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ABSTRACT 
 

Maintaining the excellent state of the road is critical to secure driving and is an obligation of both 
transportation and regulatory maintenance authorities. For a safe driving environment, it is essential to inspect 
road surfaces for defects or degradation frequently. This process is found to be labor-intensive and 
necessitates primary expertise. Therefore, it is challenging to examine road cracks visually; thus, we must 
effectively employ computer visualization and robotics tools to support this mission. This research provides 
our initial idea of simulating an Autonomous Robot System (ARS) to perform pavement assessments. The 
ARS for crack inspection is a camera-equipped mobile robot (i.e., an Android phone) to collect images on 
the road. The proposed system is simulated using an mBot robot armed with an Android phone that gathers 
video streams to be processed on a server that has a pre-training Convolutional Neural Networks (CNN) that 
can recognize crack existence. The proposed CNN model attained 99.0% accuracy in the training case and 
97.5% in the testing case. The results of this research are suitable for application with a commercial mobile 
robot as an autonomous platform for pavement inspections.  
 
Keywords: Autonomous Robot System, Deep Neural Network, Road Maintenance, Crack Detection, 

Pavement Crack, Automatic Detection. 
 
1. INTRODUCTION  
 
 Although Potholes might not seem a big deal, it is 
too expensive to fix. Recent statistics have suggested 
that potholes cost American drivers more than 6 
billion dollars annually. Fixing potholes is nearly 
$35 to $50 per pothole. Add to this cost an initial 
mobilization of about $100 to $150 to bring trucks 
and crew to the repair site [5]. A report from TRIP, 
a transportation research group by Matt Spillane, on 
Nov. 14, 2018, stated that poor road conditions cost 
NYC-area drivers $2,800 a year. 
 
 Pavement inspections are a routine highway 
process, and various authorities implement local 
airport roads. Pavement authorities are liable for 
inspecting cracks, flatness, and distress. The most 
common method presented in the past was visual 
inspections.  A regular pavement distress survey 
corresponds to a pre-defined strategy to monitor the 
pavement condition and standardize the proper 
maintenance and rehabilitation activities. Various 
types of distress can be examined, such as 
longitudinal cracking, crosswise cracking, chunk 

cracking, and patching [6]. The pavement inspection 
demands to be executed in numerous weather and 
traffic situations; thus, it is time-consuming and 
entails human errors. 
  
 Automating the inspection processes using 
robotics has been explored in [7]. The principal goal 
of numerous research articles was to build an 
autonomous robot capable of automating pavement 
inspection. The Autonomous Robot System (ARS) 
design can deliver great productivity in road 
inspection in a considerably better, faster, and safer 
manner. This process will reduce costs and human 
mistakes. 
 
 This work aims to provide a simulation-oriented 
pavement crack detection system using robotics. The 
proposed method can be simulated in a laboratory 
for education and research purposes. The system 
design concerned several components: recognizing 
pavement cracks, vehicle control, vision system, and 
data storage for designing self-driving vehicles. The 
main idea of this research is to simulate an 
Autonomous Robot System (ARS) to perform 



Journal of Theoretical and Applied Information Technology 
31st August 2022. Vol.100. No 16 

© 2022 Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
5120 

 

pavement assessments. The ARS for crack 
inspection is a camera-equipped mobile robot-like 
an Android phone, to collect images on the road. The 
proposed system is simulated using a mBot robot 
with an Android phone that gathers video streams to 
be processed on a server with pre-training 
Convolutional Neural Networks (CNN) that can 
recognize crack existence. The Convolution Neural 
Networks (CNNs) are utilized to classify the 
structure of the cracks from raw images collected by 
the Android mobile camera. The results of this 
research are suitable for application with a 
commercial mobile robot as an autonomous platform 
for pavement inspections.  
 
    The proposed autonomous system has a variety of 
integrated components, each with a specific task to 
produce an automated process for pavement crack 
detection. The process was simulated using the mBot 
robot and a MATLAB-generated code. 
     
 The paper is organized as follows: Section 2 
provides background work on pavement crack 
inspection with a literature review on CNN in 
Section 3. Section 4 presents the proposed ARS 
framework for pavement crack detection. We also 
provide the functionality of each system component. 
The architecture of the CNN neural network and the 
setup for the experimental design is provided in the 
experimental setup Section 5. In Section 6, the 
system simulation and experimental results are 
provided. 
 
2 BACKGROUND 

 
Automated crack detection using computer 

imaging is a subject receiving massive investigation 
over the last few decades. Many practical 
applications of this technology have evolved in the 
commercial domain. For example, Fugro Roadware 
[8] recommends commercially available automated 
road condition detection systems that leverage image 
processing technology. The proposed system can 
detect cracks as small as 1mm [9].  The Pavement 
Management Service (PMS) commissioned an 
Automatic Road Analyzer (ARAN) vehicle 
equipped with a Laser Crack Measurement System 
(LCMS). The LCMS unit can identify a broader 
spectrum of defects simultaneously. This ability to 
gather a richer data set offers substantial financial 
gains in the pavement monitoring procedure. In 
Figure 1, we show the LCMS payload system 
vehicle. 

 
Figure.1. Laser Crack Measurement System 

Mounted On Mobile Car 
Autonomous robot bridge scanning is reforming 

the procedure of bridge examination [10]. 
Nevertheless, one of the significant challenges is 
finding a method that can accurately interpret the 
enormous, collected images to understand bridge 
status. In [11], the authors presented a unique 
automated crack detection system based on a state-
of-the-art robotic bridge scanning system, as given 
in Figure 2 [11]. 
 
    An automated examination system-based mobile 
robot for tunnel crack detection was presented in 
[12]. The proposed mobile robot system was planned 
to maintain a constant distance from walls during the 
image collection using a Charge-Coupled Device 
(CCD) camera. An image processing approach was 
adopted to recognize cracks in tunnel walls.  
Detection of cracks in pipelines was also presented 
in [13]. Detecting cracks in buried pipes is essential 
in measuring the degree of pipe weakening for 
community and service operators. In [14], the 
authors proposed a mobile manipulator system for 
bridge crack inspection. This mission utilized a 
mobile vehicle's two CCD cameras and a four-axis 
manipulator system. Parallel cameras are used to 
detect cracks. The manipulator system is equipped 
with binocular CCD for assessing constructions that 
may not be straightforward to the eye. 
 

 
 

Figure 2. Testing site for bridge assessment at the 
Haymarket, VA, USA. (Right) RABIT - Robotic 
Evaluation Bridge Inspection Tool By The Federal 
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Highway Administration (FHWA) [15]. The Image Was 
Presented In [11]. 
 

In [16], the authors suggested an inspection 
system using a mobile robot with a camera that 
can gather images of the bridge deck cracks. 
Using camera calibration and robot 
localization, they utilized an image processing 
technique based on the Laplacian of Gaussian 
(LoG) algorithm to develop a crack map. A 
Genetic Algorithm (GA) was used to create an 
optimal path for the robot. GA helped find an 
optimal way that decreases the total turns and 
the moving distance. A possible layout of the 
crack inspection and mapping system named 
“Robotic Crack Inspection and Mapping 
(ROCIM) system” is given in Figure 3. The 
ROCIM system is positioned to examine the 
bridge lane by lane. 
 

 
Figure 3. The Scenario Of Crack Inspection And 

Mapping Using The ROCIM System As Presented In [16] 
 
   Sophisticated technologies aided in 
monitoring and protecting the pavement. 
Recently flying drones [17] were also explored 
to monitor pavement. In [17], the authors 
provided a two-stage approach. In the first 
stage, images are collected using unmanned 
aerial vehicles (UAVs). Later a 3D model of the 
data is created using laser scanners. The second 
stage includes clustering the collected images 
using histogram analysis and peak detection. 
Possible cracks are identified using adaptive 
thresholds. In [18], the authors provided a 
multi-spectral pavement image analysis method 
was provided. A UAV was used to recognize 
pavement damages (e.g., cracks and potholes) 
using several machine learning algorithms, 
including a support vector machine, artificial 
neural network, and random forest. 
    
  In many research articles, CNN was 
effectively used to classify pavement cracks 

[19, 20].  In [19], the authors used Principal 
Component Analysis (PCA) method for 
features extraction with many PCA 
components. A CNN was trained with 400 
images of road cracks with a 480×480 
resolution. The achieved results show how PCA 
helped speed up CNN’s learning process. In 
[21], the author's utilized image features 
automatically from hand-annotated image 
patches acquired by a low-cost sensor, i.e., a 
smartphone. CNN showed superior crack 
detection performance. A grid-based pavement 
crack detection using deep learning was 
presented in [22]. A pixel-wise classification of 
surface cracks was produced in [23]. A deep 
crack end-to-end trainable deep CNN for 
automatic crack detection was suggested in 
[24]. 
   Several researchers explored the use of CNN 
for other applications, such as manufacturing 
process modeling [25].  For example, CNN’s 
have been used for hand gesture recognition 
[26], handwritten digits recognition [27], smart 
agriculture [28], facial recognition [29], lung 
cancer classification [30], identification of 
abnormalities in ECG [31], classifying Thai 
Fast Food (TFF) [32], etc. 
 
3 CONVOLUTIONAL NEURAL NETWORKS 
 
    A convolution neural network is based on 
Artificial Neural Networks (ANNs). It is a set of 
algorithms modeled after a human brain that are 
designed to recognize patterns [33,34].  The patterns 
they recognize are numerical, in which all real-world 
data, whether it be images, must be translated. ANN 
helps cluster and classify data. The word deep in 
deep learning denotes the increased number of layers 
in the network [35]. The proposed CNN model 
consists of three layers. Each layer contains 
convolution, max pooling, and RuLU components, 
and a fully connected layer is presented as a final 
layer for classification purposes. Convolutional 
neural networks have shown promising results 
recently. 
 
3.1 Convolutional Layer 
 The convolution layer applies a filter matrix 
to the input. The filter matrix is a set of weights 
determined by the network multiplied by the 
elements under the filter. The sum of the 
resulting products is the value of the output 
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element. In this example, the filter matrix is of 
size 3×3 (See Figure 4). For each component of 
the first 3×3 area of the input, the element is 
multiplied by the corresponding weight. In this 
example, the sum of the products is -3. This 
becomes the new element of the output matrix. 
The stride value then shifts the filter matrix. The 
filter will be shifted to the right by the column 
stride until it reaches the edge. Afterward, the 
filter will be moved down by the value of the 
row stride.   

     
                Figure 4. Convolution layer 
 
3.2 Pooling Layer 
 The Pool layers operate to attain dimensional 
reduction on each feature map but keep the essential 
information. The depth of output and input feature 
maps are identical. Meanwhile, the size of each 
feature map (i.e., kernel) scales down, corresponding 
to the size of the sub-sampling window, as shown in 
Figure 5. Sub-sampling functions include average or 
maximum.  Max-pooling is the most popular 
because the rate of change in the maximum value is 
very low compared to the rate of change of the 
average value of any receptive field (the window of 
the input feature map at which pooling is applied). 
Pooling operation helps extract a combination of 
features invariant to transnational shifts and minor 
distortions [36]. Also, pooling may reduce the over-
fitting of the training data. 
 

 
Figure 5. Pooling layer 

 
3.3 ReLU Activation Layer 
 Activation functions are used in CNN to control 
the node output. The function is connected to each 
neuron to determine whether or not the outcome 
should be active. Activation functions must be 
simple computationally since they have computed 
each data sample thousands or millions of times.  

The ReLU is a piece-wise linear function. It outputs 
the same input if it’s positive and zeroes for negative 
values. The ReLU function is computationally 
efficient and has no vanishing gradient problem for 
positive inputs. Still, the gradient becomes zero for 
negative inputs, and the network cannot perform 
back-propagation and cannot learn.  This issue is 
called the dying ReLU. Equations 1 and 2 
demonstrate the computations of  ReLU. 
 
R(z) = max(0, z)  (1) 
 

R(z) = ൜
0 𝑖𝑓 𝑧 ≤ 0
𝑧 𝑖𝑓 𝑧 > 0

  (2) 

 
ReLU permeates the problem of diminishing 
gradients and speeds up the learning process.  ReLU 
is considerably advised for designing CNN 
classification models [37].  
 
4 PROPOSED ARS FRAMEWORK 
 

The Architecture of the proposed ARS is shown 
in Figure 6. The system consists of three main 
components; 1) the Robot system following a path 
(i.e., the road), 2) the mobile device with an Internet 
Protocol camera or IP camera to locate cracks, and 
3) the CNN for the recognition of pavement crack. 
The ARS setup is shown in Figure 7. 
 

 
 

Figure 6. Proposed ARS Components 
 
4.1 mBot Robot System 
 mBot is a low-cost, easy-to-run robot kit that can 
be controlled using a graphical programming 
software called Make blocks, founded in 2013. It 
was effectively used in teaching robotics to science, 
technology, engineering, and mathematics (STEM) 
students. mBot is an all-in-one solution to 
experience the hands-on experience of 



Journal of Theoretical and Applied Information Technology 
31st August 2022. Vol.100. No 16 

© 2022 Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
5123 

 

programming, electronics, and robotics. The mBot 
has several sensors that can be utilized for various 
applications such as obstacle avoidance, line-
following, and many others. The mBot enjoys 
several features such as essay assembling, Arduino 
open-source platform, and supports IOS & Android 
Applications. It can also be programmed using 
Scratch. mBot can be controlled via Bluetooth or 2.4 
GHz wireless modules 

 
 

Figure 7 Proposed ARS system prototype for 
pavement crack detection 

 
4.2. Mobile Phone IP Camera   

An Internet Protocol camera, or IP camera, is a 
digital video camera that collects data and sends 
image data via an IP network. They are frequently 
used for surveillance; they need no local recording 
device, only a local area network. The IP camera 
software is application software that can be utilized 
for home surveillance, business, and family 
protection.  This software can be installed on a 
mobile phone and allows the phone to collect video 
streams for motion or object detection. The software 
can be broadcast via an  IP address fed to a website 
and processed for various aspects. Numerous Video 
Management Software (VMS) facilitates an easy 
view of recorded webcams and live streams.  Several 
IP camera software is available in the Google App 
store [38]. To collect the stream of video from the IP 
camera and process it using the CNN model, we used 
the code presented in Figure 8. 

 
5. EXPERIMENTAL SETUP 
 

5.1 Crack Image Dataset  
This research adopted a concrete crack dataset 

containing concrete images with/without cracks. 
Each class has 20000 images that have a 227×227 
resolution [39,40]. No data augmentation was 
adopted 

 
 

 
 

Figure 8. Matlab Code For  Collecting Video Stream 
From The Ip Camera To The Server To Classify 

Pavement Cracks. 

 
Figure 9. Concrete Crack Images for 

Classification. Upper row: Images with no 
cracks, Lower row: cracks (Source [39,40]) 

 
 

5.2 Proposed CNN Model 
 In this research, we proposed a CNN with 16 
layers. The architecture of the CNN is provided in 
Table 1. Figure 10 shows the design of the CNN. 
This model was drawn via the use of the MATLAB 
Deep Learning App [41]. As shown in Table 1, the 
input image to the CNN is with size 227×227 with 
three channels representing red, green, and blue 
shades of any image (RGB). This image entered the 
first convolution layer that contains eight filters with 
a size of 5×5; many channels equal three (equal the 
number of channels input feature map (input 
image)). Stride equals one horizontally and one 
vertically. The output feature map from the 
convolution layer is entered Max-pooling layer with 
window size 2×2, stride two horizontally and two 
vertically, and Zero-padding on the four sides of the 
2D channel. After the Max-pooling layer, Batch 
normalization to the 16 channels is performed to 
minimize the internal covariate shift and smoothen 
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the objective function of the CNN, which results in 
improving the network performance. The ReLU 
activation layer is the fifth layer to determine which 
neurons should be activated in the next convolution 
layer to maximize the efficiency of the CNN.  There 
are two other sets of these layers (convolution layer, 
Max-pooling with zero padding layer, batch 
normalization layer, and finally RELU activation 
layer) till layer number 13, but with a different 
number of filters in each convolution layer. The 14th 
layer contains 9 Fully connected layers in which all 
the neurons are connected with the weight of each 
neuron. After a fully connected layer, the soft Max-
pooling is applied to the whole channels to get only 
a 1×1 window in each channel (nine channels equal 
to several classes from which we classify the input 
image). The last layer is to transfer the resulted 
element in each channel (nine channels) to a 
percentage that indicates how much the input image 
belongs to the corresponding class. 

 
5.3. Evaluation Metrics  
In this research, we adopted several 
metrics that include accuracy, precision, 
and recall classifying various pavements 
for whether they have a crack or not. They 
include: 
 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  

்ା்ே

்ା்ேାிାி
  (3) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
்

்ାி
   (4) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
்

்ାிே
    (5) 

 
where TP,FP,TN and FN are the true positive, false 
positive, true negative, and false3 negative, 
respectively. 
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑅𝑒𝑐𝑎𝑙𝑙 =  

்

்ାிே
       (6) 

 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
்ே

ிା்ே
   (7) 

 

𝐹ଵ = 2 ×
௦ ×ோ

௦ାோ
                 (8) 

 
6. EXPERIMENTAL RESULTS 
 

In our experiments, we used 1000 images, with 
80% for training and 20% for testing.  Figure 12 
illustrates the confusion matrix for the training case 
in which 800 images are used for training where 400 
images include cracks (class 0) and 400 images 
without cracks (class 1). As shown in Figure 12, 408 

images are trained to contain cracks with TP = 400 
images while FN = 8 images and 392 images are 
trained with no cracks with FP = 392  images and TN 
= 0. In Table 2, we calculated the accuracy of 
training at 99%, sensitivity  (and Recall function) at 
98.04%, specificity at 100%, and precision at 100% 
in the training case. The confusion matrix in the 
testing case is presented in Figure 13 with 200 
images [100 images include cracks (class 0) and 100 
images without cracks (class 1)]. As shown in Figure 
13,  99 images are predicted to contain cracks with 
TP = 96 images while FN = 2 images, and 99 images 
are predicted to be free of cracks with FP = 97 images 
and TN = 2 images. In Table 2, we calculated the 
accuracy, sensitivity, specificity, and precision at 
97.5%, 97.03%, 97.97%, and 98%, respectively. 
Figure 11 shows both the accuracy and loss during 
training and validation of the CNN versus the 
number of iterations. As the number of iterations 
increases, loss during training and testing decreases 
dramatically. Also, the accuracy of training and 
validation increases. 
 
7. CONCLUSION 
 
      This paper provides our initial idea of developing 
an Autonomous Robot System for pavement crack 
inspection. The proposed ARS system consists of 
three components, the robot, the CNN, and the IP 
camera. The training CNN was able to classify 
pavement crack images using a stream of video 
collected from an Android phone camera. The CNN 
produces a classification accuracy of over 97%. 
Additionally, the proposed ARS allows the robot to 
process video stream data in real time and generate 
an accurate classification. The proposed system can 
be effortlessly improved by equipping it with 
different sensors. 
 
 8. FUTURE WORK 
 
    In future work, the following research points shall 
be investigated 1) Explore the mBot extra 
capabilities to change its path and direction 
throughout the crack detection process, 2) To deploy 
the used CNN architecture on an FPGA (Field 
Programmable Gate Array) as an embedded system 
with the mBot robot to save the required time for 
communication between the IP-Camera and the 
server at which CNN architecture is uploaded, 3) 
Increase the accuracy by extending the current 
system to a multi-agent system through an increasing 
number of robots to get more images with different 
views and then get more accurate decisions through 
the whole seen of the roads and streets.      
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Table 1. A Detailed Description Of The Layers Of The Proposed CNN Architecture. 

 
Layer Name Type Details 

1 ’imageinput’ Image Input 227×227×3 images with ’zerocenter’ normalization 
2 ’conv 1’ Convolution 8 5×5×3 convolutions with stride [1 1] and padding ’same’ 
3 ’maxpool 1’ Max Pooling 2×2 max pooling with stride [2 2] and padding [0 0 0 0] 
4 ’batchnorm 1’ Batch Normalization Batch normalization with 16 channels 
5 ’relu 1’ ReLU ReLU 
6 ’conv 2’ Convolution 16 5×5×16 convolutions with stride [1 1] and padding ’same’ 
7 ’maxpool 2’ Max Pooling 2×2 max pooling with stride [2 2] and padding [0 0 0 0] 
8 ’batchnorm 2’ Batch Normalization Batch normalization with 16 channels 
9 ’relu 2’ ReLU ReLU 
10 ’conv 3’ Convolution 32 5×5×16 convolutions with stride [1 1] and padding ’same’ 
11 ’maxpool 3’ Max Pooling 2×2 max pooling with stride [2 2] and padding [0 0 0 0] 
12 ’batchnorm 3’ Batch Normalization Batch normalization with 32 channels 
13 ’relu 3’ ReLU ReLU 
14 ’fc’ Fully Connected 9 fully connected layer 
15 ’softmax’ Softmax softmax 
16 ’classoutput Classification Output crossentropyex with ’Black Sea Sprat’ and 8 other classes 

 
Table 2. Evaluation Criteria 

 
Case Accuracy Sensitivity Specificity Orecision Recall F1 
Training 0.9900 0.9804 1.0000 1.0000 0.9804 0.9901 
Testing 0.9750 0.9703 0.9798 0.9800 0.9703 0.9751 

 

 
Figure 10: Description Of The CNN Layers Based Matlab 
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Figure 11: Loss And Accuracy Of The Trained CNN Model 

 

Figure 12: Training Case-Confusion Matrix. 
 

Figure 13: Testing Case-Confusion Matrix 
 
 

 


