal result whereas a very small step
size can extend the training time. An epoch is said to
be completed when a dataset has completed both a
forward and backward pass. For large datasets, this
is usually done by dividing the dataset into batches
and running iterations. More epochs can lead to
improved performance at the cost of increased
training time.

The model is validated to determine its
performance on validation data. The model design
can then be tweaked for finding improved models by
changing the hyper-parameters if needed. The
workflow for a neural network is shown in fig 1

Figure 1: Workflow Of Deep Learning Based Model

3.2 Configuration and Results
In this paper, a dense neural network based

on deep learning is used which is appropriate for
taking numeric data as input. The model is designed
for predicting the reliability of components on two
different datasets. The first dataset (dataset1) used in
this study consist of five metrics i.e., complexity,
component interaction, component dependency,
failure, and reusability [[1]]. The given reliability in
the dataset is used as a target feature. The reliability
values are given in the range from 0 to 1 which are
further bifurcated as low, medium, and high [0,
0.35], (0.35, 0.6], (0.6 ,1] respectively [[1]].
Multiclass classification is applied to predict
reliability. Dataset is divided among training,

validation, and testing in the ratio of 70%, 10%, and
20% respectively. Hyper parameters are fine-tuned,
after many attempts’ best configuration with the
highest accuracy is chosen. The best accuracy
configuration is specified in table 2 where the model
is trained with four hidden layers with a different
number of neurons. Tanh, adam, cross-entropy
function is used as activation function, optimizer,
loss function respectively for evaluating the model.
Fig.1&2 shows the accuracy and loss graph of
dataset1 over the number of epochs. The results in
terms of accuracy, precision, recall, and f1-score are
achieved as 96%, 95%, 96%, and 95% respectively.
Table 4 shows the result and comparison with the
other models on dataset1.

Journal of Theoretical and Applied Information Technology
15th September 2022. Vol.100. No 17

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5462

The second dataset (dataset2) [26] is built
using 15 Java projects for bug prediction. The total
instances used in this dataset are 1,82,671 and 103
attributes are used for predicting the bugs. Fig. 3 and
4 represents the loss and accuracy graph for dataset2.
Dataset2 in table 3 shows different configurations,
and table 5 shows results for all performance metrics
along with other models. The result shows accuracy,
precision, recall, and f1-score as 93%, 92%, 93%,
and 92% respectively with three numbers of hidden

layers, tanh as activation function, adam as an
optimizer, and the number of bugs is taken as a target

feature where data is predicted as faulty/non-faulty
for predicting reliability.

Figure 2: Accuracy Graph For Dataset1

Figure 3: Loss Graph For Dataset1

Figure 4: Accuracy Graph For Dataset2

Figure 5: Accuracy Graph For Dataset2

Table 2: Different Configurations Of Deep Learning
Based Model For Dataset1

Number
of

Layers

Activation
Function

Accur
acy
(%)

Precis
ion
(%)

Rec
all

(%)
[5,32,6
4,8,3]

Tanh +
Dropout

96 96 96

[5,10,1
5,3]

Tanh+
Dropout

94 95 94

[5,10,1
5,3]

ReLu +
Dropout

74 55 74

[5,15,3] Tanh +
Dropout

91 92 91

[5,32,1
6,8,3]

ReLu 74 55 74

Journal of Theoretical and Applied Information Technology
15th September 2022. Vol.100. No 17

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5463

Table 3: Different Configurations Of Deep Learning
Based Model For Dataset2

Number of
Layers

Activa
tion

Functi
on

Accur
acy
(%)

Pre
cisi
on

(%)

Rec
all

(%)

[103,512,1
024,128,2]

ReLu 92 96 96

[103,256,5
12,64,2]

ReLu 90 93 90

[103,256,5
12,64,2]

ReLu
+
Dropo
ut

90 93 90

[103,512,1
28,2]

ReLu 83 93 83

4. COMPARISON WITH EXISTING
MODELS

The designed model is compared with other
machine learning models such as K- Nearest
Neighbor (KNN), SVM, Gaussian Naive Bayes,
Component Naive Bayes, Decision Tree, Ensemble
method, Random Forest, and deep learning-based
model. The comparison is done by applying all the
models on the same dataset using performance
metrics such as accuracy, precision, recall, and f1-
score. A brief description of the models used for
comparison is given below:

4.1 KNN
The KNN is a non-parametric approach for

classifying data points based on their distance and
correlation with other available data [27]. After
experimenting with different values of k, finally, k is
taken as 8 for dataset1 and five hundred for dataset2.

4.2 Naïve Bayes
For multi-class prediction issues, Naive Bayes

is the option made by developers. It requires less
training data if the assumption of feature
independence is correct. For categorical input
variables, Naive Bayes is a better fit and makes real-
time predictions [27]. In this study, the two different
types of Naive Bayes are used:
4.2.1 Complement NB (CNB)
As the dataset is slightly imbalanced that’s why
CNB, a variation of the Multinomial Naïve Bayes
(MNB) algorithm, is used. CNB is especially suited
for application in imbalanced data sets, as is our
case. In this study, the value of the additive (Laplace/
lidstone) smoothing parameter for dataset1 is five
and for dataset2 is .0005.
4.2.2 Gaussian NB (CNB)

This algorithm follows Gaussian normal distribution
and supports continuous data.

4.3 SVM

Support Vector Machines (SVMs) are a group of
supervised machine learning models that can be
used for classification or regression.
4.3.1 SVC
Support Vector Classification (SVC)
implementation in scikit-learn is based on libsvm. It
is essentially a wrapper around SVM which support
multiple kernels and can be used for binary or multi-
class classification.
4.3.2 Linear Support Vector Classification
Linear SVC only supports a linear kernel. It is faster
and easier to scale due to which it can be used when
the number of samples is large [27].

When applying the dataset for SVM model (Linear
SVC and SVC) the configuration results were not
satisfactory due to the imbalanced nature of the
dataset, for better results we added class weights to
the model.

4.4 Random Forest
Random Forest algorithms are widely used

for classification and regression. It is a type of
ensemble technique since it combines results from
multiple decision trees to arrive at the final
classification [27]. In this study, for dataset1
maximum depth of the tree is limited to four and the
maximum number of leaf nodes of the grown trees
has been limited to three without using the bootstrap
sampling method. For dataset2 maximum depth is
fifteen, the number of trees in the forest is fifty, and
class weight is balanced.

4.5 Decision Tree

Decision Trees (DTs) are supervised
learning algorithms that work by successively
applying decision rules based on data features [27].
The outcome is reflected in the leaf nodes, whereas
the decision nodes reflect the feature on which splits
are made. In this study, maximum depth is limited to
four for dataset1 and the minimum number of
samples required to split an internal node has been
set to 8. For dataset2 maximum depth is twenty, and
class weight is balanced.

Journal of Theoretical and Applied Information Technology
15th September 2022. Vol.100. No 17

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5464

Table 3: Dataset1 model results with other models.

Model Accur
acy
(%)

Preci
sion
(%)

Rec
all

(%)

F1-
Score
(%)

Deep
Learning
Based
Model
(Dataset1)

95 93 93 93

Random
Forest

88 86 65 64

Decision
Tree

85 73 68 65

SVC 92 87 83 85

KNN 81 73 55 60

Gaussian
NB

95 93 89 91

Linear
SVC

88 82 75 74

Compleme
nt NB

72 60 74 63

Figure 6: Comparison Graph With Other Models For
Dataset1

Table 3: Dataset2 model results with other models.

Model Accur
acy
(%)

Preci
sion
(%)

Rec
all

(%)

F1-
Score
(%)

Deep
Learning
Based
Model
(Dataset2)

93 92 93 92

Random
Forest

90 97 90 93

SVC 78 95 78 84

KNN 81 73 55 60

Gaussian
NB

88 93 88 90

Linear
SVC

79 94 79 85

Compleme
nt NB

57 93 57 69

Figure 7: Comparison Graph With Other Models For
Dataset2

It is observed that the proposed deep learning-based
model obtains better accuracy among all the models
for both dataset1 and dataset2.

5. CONCLUSION

Predicting the component's reliability in
CBS is an important activity as the quality of the
software highly depends on the reliability of
individual components. The reliability prediction
models for CBS are highly in demand due to their
less availability. The model designed in this study
predicts the software reliability using a deep learning
approach. The performance of the designed model
on the datasets is on the higher side. Results of the
component reliability prediction help to improve its
quality by taking corrective actions. The comparison

0

10

20

30

40

50

60

70

80

90

100

Deep
Learning

Based

Random
Forest

Decision Tree SVC KNN Gaussian NB Linear SVC Complement
NB

Pe
rc

en
ta

ge

Models

Accuracy (%)

Precision (%)

Recal l (%)

F1-Score(%)

Journal of Theoretical and Applied Information Technology
15th September 2022. Vol.100. No 17

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5465

with other well-known models such as KNN,
random forest, decision tree, SVC, linear SVC,
Gaussian NB, and complement NB shows that the
designed model outperforms in terms of accuracy,
precision, recall, and f1-score. The accuracy of the
proposed techniques can still be challenged
considering components and integration changes.
The study can be extended with more datasets for
improving the predictability of software reliability
and to test the other parameters that can help in
reliability prediction.

REFERENCES:
[1] Diwaker et al., “A New Model for Predicting

Component-Based Software Reliability Using
Soft Computing”, IEEE Access, Vol. 7, 2019,
pp. 147191-147203,. doi:
10.1109/ACCESS.2019.2946862

[2] Shivani Yadav and Bal kishan, “Software
Reliability Prediction by using Deep Learning
Technique”, International Journal of Advanced
Computer Science and Applications(IJACSA),
Vol. 13, No. 3, 2022, pp. 1-13.

[3] Chander Diwaker, Pradeep Tomar, Ramesh C.
Poonia, and Vijander Singh, “Prediction of
Software Reliability using Bio Inspired Soft
Computing Techniques” Journal of Medical
Systems, Vol. 42, No. 5, 2018, pp. 1-
16. doi:10.1007/s10916-018-0952-3

[4] Lotfi A. Zadeh, “Fuzzy Logic and Soft
Computing: Issues, Contentions and
Perspectives”, Proceedings of IIZUKA’94:
Third Int. Conf. on Fuzzy Logic, Neural Nets
and Soft Computing, Iizuka, 1994, pp. 1–2.

[5] Madsen, Henrik, Poul Thyregod, B. Burtschy,
Florin Popentiu, and Grigore Albeanu, "On
using soft computing techniques in software
reliability engineering", International Journal
of Reliability, Quality and Safety Engineering,
Vol. 13, No. 1, 2006, pp. 61-72.
doi:10.1142/s0218539306002094

[6] Yasutaka Kamei, Akito Monden, and Ken-lchi
Matsumoto, "Empirical Evaluation of SVM-
Based Software Reliability Model,"
Proceedings Fifth ACM-IEEE International
Symposium on Empirical Software Engineering
(ISESE), Vol. 2, 2006, pp. 39-41.

[7] Ping-Feng Pai, and Wei-Chiang Hong,
“Software reliability forecasting by support
vector machines with simulated annealing
algorithms”, Journal of Systems and Software,
Vol. 79, No. 6, 2006, pp. 747–755.

[8] Jun Zheng, “Predicting software reliability with
neural network ensembles”, Expert Systems
with Applications, Vol. 36, No. 2, 2009, pp.
2116–2122.

[9] Yogesh Singh, and Pradeep Kumar,
“Application of feed-forward neural networks
for software reliability prediction.”, ACM
SIGSOFT Software Engineering Notes, Vol.
35, No. 5, 2010, pp. 1–6.

[10] Kirti Tyagi, and Arun Sharma, “An adaptive
neuro-fuzzy model for estimating the reliability
of component-based software systems”, Applied
Computing Informatics, Vol. 10, No. 1, 2014,
pp. 38–51.

[11] Chander Diwaker, and Pradeep Tomar,
“Assessment of Ant Colony using Component-
Based Software Engineering Metrics”, Indian
Journal of Science and Technology, Vol. 9, No.
44, 2016, pp. 1–5.

[12] Ravi Kumar Sharma, and Parul Gandhi,
“Estimate reliability of component-based
software system using modified neuro-fuzzy
model”, International Journal of Engineering
& Technology, Vol. 6, No. 2, 2017, pp. 45–49.

[13] Vinod Kumar Kulamala, A. Sarath Chandra
Teja, Abha Maru, Yogesh Singla, and Durga
Prasad Mohapatra, “Predicting Software
Reliability using Computational Intelligence
Techniques: A Review”, International
Conference on Information Technology (ICIT),
December 19-21 (India), 2018, pp. 114-119.
doi:10.1109/icit.2018.00033

[14] R. Bharathi, and R. Selvarani, “Hidden Markov
Model Approach for Software Reliability
Estimation with Logic Error”, International
Journal of Automation and Computing, Vol. 17,
No. 2, 2020, pp. 305-320.

[15] Sampa ChauPattnaik, Mitrabinda Ray, and
Mitali Madhusmita Nayak, “Component Based
Reliability Prediction”, International Journal of
System Assurance Engineering and
Management, Vol. 12, No. 3, 2021, pp. 391-
406. doi:10.1007/s13198-021-01079-x.

[16] Shivani Yadav and Bal Kishan, “Reliability of
Component-Based Systems- A Review”,
International Journal of Advanced Trends in
Computer Science and Engineering, Vol.8, No.
2, 2019, pp. 293–299.

[17] Shivani Yadav and Bal Kishan, “Assessment of
software quality models to measure the
effectiveness of software quality parameters for

Journal of Theoretical and Applied Information Technology
15th September 2022. Vol.100. No 17

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5466

Component Based Software (CBS),” Journal of
Applied Science and Computations, Vol. 6,
Issue 4, 2019, pp. 2751–2756.

[18] Shivani Yadav and Bal Kishan, “Analysis and
Assessment of Existing Software Quality
Models to Predict the Reliability of Component-
Based Software,” International Journal of
Emerging Trends in Engineering Research,
Vol. 8, No. 6, 2020, pp. 2824–2840.

[19] Shivani Yadav and Bal Kishan, “Component-
Based Software System using Computational
Intelligence Technique for Reliability
Prediction,” International Journal of Advanced
Trends in Computer Science and Engineering,
Vol. 9, No. 3, 2020, pp. 3708–3721.

[20] Shivani Yadav and Bal Kishan, “Assessments
of Computational Intelligence Techniques for
Predicting Reliability of Component Based
Software Parameter and Design Issues,”
International Journal of Advanced Research in
Engineering and Technology, Vol. 11, Issue 6,
2020, pp. 565–584.

[21] Omdev Dahiya and Kamna Solanki,“An
Efficient APHT Technique for Requirement-
Based Test Case Prioritization,” International
Journal of Engineering Trends and Technology,
Vol. 69, 2021, pp. 215–227.

[22] Omdev Dahiya and Kamna Solanki,“Prevailing
Standards in Requirement-Based Test Case
Prioritization: An Overview,” ICT Analysis and
Applications, 2021, pp. 467–474.

[23] Omdev Dahiya and Kamna Solanki,“A Study
on Identification of Issues and Challenges
Encountered in Software Testing,” In
Proceedings of International Conference on
Communication and Artificial Intelligence ,
2021, pp. 549–556.

[24] Omdev Dahiya, Kamna Solanki, and Amita
Dhankhar, “Risk-based testing: identifying,
assessing, mitigating & managing risks
efficiently in software testing,” International
Journal of Advanced Research in Engineering
and Technology, Vol. 11, No. 3, 2020, pp. 192–
203.

[25] Omdev Dahiya and Kamna Solanki,“A
systematic literature study of regression test
case prioritization approaches,” International
Journal of Engineering & Technology, Vol. 7,
No. 4, 2018, pp. 2184–2191.

[26] https://www.inf.u-
szeged.hu/~ferenc/papers/GitHubBugDataSet/

[27] Scikit-learn: Machine Learning in Python,
Pedregosa et al., JMLR 12, 2011, pp. 2825-
2830.

[28] Elena N. Akimova, Alexander Yu. Bersenev,
Artem A. Deikov, Konstantin S. Kobylkin,
Anton V. Konygin, Ilya P. Mezentsev, and
Vladimir E. Misilov, “A Survey on Software
Defect Prediction Using Deep Learning”,
Mathematics, Vol. 9, No.11, 2021, pp. 1-14.
https://doi.org/10.3390/math9111180

