
Journal of Theoretical and Applied Information Technology
31st August 2022. Vol.100. No 16

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5181

SECURE XML VIA APPLICATION OF SOAP-BASED
TEXTUAL STEGANOGRAPHY ALGORITHM

1MUBARAK AL-MARRI, 2LOKMAN MOHD FADZIL
1PhD Student, National Advanced IPv6 Center (NAv6), Universiti Sains Malaysia, Penang, Malaysia

2Senior Lecturer, National Advanced IPv6 Center (NAv6), Universiti Sains Malaysia, Penang, Malaysia

E-mail: 1mubarakalmerri@student.usm.my, 2lokman.mohd.fadzil@usm.my

ABSTRACT

This paper briefly reviews the emerging use of and the application of steganographic techniques for
exchanging secret messages in a digital medium. In the era of ever-increasing cyberattacks, there is an
extreme need for reliable and secure communication. In this respect, cryptography approach has been used
to encrypt or encode a textual message with a protective key to prevent unauthorized access. However,
encrypted information can conspicuously challenge the hackers and instigate them to crack the code. In
contrast, stenographic methods are surreptitiously employed on what appears as a perfectly normal text is
actually hiding certain secretive message contents. In a two-part communication structure comprising the
message and the message transport, the message is hidden by applying steganographic techniques to be
delivered by Simple Object Access Protocol (SOAP). The author’s contribution is a proposed algorithm that
resolved current algorithm limitations by increasing message size, maintaining the stego file size equivalency
to the real file, and minimizing the real message and the stego message differences. This is accomplished by
developing encoding and decoding functions in the algorithm. The encoder extracts the equivalent sequence
number from a predefined file representing a null value to generate an arbitrary record to be written to an
XML file. The decoder read and select the block to extract the equivalent number that equals the null tags,
and search in the database to select the equivalent character to the extracted number to be added to the string.
Optional SOAP fields which are normally empty or unfilled are also being used with other tags to hide one
character, so one block will be equal to one character based on null values. The XML file, embedded with
the SOAP tags, which provides competitive performance in benchmark tests, can be used to securely transact
information over the Web.

Keywords: Algorithm, Cryptography, SOAP, Steganography, XML

1. INTRODUCTION

The communication and data sharing
between applications, called inter-process
communication (IPC), enables applications to use
them as clients that requests service from a number
of other application or process, or servers that
responds to a client request.

Depending on the usage, an IPC can be

designed as a Graphical User Interface (GUI) or a
console application to communicate with other
applications running on the Windows- or UNIX- or
other operating systems-based local or networked
computers.

Clipboard, Component Object Model

(COM), Data Copy, Dynamic Data Exchange
(DDE), File Mapping, Mailslots, Pipes and Remote
Procedure Call (RPC) and Windows Sockets IPC are

data exchange mechanisms currently supported by
Windows [1].

There are numerous applications developed

for exchanging data using Web services. One
example are banks communicating with their
customers for exchanging financial instruments.
Others include companies synchronizing with their
customers and suppliers for demand orders, packing
lists, air waybills, insurance documents, invoices,
among others.

To this end, many solutions are available to

manage these types of transactions, but they are not
without limitations. One example would be an IPC
making use of software interface called Distributed
Component Object Model (DCOM) or Common
Object Request Broker Architecture (CORBA), the
middleware architectures with programming

Journal of Theoretical and Applied Information Technology
31st August 2022. Vol.100. No 16

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5182

language portability and platform independence in
managing Internet communications [2].

Nevertheless, these protocols

communications sometimes fail as a properly-
configured firewall opens a very few ad-hoc ports to
function securely. The same case goes for HTTP
server, which always listens to port 80 [3].

However, DCOM necessitates initial

communication handshake via port 135, in addition
to opening a range of ports to run DCOM objects
hosting processes as well as MTS/COM+ server
applications [3].

Similarly, a CORBA server object does not

necessarily function via a specially designated port,
because CORBA applications and its related Object
Request Brokers (ORBs) generally use objects
launched at arbitrarily selected ports [4].

Standardized firewalls with static

configurations are not suitable for dynamic DCOM
and CORBA applications because their functionality
is based on the notion that a client-server pair will
always use a fixed, designated port [4].

Based on this fact, Simple Object Access

Protocol (SOAP) was developed as an industry
standard Extensible Markup Language or XML-
based Internet-friendly protocol using Hypertext
Transfer Protocol (HTTP) as its preferred protocol
using port 80 address.

Since an XML parser, which functions to

search and process XML documents, is practically
available on any operating system, SOAP will be the
future Internet-firewall-friendly, interoperable
protocol web services access protocol [3].

In this paper, data exchange security issues

are being investigated with a proposal for a
steganographic algorithm to be used in an XML-
SOAP mechanism.

Steganographic methods three foundational

characteristics are capacity, imperceptibility and
security, which are necessary to disguise classified
information [5]. Based on an extensive investigation
paper which surveys 50 papers on steganographic
techniques, this paper’s problem statement focuses
on maintaining minimum stego file size as well as
establishing trusted transmission channels to
minimize the risk of cyber attack [6].

To this end, the research objective is to
propose and develop an algorithm to minimize the
use of text characters using Binomial Coefficient
Theory to encode characters into code for disguise
for transmission via SOAP-XML transport
mechanisms with eventual decoding.

This paper is structured as the following:
the subsequent section attempts to educate the
readers with available research on SOAP
methodology, with focus on the use of
steganography techniques in literature. In section
three, a steganographic algorithm is proposed and
explained for use with SOAP. Section four focuses
on the experiments and discussion of the results. The
fifth section summarizes the conclusions and
perspectives derived from this paper.

2. LITERATURE REVIEW

2.1 SOAP Overview

SOAP, a universally-supported HTTP-
based protocol for simple, powerful and extensible
communication between applications achieved W3C
Recommendation status on June 24, 2003 [7].

As an independent protocol, SOAP

establishes anywhere, anyplace communication
between any platform, language, or server as the
precedent layer for increasingly intricate web
services, such as Universal Description Discovery
and Integration (UDDI), XML schema and Web
Services Description Language (WSDL) [8].

A SOAP message is a structured XML

document comprising an envelope element that
identifies the XML document as a SOAP message. It
also contains a header element that contains header
information, a body element that contains call and
response information, and a fault element containing
errors and status information [9]. A skeleton SOAP
message is illustrated in Figure 1.

Journal of Theoretical and Applied Information Technology
31st August 2022. Vol.100. No 16

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5183

Figure 1: SOAP XML-Based Message Structure [7]

The SOAP envelope element is shown in
Figure 2.

Figure 2: SOAP Envelope Element [7]

The xmlns:soap namespace embodies the

value of "http://www.w3.org/2001/12/soap-
envelope". The data types used in the document are
defined by the encodingStyle attribute which appear
in an arbitrary SOAP element related to the content
and child elements. A SOAP message has no default
encoding [9].

Syntax

soap:encodingStyle="URI"

The optional SOAP header element
contains application-specific information, such as

authentication and payment, for example, about the
SOAP message.

The presence of the Header element

indicates the Envelope element’s first child element.
Note: All immediate child elements of the Header
element must be namespace-qualified [9]. An
example of SOAP header is illustrated in Figure 3.

Figure 3: SOAP Header Example

Per SOAP syntax rules, a SOAP message
must be encoded using XML, use the SOAP
envelope and encoding namespaces, and must not
contain both the DTD (Document Type Declaration)
reference and XML processing instructions [9].

2.2 Steganography

Steganography is the science of hiding
messages through obscurity methods. Only the
sender and the intended recipients know about the
message’s existence [10].

Security through obscurity is achieved by

using secrecy of a design or an implementation. Such
systems may have theoretical or actual security
vulnerabilities, but if they are not known, then the
likelihood is that these flaws will never be found.

Security through obscurity has never

achieved formal acceptance for systems security
implementation since it contradicts Keep It Simple
principle (Kerckhoffs's principle).

Steganography, contrary to cryptography,

protects both the message contents and the
communicating parties. It lacks attractability, or the
ability to attract attention, in contrast to the
‘supposedly unbreakable notion’ aura of encrypted

<soap:Envelope
xmlns:soap="http://www.w3.org/2001/
12/soap-envelope"
soap:encodingStyle="http://www.w3.o
rg/2001/12/soap-encoding">
 ...
>>Message information goes here<<

 ...
</soap:Envelope>

<soap:Envelope
xmlns:soap="http://www.w3.org/2001/
12/soap-envelope"
soap:encodingStyle="http://www.w3.o
rg/2001/12/soap-encoding">
 ...
>>Message information goes here<<

 ...
</soap:Envelope>

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-
envelope"
soap:encodingStyle="http://www.w3.org/2001/
12/soap-encoding">
<soap:Header>
<m: Title
xmlns:m=http://www.myserver.com/title/
soap:mustUnderstand="A">BCD
</m: Title >
</soap:Header>
...
</soap:Envelope>

<?xml version="1.0"?>
<soap:Envelope

xmlns:soap="http://www.w3.org/2001/12/soap-
envelope"
soap:encodingStyle="http://www.w3.org/2001/1
2/soap-encoding">
<soap:Header>
 ...
</soap:Header>
<soap:Body>
 ...
<soap:Fault>
 ...
</soap:Fault>
</soap:Body>

</soap:Envelope

Journal of Theoretical and Applied Information Technology
31st August 2022. Vol.100. No 16

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5184

messages that stir suspicion and challenge potential
hackers. Simply, steganography hides the message
so that it is unseen, while cryptography scrambles the
message so that it cannot be understood [10].

The use of steganography trailed back to

440 BC when ancient Greeks first found the means
to hide messages by shaving and tattooing the
message onto the slaves’ heads. The slaves would be
sent to deliver the message when the slaves’ grown
hair hide the tattoo, with their heads shaved upon
arrival to reveal the message [11].

Another creative steganographic method

was to transcribe messages on wooden panels and
covered with wax. Since wax tablets were commonly
used as reusable writing surfaces during that era,
secretive communication was the least expected
when the wax on the tablets was actually melted to
reveal the hidden message [12].

World War II saw ingenious methods

including using invisible ink and microdots to hide
messages, where the message was embedded within
a body of a larger plain text using null cipher method
[13].

A digital image file forms an array of binary

numbers, each of them represents a pixel. To embed
or hide a message inside an image file using the
steganographic technique [14], two files are
required.

The first file is the image file that will

embed the message, whereas the second file is the
message to be hidden or embedded, producing the
so-called stego-image file. Common approaches
used to hide a message in digital images are listed in
the subsequent section.

2.3 Least Significant Bit Insertion

It is a common yet straightforward way to
embed messages in digital image files. The technique
is to modify the least significant bit of the pixel array.
Unfortunately, this method is vulnerable to even
small manipulations [15].

2.4 Masking and Filtering

This technique hides messages by marking
the image in a way similar to the watermarking
method. This is accomplished by having certain pixel
values raised or lowered by a numeric percentage in
masked areas [15].

2.5 Algorithms and Transformation
Both the steganographic method and the

SOAP protocol provide a perfect answer to the secret
message equation. Given the fact that there are a
number of methods of hiding text, either using video,
image, or audio file, the focus of this paper is only
on hiding a message in a text in this paper.

As such, any one of the three methods

available can be used: white spaces (open space),
punctuations (syntactic) and in the text itself
(semantic). Once hidden, they appear to represent the
whole contents of the text [16].

Since SOAP is based on XML, the XML-

tags-equivalent SOAP tags can be utilized to hide
secret bits. However, this apparent approach of
hiding secret messages has limitations as there are
only a few bits where the message can be hidden.
The framework for steganography to work with
SOAP messages is illustrated in Figure 4.

Figure 4: Steganographically Applied SOAP Message
[16]

The so-called stego-SOAP message model

consists of a SOAP message and a secret message,
which functions initially via an embedding function,
to acquire and combine a normal message and a
secret message, resulting in a new SOAP-compliant
message format.

This message contains the secret message

based on the stego key works only on the sender.
Next, the extracting function will use the key known
only by the receiver to isolate the normal message
from the secret message separately as the output. In

Journal of Theoretical and Applied Information Technology
31st August 2022. Vol.100. No 16

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5185

situations that the provided key is incorrect, only the
real message would be extracted.

2.6 Related Work In Literature

There is very minimal research on textual
steganography compared with other related studies
conducted on mainstream media such as images,
videos, and audio.

A number of textual steganographic

methods will be discussed in this section. Important
to note that not all of these methods are applicable
for structured documents, especially XML. This is
due to the fact that structured documents’ formatting
rules require that any intended secret messages will
need to follow the formatting rigorously.

A dynamic new method was proposed to

utilize in-between words and paragraphs
whitespaces in a right-justified text. Nevertheless,
this method suffers from being weak and easily
broken, apart from the cover text needs to be
dynamically generated according to the secret
message [17].

Shirali-Shahreza’s method utilizes hiding

texts based on UK and US English differences. For
example, the US spelling “Program” is used to hide
the value ‘0’ while UK spelling “Programme” is used
to hide the value ‘1’ in his first method. In his second
method, words with different terms but same
meaning are used to hide messages.

For example, the word “Gas” in US English

will be used to hide 0, while the equivalent word
“Petrol” in UK English will be used to hide the value
‘1’. Again, these methods applicability is limited to
only one bit of hidden data per substitution, which is
easily detectable by spell-checkers [18, 19].

Liu et al.’s method hides online chat-based

texts. Secret text is encoded by the transposition of
interior adjacent letters of words, based on research
that an arbitrary word’s middle letters randomization
has little or no effect on the ability of skilled readers
to understand the text.

The application of online chat for

steganography is based on the fact that typing
mistakes is viewed as common due to speed typing,
and the universal nature of chat sessions [20].

Inoue et al. proposed to embed secret data

into XML documents to switch [21]:

 Between the representations of an empty
element, one bit of data can be hidden per
empty tag

 Between adding and removing white spaces
before the tag’s closing-bracket, one bit of
data can be hidden per tag

 The elements’ order where in exchange of
two elements, one bit of data can be hidden

 The order of attributes within an element,
one bit of data can be hidden per an
exchange of two attributes

 By exchanging inner-tags with outer-tags
that contain them, one bit of data can be
hidden per an exchange [21]

Memon et al. proposed several

steganographic techniques for the purpose of
securing the cover file rather than hiding
information, summarized as follows [22]:

 Inserting random characters inside all tags

and values .and random characters are
inserted after each nth character

 Shuffling XML tags based on position. The
first tag is swapped with the nth tag and the
second tag with the (n – 1)th, and so forth

 Attribute-specific shuffling. Tags are
shuffled based on the first character of
attribute value of the root element

 Reverse characters. The sequence of
characters in all tags is reversed [20]

Zhang et al. proposed a method to hide

messages in SOAP files by employing SOAP file
keywords as cover message to hide secret message
bits. Each SOAP keywords character’s case is
mapped to the relevant bit in the secret message
binary code, with one bit hidden per character [23].

Finally, Alrouh et al. proposed an improved

method [24] based on method [19] in [21] and
method [18] in [20] to hide messages in SOAP files.
Steganography is accomplished by rearranging the
specific XML elements’ order according to the secret
message.

This method’s advantages are that the file
size is intact, and the capacity is proportional to the
number of elements. However, the fallback is that the
generated stego-SOAP file is arguably suspicious,
and applicable only when the elements’ order is not
important [16].

Journal of Theoretical and Applied Information Technology
31st August 2022. Vol.100. No 16

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5186

3. PROPOSED WORK

3.1 The Proposed Algorithm

A number of algorithms to hide a message
in a text were reviewed with the most promising
algorithm being the Alrouh’s method [24]. The
algorithm bypasses many limitations with additional
features like increasing the message size, keeping the
original stego file size, and decreasing the real
message and the stego message differences.

For the Alrouh’s method, one major issue

has been identified. The permutation among tags in
any “XML” file is not applicable, therefore, easily
detected either by the reader directly or by a
program. In addition, this algorithm does not
produce the stego file appearing like the real file,
which is one of steganography basic concepts.
Alrouh also did not include the experimentation and
implementation part in his work to demonstrate his
work and the validity of his algorithm.

The proposed algorithm attempted to avoid

these issues, limitations and problems seen in
previous sections, and to maintain XML file primary
features, such as the stego file visually equivalent to
the real file. In reality, most data will not require all
the information. Optional fields which are normally
empty or unfilled will be used with other tags to hide
one character, so one block equals to one character
based on null values. Figure 5 demonstrates the
algorithm with examples null Email and Mobile tags,
which is equivalent to character “h”.

Figure 5: The Proposed Algorithm

There are two main functions in this

algorithm, the encoding, and the decoding:

 Encoding: (input: string, output: xml stego

file)
1. Read a string character by character
2. Select a character, and then get the

equivalent sequence number from a
predefined file. Each number is
representing a null value in one of the
optional fields

3. Generate an employee record based on
the sequence number

4. Write the generated employee to the
“XML” file

 Decoding: (input: blocks[], output: string)

1. Read the blocks, block by block
2. Select the block and extract the

equivalent number that equals the null
tags

3. Search in our database and select
equivalent character to the extracted
number

4. Add the character to the string

3.2 The Algorithm Range
The problem to be solved is to find all the

combinations of numbers without repetition and
permutation. In order to calculate the possible
combinations of blocks that this algorithm can make,
the Binomial Coefficient Theory is introduced.

This theory’s formula is n!/(n-r)!(r)!
assuming that n = number of possible fields, and r is
number of elements used in the combination. To
calculate how many combinations, we can make out
of 5 optional records, so n = 5.

However, each combination can consist of

either 1, 2, 3, 4, or 5 elements. This can be considered
as the number of spaces as well. Therefore, we
should calculate the equation five times where r = 1
→ 5 and the summation of these values should be the
number of all possible combinations.

Example: Given n = 5, the possible number

of combinations that the algorithm can make can be
calculated.

ହ!

(ହିଵ)!(ଵ)!
+

ହ!

(ହିଶ)!(ଶ)!
+

ହ!

(ହିଷ)!(ଷ)!
+

ହ!

(ହିସ)!(ହ)!
 +

ହ!

(ହିହ)!(ହ)!

(1)

5 + 10 + 10 + 5 + 1 = 31 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 (2)

<?xml version="1.0" encoding="UTF-8"?>
<S:Envelope
xmlns="http://schemas.xmlsoap.org/soap/envelope/"
>
<S:Body>
 <Employees>
 <Employee>
 <Id>1</Id>
 <Name>Mr. Tester 1</Name>
 <Email/>
 <Fax>7000001</Fax>
 <Phone>8000001</Phone>
 <Mobile/>

<HomePage>www.Testerwebsite1.com</HomePage
>
 </Employee>
 </Employees>
</S:Body>
</S:Envelope>

Journal of Theoretical and Applied Information Technology
31st August 2022. Vol.100. No 16

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5187

The full expression is listed in Table 1:

Table 1: The Algorithm Full Expression

r Combinations Total

1 [1],[2],[3],[4],[5] 5

2
[1,2],[1,3],[1,4],[1,5],[2,3],[2,4],[2,5],[

3,4],[3,5],[4,5]
10

3
[1,2,3],[1,2,4],[1,2,5],[1,3,4],[1,3,5],[1,

4,5],[2,3,4],[2,3,5],[2,4,5],[3,4,5]
10

4
[1,2,3,4],[1,2,3,5],[1,2,4,5],[1,3,4,5],[2,

3,4,5]
5

5 [1,2,3,4,5] 1

In case more than these number

combinations is needed, the number of records
should be increased, which is n. The optimal number
of records is seven optional fields, which will give
127 combinations, including all letter cases as well
as digits.

3.3 Code Mapping

There should be certain relationship
between characters and codes. Each code represents
the positions of an element that has the null value or
the empty value. For Example, the code “135” means
elements 1, 3 and 5 have spaces on them. Table 2
shows an example of mapping for the case of five
records.

Table 2: The Code Mapping

Character Code

a 1

b 2

c 3

d 4

e 5

f 12

g 13

h 14

i 15

j 23

k 24

l 25

m 34

n 35

o 45

p 123

q 1234

r 12345

s 234

t 2345

y 345

v 124

w 125

x 1245

y 134

z 135
 1235

3.4 Pseudo Code And Time Complexity

In Encoding functionality, an XML stego
file is created based on secret message s.

Input: secret message s
Output: XML stego file

1. Read secret message s. --------------- (1)
2. Load XML file (cover file)----------- (1)
3. For each character ci in string s, create

new Employee object Ei. ------- (n)
a. Based on ci, load optional tags

in Ei -------- (31) always fixed
4. Save XML file (stego file) ----------- (1)

Total complexity = 𝝑(𝒏)

In Decoding functionality, secret message s
is extracted from XML stego file.

Input: XML stego file
Output: secret message s

1. Load and parse XML file (stego file) ---
-- (1)

2. For each Employee element Ei, ----- (n)
a. Decode secret character ci

based on optional tags ---- (31)
3. Construct secret string s from all secret

characters (c1 + c2 + .. + ci) --- (1)
4. Return secret message s -------------- (1)

Total complexity = 𝝑(𝒏)

3.5 Algorithm Advantages

This technique’s advantages are as follows:

 Each tag will be located in the right place as
the real file. Even when we publish this
paper, no reader or a program can confirm
that this file is a stego file

Journal of Theoretical and Applied Information Technology
31st August 2022. Vol.100. No 16

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5188

 There will be no extra weight in the XML
file since the actual data has been used
without any additional data

 number of characters is less than one

second (refer experiments’ section)

 The file size for encoding an enormous
number of characters is less than one
megabyte (refer experiments’ section)

 The exact time for decoding a vast number

of blocks is less than one second (refer
experiments’ section)

3.6 Algorithm Disadvantages

To be fair, the algorithm also has one
obvious disadvantage which is the range limitation.
As Alrouh’s algorithm limitation gives n!
combinations, the proposed algorithm will produce
less than this value as per the Algorithm Range
section. In spite of this, the proposed algorithm is
safer and more secure in terms of exposure.

3.7 Implementation and Design

The proposed algorithm is still at the
theoretical phase until it can be proven to work. A
demo project has been designed to prove the
algorithm’s validity and efficiency.

Written in Java based on object-oriented

design, the main difference between the proposed
algorithm and all the reviewed algorithms is that the
proposed algorithm will create the data based on the
requirements.

Figure 6: The Class Diagram

The class diagram illustrates all the classes
used in this program as well as the relationships
between them (Figure 6) with the full class
description as follows:

 Employee: This class represents the main

topic or subject which is employee master
data. The most important method in this
class is GenEmployee. This method will
take the message and convert each character
to the equivalent employee based on the
mapping file

 CreateXML: This class will be used in the

encoding process. First, the message to be
embedded is to be read. Second, for each
character the related code is returned from
the mapping file (Table 1). Third, the
method GenEmployee is called to create
appropriate object of class employee.
Finally, the employee data is written in
XML file in blocks form (Figure 7)

Figure 7: The CreateXML Diagram

 Data: This class to be used with an array to

form a list of all characters and their related
codes. The purpose is to eliminate the time
execution needed to access the mapping file
(see Table 1)

 MyFile: A help class that makes it easier to
open and close files

 ParserXML: One of the major classes
being used in the decoding process. The
class will help to convert each block to an

 class System

EA 9.3 Unregistered Trial Version EA 9.3 Unregistered Trial Version EA 9.3 Unregistered Trial Version

EA 9.3 Unregistered Trial Version EA 9.3 Unregistered Trial Version EA 9.3 Unregistered Trial Version

EA 9.3 Unregistered Trial Version EA 9.3 Unregistered Trial Version EA 9.3 Unregistered Trial Version

EA 9.3 Unregistered Trial Version EA 9.3 Unregistered Trial Version EA 9.3 Unregistered Trial Version

EA 9.3 Unregistered Trial Version EA 9.3 Unregistered Trial Version EA 9.3 Unregistered Trial Version

EA 9.3 Unregistered Trial Version EA 9.3 Unregistered Trial Version EA 9.3 Unregistered Trial Version

EA 9.3 Unregistered Trial Version EA 9.3 Unregistered Trial Version EA 9.3 Unregistered Trial Version

EA 9.3 Unregistered Trial Version EA 9.3 Unregistered Trial Version EA 9.3 Unregistered Trial Version

EA 9.3 Unregistered Trial Version EA 9.3 Unregistered Trial Version EA 9.3 Unregistered Trial Version

EA 9.3 Unregistered Trial Version EA 9.3 Unregistered Trial Version EA 9.3 Unregistered Trial Version

EA 9.3 Unregistered Trial Version EA 9.3 Unregistered Trial Version EA 9.3 Unregistered Trial Version

EA 9.3 Unregistered Trial Version EA 9.3 Unregistered Trial Version EA 9.3 Unregistered Trial Version

EA 9.3 Unregistered Trial Version EA 9.3 Unregistered Trial Version EA 9.3 Unregistered Trial Version

EA 9.3 Unregistered Trial Version EA 9.3 Unregistered Trial Version EA 9.3 Unregistered Trial Version

EA 9.3 Unregistered Trial Version EA 9.3 Unregistered Trial Version EA 9.3 Unregistered Trial Version

Class2

CreateXML

- employees :ArrayList
- dom :Document

+ loadData(ArrayList<Employee>) :void
+ createDocument() :void
+ createDOMTree() :void
- createEmployeeElement(Employee) :void
+ printToFi le() :void

Data

+ id :int
+ c :int

Employee

+ id :int
+ name :String
+ email :String
+ fax :String
+ phone :String
- mobile :String
+ homepage :String
- data :Data[]
- serial :int

+ genEmployees(String) :ArrayList<Employee>
+ toString() :String
+ getCode(char) :int
+ getEmpByCode(String) :Employee

MyFile

+ infi le :Scanner

+ open_fi le(String) :Scanner
+ Output_fi le(String) :PrintWriter
+ Load_Data_To_Array(Data[], Scanner) :Data[]

ParserXML

+ dom :Document
+ myEmpls :ArrayList<Employee>
- fi lename :String
+ data :Data[]

- parseXmlFi le() :void
- parseDocument() :void
- getEmployee(Element) :Employee
+ ExtractMsg() :String
+ getChar(Employee) :char
- getTextValue(Element, String) :String
+ getIntValue(Element, String) :int
- printData() :void

Timer

- startTime :long
- stopTime :long
- running :boolean

+ start() :void
+ stop() :void
+ getTimeMils() :long
+ getElapsedTimeSecs() :long

Journal of Theoretical and Applied Information Technology
31st August 2022. Vol.100. No 16

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5189

employee object. Subsequently, based on
this employee data, the proper code will be
selected. Finally, the proper character will
be selected from mapping file using the
code (Figure 8)

Figure 8: The ParserXML Diagram

4. RESULTS AND DISCUSSION

Experiments to confirm the proposed

algorithm’s validity and the resulting stego file’s
efficiency will be discussed. The first comparison
will be between execution time in milliseconds (MS)
and the number of characters in file size in kilobyte
(KB).

The following question will be answered:

How much time the program needs to create blocks
or employees that are equivalent to a certain number
of characters?

4.1 Experiment-1 (Encoding)

Figure 9: The Time & Characters Graph

The relationship between a number of

characters to be created and the execution time is
directly proportional, as well as the curve is
polynomial. Also, the program was able to produce
6078 characters in nearly 2.4 seconds which as
expected (Figure 9).

4.2 Experiment-2 (Encoding)

1.1

Figure 10: The Characters And File Size Graph

The relationship between the number of
characters and the file size is reasonable. The
program produces 6078 characters, with the file size
to be equal to 912 KB, less than 1 MB (Figure 10).

4.3 Experiment-3 (Decoding)

Figure 11: The Blocks & Times Graph

The time to decode the same number of

characters is less than the time to encode them due to
time to write and create the XML file is added in
encoding stage (Figure 11).

The encoding time (Section 4.2) was

compared with similar work in literature (Table 3).
Aldabagh achieved a much lower encoding time
using Least Significant Bit (LSB) as well as his

Journal of Theoretical and Applied Information Technology
31st August 2022. Vol.100. No 16

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5190

proposed image-and-fish hybrid steganographic
technique utilizing image carrier mechanism.
However, his message size is only 11K, compared to
this paper’s proposed algorithm’s 912 KB message
size, using XML document as the carrier mechanism
[25].

In addition, the image file is a single-
purpose file restricted to contain only media
information and metadata. On the other hand, the
XML file, which is embedded with the SOAP tags,
can be used to encrypt information for transactions,
database records, documentation, as well as a
number of other data types. The variety of
applications for which the XML file can be put to use
provides a huge advantage of this paper’s proposed
method to steganographically conceal and transport
secretive information.

Table 3: Aldabagh’s Image-And-Fish Hybrid Algorithm

Performance Benchmark

Sa
m

pl
e

N
o.

Im
ag

e
Si

ze

L
et

te
r

Si
ze

E
xe

cu
ti

on

T
im

e
O

ri
gi

na
l

L
SB

E
xe

cu
ti

on

T
im

e
F

or

P
ro

po
se

d
M

et
ho

d

1 225 X 225 11K 1.496085 Sec 2.011384 Sec

2 720 X 976 11K 2.106133 Sec 2.099977 Sec

3 200 X 200 11K 1.454461 Sec 2.240116 Sec

For critical analysis, textual steganography

endows the greatest challenge in steganographic
research primarily based on the fact that extraneous
bits are generally not that available compared to
image, video, and audio methods.

The risks associated with textual techniques

is that differences in textual structure can be
definitely get caught by the human eye. On the other
hand, image and video structure variations may not
be plainly observed. Therefore, it is a tendency to
conceal information in images and videos compared
to text.

SOAP tags provide an excellent area to

camouflage data which is not apparently visible to
casual readers. The application of the Binomial
Coefficient Theory to minimize the characters
combination addresses the issue of text
steganography low hiding capacity to an extent [6],
comparable to color-coded format-based text method
[26], Arabic Kashida font format-based method [27]

[28], probability distributions [29] and alphabetic
transformation technique [30] in literature.

5. CONCLUSION

Steganography is an emerging field that is
potentially able to solve some of cyber security
hardest problems. The technique to be used depends
mainly on the context together with its own
technique.

The author’s proposed algorithm makes use

of null Email and Mobile tags examples to address
existing algorithm restrictions by increasing message
size, maintaining the stego file size equivalency to
the real file, and minimizing the real message and the
stego message differences.

The algorithm encodes and decodes a

maximum of 127 character combinations to their
corresponding code via code mapping. Since no
additional data is used as storage overhead, the
algorithm achieved decent performance in three
benchmark tests, as well as much better encoding
time than similar work in literature.

The experiment makes novel use of SOAP-

XML which has not been previously attempted in
literature, but it is also applicable to all types of XML
files, as it does not depend on the SOAP tags. As
XML is widely used for Web-based communications
today, this SOAP-XML technique holds a promising
solution for a more secure interaction on the Web.

REFRENCES:

[1] Inter-process Communications. Microsoft

Support, 2021.
[2] R. J. Reynolds, “Comparison of DCOM and

CORBA distributed computing”, Thesis, New
Jersey Institute of Technology (USA), 1999.

[3] “Choosing the Right Remote Object Invocation
Protocol in .NET”, Informit, Pearson Education,
Hoboken, NJ (USA), 2003.

[4] H. Abie, “CORBA Firewall Security: Increasing
the Security of CORBA Applications”,
Norwegian Computing Center (Norway), 2000.

[5] B. Li, J. He, J. Huang, Y. Q. Shi, “A survey on
image steganography and steganalysis”, Journal
of Information Hiding and Multimedia Signal
Processing (JIHMSP), Vol 2, 2011, pp. 142–172.

[6] M. A. Majeed, R. Sulaiman, Z. Shukur, M. K.
Hasan, “A Review on Text Steganography

Journal of Theoretical and Applied Information Technology
31st August 2022. Vol.100. No 16

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5191

Techniques”, Mathematics 2021, Vol. 9, pp.
2829. https://doi.org/10.3390/math9212829.

[7] SOAP Specifications. W3C.
https://www.w3.org/TR/soap/.

[8] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N.
Mukhi, S. Weerawarana, “Unraveling the web
services web: An introduction to SOAP, WSDL,
and UDDI”, IEEE Internet Computing, Vol. 6,
No. 2, 2000, pp. 86 – 93.

[9] SOAP Version 1.2 Part 1: Messaging
Framework (Second Edition).
https://www.w3.org/TR/soap12-
part1/Overview.html

[10] E. -S. M. El-Alfy, A. A. Al-Sadi, “High-capacity
image steganography based on overlapped pixel
differences and modulus function”, Proceedings
of International Conference on Networked
Digital Technologies, Springer Berlin
Heidelberg (Germany), Vol. 294, 2012, pp. 243-
252.

[11] S. Shakir Baawi, M. R. Mokhtar, R. Sulaiman,
“A comparative study on the advancement of text
steganography techniques in digital media”,
ARPN Journal of Engineering and Applied
Sciences, Vol. 13, No. 5, 2018, pp. 1854-1863.

[12] P. Khare, J. Singh, M. Tiwari, “Digital Image
Steganography”, Journal of Engineering
Research and Studies, Vol. 2, No. 3, 2011, pp.
101-104.

[13] K. Rabah, “Steganography - The Art of Hiding
Data”, Information Technology Journal, Vol. 3,
No. 3, 2004, pp. 245-269.

[14] V. Sharma, S. Kumar, “A New Approach to Hide
Text in Images Using Steganography”,
International Journal of Advanced Research in
Computer Science and Software Engineering,
Vol. 3, No. 4, 2013, pp. 701-708.

[15] S. El-Seoud, I. Taj-Eddin, “On the Information
Hiding Technique Using Least Significant Bits
Steganography”, International Journal of
Computer Science and Information Security,
Vol. 11, No. 11, 2013, pp. 34-45.

[16] A. A. Bachar Alrouh, “Information Hiding in
SOAP Messages: A Steganographic Method for
Web Services”, International Journal for
Information Security Research (IJISR), 2011, pp.
61-70.

[17] L.Y. Por, B. Delina, “Information Hiding: A
New Approach in Text Steganography”,
Proceedings of 7th International Conference on
Applied Computer & Applied Computational
Science (ACACOS’08), Hangzhou (China),
2008.

[18] M. Shirali-Shahreza, “Text Steganography by
Changing Words Spelling”, Proceedings of 10th
International Conference on Advanced
Communication Technology (ICACT 2008),
Phoenix Park, (Korea), 2008.

[19] M.H. Shirali-Shahreza, M. Shirali-Shahreza, “A
New Synonym Text Steganography”,
Proceedings of 4th International Conference on
Intelligent Information Hiding and Multimedia
Signal Processing (IIH-MSP 2008), Harbin,
(China), 2008.

[20] M. Liu, Y. Guo, L. Zhou, “Text Steganography
Based on Online Chat”, Proceedings of Fifth
International Conference on Intelligent
Information Hiding and Multimedia Signal
Processing, 2009.

[21] S. Inoue, K. Makino, I. Murase, O. Takizawa, T.
Matsumoto, H. Nakagawa, “A Proposal on
Information Hiding Methods using XML”,
Proceedings of 1st Workshop of NLP and XML,
November, 2001.

[22] A. G. Memon, S. Khawaja, A. Shah,
“Steganography: A New Horizon for Safe
Communication Through XML”, Journal of
Theoretical Information Technology, Vol. 4, No.
3, 2008, pp. 187-202.

[23] X. Zhang, H. Wang, J. Sun, “An Information
Hiding Method based on SOAP”, Proceedings of
3rd International Conference on International
Information Hiding and Multimedia Signal
Processing (IIH-MSP 2007), Kaohsiung,
(Taiwan), 2007.

[24] B. Alrouh, A. Almohammad, G. Ghinea,
“Information Hiding in SOAP Messages: A
Steganographic Method for Web Services”,
International Journal for Information Security
Research (IJISR), Vol. 1, No. 1, March 2011.

[25] G. M. T. K. Aldabagh, “Proposed Hybrid
Algorithm For Image Steganography In Text
Security Using Fish Algorithm”, Journal Of
Southwest Jiaotong University, Vol. 54, No. 6,
Dec. 2019.

[26] J.K. Sadié, L.M. Metcheka, R. Ndoundam, “A
High Capacity Text Steganography Scheme
Based On Permutation And Color Coding”,
arXiv 2020, arXiv:2004.00948.

[27] A. F. Al-Azzawi, “A Multi-Layer Arabic Text
Steganographic Method Based On Letter
Shaping”, International Journal of Network
Security & Its Applications (IJNSA), Vol. 11.
Available online:
https://ssrn.com/abstract=3759471, 2019.

[28] A. Taha, A.S. Hammad, M.M. Selim, “A High
Capacity Algorithm For Information Hiding In

Journal of Theoretical and Applied Information Technology
31st August 2022. Vol.100. No 16

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5192

Arabic Text”, Journal of King Saud University -
Computer and Information Sciences, Vol. 32,
2018, pp. 658–665, [CrossRef].

[29] R. Yang, Z. H. Ling, “Linguistic Steganography
by Sampling-based Language Generation”,
Proceedings of the 2019 Asia-Pacific Signal and
Information Processing Association Annual
Summit and Conference (APSIPA ASC),
Lanzhou, China, 18–21 November, 2019, pp.
1014–1019.

[30] N. Naqvi, A.T. Abbasi, R. Hussain, M. A. Khan,
B. Ahmad, “Multilayer Partially Homomorphic
Encryption Text Steganography (Mlphe-ts): A
Zero-Steganography Approach”, Wireless
Personal Communications, Vol. 103, 2018, pp.
1563–1585. .

