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ABSTRACT 
 

The recently proposed Sardine Feast Metaheuristic Optimization (SFMO) is a population-based meta-
heuristic optimization algorithm inspired by the commensal behavior of various predators while preying on 
sardines at sea, which is commonly known as a sardine feast. This algorithm is a behavior imitation of 
dolphins and sea birds (blue-footed boobies and brown pelican) preying on schools of sardines. SFMO 
suffers from premature convergence since it relies on the normal random function to calculate predators' 
movement or step size during exploration and exploitation. The proposed improved SFMO (SFMO-Lévy) 
aims to enhance the ability of predators to explore divergent areas using Lévy flight in the step size 
calculation. The performance of the SFMO-Lévy is investigated using several predefined benchmark 
functions for global optimization problems. The outcomes of the tests are then compared with those 
generated by the standard SFMO algorithm. The SFMO-Lévy outperforms the SFMO by providing an 
average of 23.44% fewer function evaluations. The results reveal that the proposed algorithm can solve the 
benchmark functions better than the standard SFMO algorithm. 

Keywords: Sardine Feast Metaheuristic Optimization, Lévy Flight, Metaheuristics, Global Optimization 
 
 
1. INTRODUCTION  
 

Metaheuristic algorithms have been widely used 
in developing systems and solving problems [1]. 
Methods inspired from natural processes have been 
developed to solve many problems, including 
benchmark function [2], engineering [3], robotic 
[4], web caching [5], scheduling [6], and many 
more. The efficiency of bio-inspired algorithms is 
due to their ability to imitate the best features in 
nature. One of the main categories of the nature-
inspired metaheuristic algorithms, called 
biologically inspired algorithms, is based on the 
survival of the fittest in biological systems, which 
causes evolution by natural selection over millions 
of years [7, 8]. 

The recently proposed SFMO is a population-
based optimization algorithm inspired by the 
behavior of predators that prey on schools of 

sardines at sea during an event called the sardine 
feast [9]. SFMO is a biologically inspired algorithm 
that effectively employs several predator 
movements to find the optimal solution. The 
algorithm consists of 2 stages. Firstly, dolphins 
explore the ocean space for a school of sardines. 
Secondly, sea birds exploit a ball of sardines by 
diving and scooping while dolphins encircle it until 
the algorithm ends. SFMO successfully outperforms 
other modern meta-heuristic techniques in solving 
several benchmark functions for global 
optimization problems. 

SFMO seems to use the two-phase random 
search method as suggested by [10], where one 
phase is a global search phase, and the other is a 
local search phase. The global phase can be viewed 
as an exploration phase to explore the entire 
feasible region. In contrast, the local phase can be 
viewed as an intensification phase that exploits 
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local information (e.g., gradient or nearest neighbor 
information). 

The SFMO, however, may suffer from premature 
convergence because it fails to execute exploration 
and exploitation efficiently. Exploration is the 
ability to search space globally to avoid local 
optima. On the other hand, exploitation is the ability 
to search local space to improve optimal efficiency 
[11]. One of the premature convergence reasons is 
its dependency on simple randomization in its 
predators' step size calculation. The model gets 
trapped within the local minima due to the inability 
to explore the search space efficiently. 

This paper proposes an improved SFMO by 
enhancing the predators' step size randomization. 
Randomization is an integral function of any meta-
heuristic optimization technique that plays a vital 
role in optimizing a value. A random search pattern 
found in nature, such as the Lévy Flight. The 
contribution of this paper is the inclusion Lévy 
Flight to the existing SFMO algorithm. 

The search pattern of Lévy Flight mimics the 
foraging behavior of predators, in our case, as in the 
sardine feast. [12] found that predators employ 
Lévy behavior when preys are sparse, while 
Brownian movement is used where preys are 
abundant and not sparsely distributed. The 
integration of random walks using Lévy flight 
increases the exploration potential of the SFMO and 
converges the model into the optimal solution. 

This research paper is further organized as 
follows: A brief introduction of SFMO and Lévy 
Flight is discussed in Section 2. It also elaborates 
the proposed SFMO-Lévy. Section 3 deals with the 
implementation of the proposed algorithm and the 
benchmarking. Section 4 presents the result of the 
experiments and compares both algorithms' 
performance on the various benchmark functions. 
The conclusion and future scope of the research are 
presented in Section 5.  

2. RELATED WORKS 

2.1 Sardine Feast Metaheuristic Optimization 
(SFMO) Algorithm 

Generally, the SFMO algorithm is conceptualized 
based on the commensalism foraging behavior of 
the dolphins, boobies, and pelicans in catching a 
bait ball of sardines during the sardine feast. It was 
first introduced in [13] as a two-stage searching 
algorithm for solving global optimization problems. 

 

In the first stage, dolphins explore the ocean 
space for a school of sardines. They will stop 
searching once a member finds a good school, 
defined by a pre-set threshold value. In the second 
stage, sea birds: boobies, and pelicans start diving 
and scooping to exploit the sardines while the 
dolphins encircle the bait ball until the algorithm 
ends. Fig 1 illustrates both stages in SFMO. 

 

 

Figure 1. Two-stage SFMO algorithm 

 

Formally, let 𝑓: ℝ → ℝ be the cost function 
which must be minimized. The function takes a 
candidate solution as an argument in a vector of real 
numbers. It produces a real number as output which 
indicates the objective function value of the given 
candidate solution. The gradient of 𝑓 is unknown. 
The objective is to find a solution 𝑎 for which 
𝑓(𝑎) ≤ 𝑓(𝑏) for all 𝑏 in the search space, which 
would mean 𝑎 is the global minimum. 
Maximization can be performed by considering the 
function ℎ =  −𝑓 instead. 

Let 𝐷, 𝐵, and 𝑃 be the number of dolphins, 
boobies, and pelican in the feast, respectively, each 
having a position 𝑥  ∈  ℝ in the search space. Let 
N be the number of all predators. In stage 1, the 
dolphins search randomly for a school of sardines. 
Once a dolphin finds a good school defined by a 
threshold value, let as 𝑏𝑠𝑠 (best sardine shoal) they 
will stop searching and start stage 2 which is 
encircling sardines to create a bait ball.  

Let 𝑏𝑏𝑠 be the size of the bait ball. Let 𝑔 be the 
position of ball bait center. Based on 𝑔 are real 
numbers of maximum distances of each predator 
types will prey. Let 𝑑𝑠𝑠 be the maximum distance 
of boobies will plunge dive. Let 𝑠𝑠𝑠 be the 
maximum distance of pelicans will scoop. Fig 2 
explains the definistion of bbs, dss, and sss. 
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Figure 2. A. Bait ball size by dolphins (bbs),  
B. Diving search spot by boobies (dss),  

C. Scooping search spot by pelicans (sss) 

 

The parameters bds, dss, and sss are selected 
according to the size of the search space where the 
general rule bbs < sss < dss. Basically, the dss and 
sss limit the step size of the predators. When 
generating new solutions (t +1) for, say, predator i, 
a new position is calculated based on: 

𝑥
(௧ାଵ)

= 𝑥௦௧
௧ + 𝑟 × 𝑑 × 𝑟𝑎𝑛𝑑 (1) 

where 𝑥௦௧
௧  is the predator with the best solution at 

the center of bait ball at time t, r is the range of 
search spot (dss or sss), d is the direction (1 or -1), 
and rand is a random function; 

The basic SFMO algorithm is then: 

Pseudocode: SFMO 

Initialize the population N that consists of number of each type 
of predators: D (dolphins), B (boobies), and P (pelicans). 

Set the number of problem dimension, dim. 

Repeat the Stage 1 until termination criterion is met (use a pre-
defined threshold value): 

 For each dolphin i = 1... D do: 

 Assign the dolphin's position x at dimension d with a 
uniformly distributed random position: xi,d ~ U(bl, bu), 
where l and u, are the lower and upper boundaries of the 
search space. 

 Calculate objective function and sort f(xi) 

 If the best f(xi) < f(g) update g the center position of 
the bait ball: g  xi 

Repeat the stage 2 until termination criterion is met (use a 
maximum number of iteration): 

 For each pelican i = 1, ..., P do: 

 For each dimension d = 1, ..., dim do: 

 Calculate direction, dir. If a random number is 
greater than 0.5 then direction is positive else 
negative: dir  1 

 Assign the pelican’s position: xi,d  gd + (sss * 
dir * rand) based on Equation 1 

 For each boobie i = 1, ..., B do: 

 For each dimension d = 1, ..., dim do: 

 Calculate direction, dir. If a random number is 
greater than 0.5 then direction is positive else 
negative: dir  1 

 Assign the pelican’s position: xi,d  gd + (dss * 
dir * rand) based on Equation 1 

 For each dolphin i = 1, ..., D do: 

 For each dimension d = 1, ..., dim do: 

 While dolphin inside the bait ball bbs do: 

 Assign the dolphin's position at dimension d 
with a uniformly distributed random position: 
xi,d ~ U(bl, bu) 

 For each predator i = 1, ..., N do: 

 Calculate objective function and sort f(xi) 

 If the best f(xi) < f(g) update the center position of the 
bait ball: g  xi 

 
2.2 Lévy Flight 

A Lévy Flight (LF) is a random walk in which 
the step lengths have a Lévy distribution, a heavy-
tailed probability distribution. It represents the 
animal movement as a distribution of discrete 
straight-line movements modeled by the Lévy 
distribution, according to [7], often in terms of a 
simple power-law formula: 

𝐿(𝑠)~|𝑠| ିଵିఉ     (0 < 𝛽 ≤ 2) (2) 

which has an infinite variance with an infinite 
mean. According to [14], for   3, the search path 
corresponds to Brownian motion under the central 
limit theorem, whereas for  < 1, it emerges as 
distributions that cannot be normalized. 

Humans, birds, and other animals follow paths 
that have been modeled using LF when searching 
for food. It gives a smaller probability of returning 
to a previously visited site, making it convenient for 
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scattered and randomly distributed target sites. [15] 
concludes that Lévy flights' movement is 
determined and based on the distribution of the 
object of interest, which is why it is flexible and 
adaptive. 

In this paper, the Mantegna method taken from 
[16] is used for generating step size, s, based on 
Lévy distribution as follows: 

𝑠 =
𝑢

|𝑣|
ଵ
ఉ

 (3) 

where u and v are drawn from a normal 
distributions. That is 

𝑢 ~ 𝑁(0, 𝜎௨
ଶ), 𝑣 ~ 𝑁(0, 𝜎௩

ଶ) (4) 

where 

𝜎௨ = ൞
Γ(1 + 𝛽) sin

𝜋𝛽
2

Γ 
(1 + 𝛽)

2
൨ 𝛽2

(ఉିଵ)
ଶ

ൢ

ଵ
ఉ

, 𝜎௩ = 1. (5) 

 

Using this step size, the new positions generated 
by Lévy walk around the best solution obtained so 
far will speed up the local search. Simultaneously, 
the new positions generated by far-field 
randomization and whose locations should be far 
enough from the current best solution will ensure 
the searching will not be trapped in a local 
optimum. 

3. SFMO-LÉVY ALGORITHM 

This section elaborates the incorporating of LF in 
the proposed algorithm. 

3.1 Stage 1 

In this stage, dolphins will start using the LF step 
size in their movement. Firstly, each dolphin will be 
given a uniformly distributed random position, to 
begin with. Then, the benchmark function is 
evaluated and sorted. The best dolphin is marked as 
the bait ball. Until the Stage 1 termination criterion 
is met, the new dolphins’ positions will be based on 
the LF step size calculated using Eq (3).    

 

3.2 Stage 2 

In stage 2, boobies and pelicans will start using 
LF movement. Until the Stage 2 termination 
criterion is met, the boobies’ and pelicans’ new 
positions will be calculated based on their sss and 
dss values, respectively, and the LF step size value 
from Eq (3). The dolphins will continue foraging 
outside the bait ball using LF movement.  

3.3 The SFMO-Lévy Algorithm 

Based on the changes above, the proposed 
algorithm is then: 

Pseudocode: SFMO-Lévy 

Initialize the number of each type of predators: D, B, and P 

Assign the dolphin's position with a uniformly distributed 
random position: xi ~ U(bl, bu), where l and u, are the lower and 
upper boundaries of the search space 

Until the Stage 1 termination criterion is met (use a pre-defined 
threshold value), repeat: 

 For each dolphin f = 1... D do: 

 Assign the pelican’s position: xi,d  gd + (factor * 
random() * step). Step is based on Eq. (3) 

 Calculate and sort f(x) 

 If the best f(xi) < f(g) update the center position of the 
bait ball: gi  xi 

Until the stage 2 termination criterion is met (use a maximum 
number of iteration), repeat: 

 For each pelican i = 1, ..., P do: 

 For each dimension d = 1, ..., n do: 

 Assign the pelican’s position: xi,d  gd + (factor * 
random() * sss * step). Step is based on Eq. (3) 

 For each boobie i = 1, ..., B do: 

 For each dimension d = 1, ..., n do: 

 Assign the pelican’s position: xi,d  gd + (factor * 
random() * dss * step). Step is based on Eq. (3) 

 For each dolphin i = 1, ..., D do: 

 For each dimension d = 1, ..., n do: 

 Until abs(gd — (U(bl, bu))) > bbs (outside the bait 
ball) do: 

 Assign the pelican’s position: xi,d  gd + (factor 
* random() * step). Step is based on Eq. (3) 

 For each predator i = 1, ..., N do: 

 Calculate and sort f(xi) 

 If the best f(xi) < f(g) update the center position of the 
bait ball: g  xi 
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4. IMPLEMENTATION AND BENCH-
MARKING  

Both SFMO and SFMO- Lévy algorithms have 
been implemented in a Matlab program on an Intel 
Core™ i3 2.27 GHz computer. To demonstrate their 
improvement, both algorithms were tested to solve 
several standard global benchmark functions from 
the literature [17, 18]. 

We selected twelve unimodal and multimodal 
benchmark functions: the Shubert, Booth, Branin, 
De Jong, Dixon-Price, Lévy, Matyas, Michalewicz, 
Rastrigin Rosenbrock, Sphere, and Sum Squares 
functions. The details are presented in Table 1. 
Output from the algorithm is validated with the 
analytical or known solutions. 

After implementing the algorithms using Matlab, 
we performed extensive simulations. Each 

benchmark function was run 100 times to perform 
meaningful statistical analyses. The algorithms stop 
when the variations of the function values are less 
than the tolerance of 10−5. There are two common 
ways to compare algorithm performance. The first 
method compares the number of function 
evaluations for a given tolerance. The second 
method compares the accuracies for a fixed number 
of function evaluations. In this study, we used the 
first method. 

In our experiments, we use different predators for 
different functions. Besides that, other parameters 
such as bbs, sss, dss, bss, and step size factor for LF 
are selected differently for each function, as shown 
in Table 2. We selected those parameters using a 
trial-and-error approach. 

 

Table 1. Benchmark functions 

Function Dim Definition Bounds 
Global 

Min 

Shubert 2 
𝑓(𝑥) = (1.5 − 𝑥ଵ + 𝑥ଶ𝑥ଶ)ଶ + (2.25 − 𝑥ଵ + 𝑥ଵ𝑥ଵ

ଶ)ଶ

+ (2.625 − 𝑥ଵ + 𝑥ଵ𝑥ଵ
ଷ)ଶ 

𝑥 ∈  [−4.5, 4.5], 

for all i = 1, 2 
0 

Booth  2 𝑓(𝑥) = (𝑥ଵ + 2𝑥ଶ − 7)ଶ + (2𝑥ଵ + 𝑥ଶ − 5)ଶ 
𝑥 ∈ [10, 10], for 

all i = 1, 2 
0 

Branin  2 𝑓(𝑥) = 𝑎(𝑥ଶ − 𝑏𝑥ଵ
ଶ + 𝑐𝑥ଵ − 𝑟)ଶ + 𝑠(1 − 𝑡) cos(𝑥ଵ) + 𝑠 𝑥ଵ ∈ [5, 10], 

𝑥ଶ ∈ [0, 15] 

0.397 
887 

De Jong 20 𝑓(𝑥) =   𝑥
ଶ

ௗ

ୀଵ

 
𝑥 ∈ [−5.12, 5.12], 

for all i = 1, …, d 
0 

Dixon-Price 2 𝑓(𝑥) = (𝑥ଵ − 1)ଶ +  𝑖(2𝑥
ଶ − 𝑥ି)ଶ

ௗ

ୀଶ

 
𝑥 ∈  [−10, 10], 

for all i = 1, 2 
0 

Lévy 2 
𝑓(𝑥) = sinଶ(𝜋𝜔ଵ) + ∑ (𝜔 − 1)ଶ[1 + 10sinଶ(𝜋𝜔 +ௗିଵ

ିଵ

1)] + (𝜔ௗ − 1)ଶ[1 + sinଶ(2𝜋𝜔ௗ)], where 𝜔 = 1 +
௫ିଵ

ସ
  

𝑥 ∈  [−10, 10], 

for all i = 1, 2 
0 

Matyas 2 𝑓(𝑥) = 0.26(𝑥ଵ
ଶ + 𝑥ଶ

ଶ) − 0.48𝑥ଵ𝑥ଶ 
𝑥 ∈  [−10, 10], 

for all i = 1, 2 
0 

Michalewicz 2 (𝑥) = −  sin(𝑥)sinଶ ቆ
𝑖𝑥

ଶ

𝜋
ቇ

ௗ

ୀଵ

, where 𝑚 = 10 
𝑥 ∈  [0, π], 

for all i = 1, 2 
-1.8013 

Rastrigin 2 𝑓(𝑥) = 10𝑑 + [𝑥
ଶ − 10cos (2𝜋𝑥)]

ௗ

ୀଵ

 
𝑥 ∈ [−5.12, 5.12], 

for all i = 1, 2 
0 

Rosenbrock 2 𝑓(𝑥) = [(1 − 𝑥)ଶ + 100(𝑥ାଵ − 𝑥ଵ
ଶ)ଶ

ௗିଵ

ିଵ

 

𝑥 ∈
[−2.048, 2.048], 

for all i = 1, 2 
0 

Sphere 20 𝑓(𝑥) =  𝑥
ଶ

ௗ

ୀଵ

 
𝑥 ∈ [−5.12, 5.12], 

for all i = 1, …, d 
0 

Sum Squares 10 𝑓(𝑥) =  𝑖𝑥
ଶ

ௗ

ୀଵ

 
𝑥 ∈ [−10, 10], 

for all i = 1, …, d 
0 
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Table 2. SFMO and SFMO-Lévy parameters and their values 

Function 

SFMO SFMO-Lévy 

D B P bbs sss dss bss D B P bbs sss dss bss 
Step size factor* 

D 
(S1) 

B&P 
(S2) 

D 
(S2)  

Shubert 3 2 2 1.0 0.01 0.01 10-5 3 2 2 2.0 1.0 0.5 10-5 1.2 0.1 1.0 

Booth  3 2 2 1.0 0.1 0.01 10-5 3 2 2 1.0 1.0 0.1 10-5 1.2 0.1 1.0 

Branin  3 2 2 1.0 0.1 0.01 10-5 3 2 2 1.0 1.0 0.1 10-5 1.2 0.1 1.0 

De Jong 2 3 2 0.3 0.1 0.001 10-5 3 2 3 3.5 2.5 0.05 10-5 1.0 0.1 1.0 

Dixon-
Price 

3 2 2 1.0 0.3 0.003 10-5 3 2 2 1.0 1.0 0.1 10-5 1.0 0.1 1.0 

Lévy 5 3 2 0.1 0.03 0.001 10-5 3 2 2 0.1 0.1 0.001 10-5 1.2 0.1 1.0 

Matyas 3 2 2 1.0 1.0 0.1 10-5 3 2 2 1.0 1.0 0.1 10-5 1.2 0.1 1.0 

Michale-
wicz 

3 3 3 0.3 0.3 0.003 10-5 3 2 2 1.0 1.0 0.1 10-5 1.0 0.1 1.0 

Rastrigin 3 5 5 1.7 1.3 0.001 10-5 5 3 2 0.1 0.1 0.01 10-5 1.2 0.1 1.0 

Rosen-
brock 

2 3 3 1.25 0.1 0.003 10-5 3 3 3 2.0 1.2 0.2 10-5 2.2 0.1 1.0 

Sphere 2 2 2 0.3 0.1 0.001 10-5 3 2 3 3.5 2.5 0.05 10-5 1.0 0.1 1.0 

Sum 
Squares 

2 3 2 1.5 0.07 0.0005 10-5 3 2 3 1.0 1.0 0.1 10-5 1.2 0.1 1.0 

 
* D (S1) = Dolphin in stage 1; B&P (S2) = Boobie and Pelican in stage 2; D (S2) = Dolphin in stage 2 

 

5. RESULTS 

The experiment outcomes are summarized in Table 
3 where results from both the SFMO and SFMO-
Lévy are presented. Besides that, the percentage 
changes of the results obtained using both 
algorithms are also calculated. 
 

Table 3. Experiment Results 

Function SFMO SFMO-Lévy Change % 

Shubert 1290 ± 544 1193 ± 540 -7.52% 

Booth 544 ± 209 409 ± 130 -24.82% 

Branin 389 ± 155 329 ± 102 -15.42% 

De Jong 5853 ± 773 5658 ± 470 -3.33% 

Dixon-Price 677 ± 206 412 ± 133 -39.14% 

Lévy 4158 ± 4634 953 ± 459 -77.08% 

Matyas 581 ± 462 406 ± 162 -30.12% 

Michalewicz 487 ± 208 446 ± 245 -8.42% 

Rastrigin 1869 ± 890 1703 ± 1474 -8.88% 

Rosenbrock 3430 ± 2087 3224 ± 1541 -6.01% 

Sphere 6618 ± 553 5754 ± 379 -13.06% 

Sum Squares 8495 ± 1300 4459 ± 826 -47.51% 

We can see that the SFMO-Lévy can find the 
global optima in all benchmark functions with 
fewer function evaluations. The Lévy function 
obtained the highest function evaluation reduction. 
On the other hand, the De Jong function recorded 
the lowest reduction. The average reduction of 
function evaluation by the SFMO-Lévy is 23.44%. 
Generally, for all the test functions, the SFMO-
Lévy algorithm outperformed the SFMO. 

6. DISCUSSION 

The interesting observation is that the highest 
reduction recorded by the SFMO-Lévy is in the 
Lévy function that is known for its high number of 
local minima. The landscape of the Lévy function is 
shown in Figure 3. The predators, especially 
dolphins, can be easily be trapped inside a local 
minimum with little help from the normal 
randomization. This observation justify that the 
large step size from LF can help SFMO to avoid 
those local minima and escape premature 
convergence. 

The results also show reductions of standard 
deviation values in ten out of twelve functions. It 
means that the results generated by the SFMO-Lévy 
are more stable since it can avoid local minima in 
the early stage of its execution. We believe the two 
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functions that recorded higher standard deviation 
values can be further reduced by allowing sufficient 
time for fine-tuning their parameters. 

 

 

Figure 3.Lévy Function 

 

Unimodal functions with high dimensions such 
as De Jong, Shere and Sum Squares also recorded a 
reduction of function evaluations. It only can be 
done by improving local space searching. It shows 
that LF leads to efficient exploitation of local search 
space by the predators (boobie and pelican) in stage 
2 of the SFMO-Lévy algorithm. 

7. CONCLUSION 

In this study, we have embedded the LF in the 
SFMO algorithm. Experiments and result 
comparisons show that the proposed algorithm is 
superior to the original SFMO algorithm for all 
objective functions. The results are positive because 
LF allows predators in the algorithm to make 
nature-like diversification and intensification. Our 
major finding is that it leads to a reduction of 
function evaluations.  

However, the SFMO-Lévy will add another three 
parameters to be tuned in terms of limitations. This 
drawback means that we have to fine-tune these 
parameters for a specific function. Another 
drawback is that the execution time of the SFMO-
Lévy algorithm is generally higher than the SFMO 
algorithm because of the additional line of codes for 
LF. However, execution time is not reported in this 
paper. We believe the positive effects have 
outnumbered the negative ones. 

The SFMO algorithm can easily be improved by 
embedding other random walk algorithms. One of 
them is the Brownian movement. The same concept 

can be applied as in the SFMO-Lévy. It is worth 
investigating since, in nature, predators employ 
Lévy behavior when preys are sparse, while 
Brownian movement is used where preys are 
abundant and not sparsely distributed. The 
Brownian movement might work well in stage 2 of 
the SFMO algorithm. 
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