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ABSTRACT 

This paper deals with the solutions of fuzzy fractional nuclear decay equations (FNDEs) under Caputo H-
differentiability by Reproducing Kernel Hilbert Space Method (RKHSM). The equations were reformulated 
under the influence of fuzzy logic. The Residual Power Series has been applied in solving differential 
equations with fuzzy initial conditions. This method is illustrated by solving two examples. The solution 
method has shown high efficiency and accuracy in the case of comparison with the exact solution and another 
method. 
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1. INTRODUCTION 
 

The initial form of the fuzzy differential 
equations appeared through the suggestions of 
Chang and Zadeh (Sheldon& Zadeh, 1972) these 
equations quickly grew in the applications of many 
sciences, physics, engineering, energy, and other 
sciences, at the present time, the fuzzy differential 
equations have overlapped with the fractional 
differential equations with many applications 
(Allahviranloo, 2021), and deep complications have 
emerged to find solutions to many equations, one of 
the equations with important applications is what is 
known as the Nuclear Decay Equations (NDEs) as a 
kind of fractional Riccati differential equations 
(Khodadadi & Karabacak, 2016 Marakhtanov & 
Okunev,2018) the solution of this form of equations 
is extremely important because of its applications in 
the field of nuclear energy, so in this paper we will 
put a solution to this type of equations with fuzzy 
conditions by the RKHSM. Therefore, we consider 
the next form of NDEs as the following: 
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Where tD 

 is the Caputo fractional derivative 

for order  , a  is a variable, and is the count of 
total radionuclide's existing in any radioactive, It 
can be observed that Eq.1 is a general formulation 

of where the initial value d . 
 

         According to the organization of this paper, the 
first section will include a simple introduction that 
contains the general form of the equations, while the 
second section includes the main definitions. Third 
section include the formulation of the NDEs under 
fuzzy conditions, and in the fourth section the 
solution steps will be formulated, while the fifth 
section includes examples to demonstrate the 
effectiveness of solution, and the conclusion will be 
in the final section. 

 
2. MAIN DEFINITIONS  

In this section, the most important definitions 
that will be used in this research are presented, which 
include the main definitions of Caputo fractional 
derivatives and fuzzy numbers. 

 The definition of Caputo is one of the most 
important definitions of the fractional derivation 
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procedure, Caputo definition of fractional 
derivatives includes the following cases: 
 

Definition 1 (Albzeirat et al., 2019). The left Caputo 
fraction derivatives is defined as: 
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Definition 2 (Albzeirat et al., 2019). The right  
Caputo fraction derivatives is defined as: 
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            A fuzzy number is a generalization of a 
regular, real number in the sense that it does not refer 
to one single value but rather to a connected set of 
possible values, where each possible value has its 
own weight between 0 and 1. This weight is called 
the membership function. 

 
Definition 3 (Albzeirat et al., 2018): Let 

( ) n
F Fu t R and  0,  1 .r   The cutr   of 

( )Fu t  is the crisp set  ( )Fu t that contains all 

elements with membership degree in ( )Fu t greater 

than or equal to r , that is 

   ( ) : ( ) .
r

F Fu t t R u t r   For a fuzzy 

interval ( )Fu t , its cutr   is closed and bounded 

in .R  We denoted them by: 
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Definition 4 (Albzeirat et al., 2018): 

( ) ,  F F Fu t R u  is triangular if its membership 

function has the following form: 
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Where it’s 𝑟-cut is simply 

   ( ) ( ),  - ( - ) ,
r

Fu t a r b a c r c b   for any

 0,  1r . 

 
3. FUZZY FRACTIONAL NUCLEAR 

DECAY EQUATIONS 
 

Radioactive decay occur naturally or are 
artificially produced in nuclear reactors, cyclotrons, 
particle accelerators, or radionuclide generators 
(Yatsevich & Honda, 1997). What happens 

naturally does not pose a danger because it occurs 
under natural conditions and within a gradual time 
that does not cause massive energy, as the force of 
energy emission gradually fades with time, while the 
danger appears when these emissions occur 
abnormally in nuclear reactors, cyclotrons, particle 
accelerators, or radionuclide generators which may 
cause disasters. Therefore it is imperative to control 
the variables and their fuzzy conditions to make 
nuclear applications less dangerous and more 
accurate in control. The logic of reformulating Eq.1 
into the fuzzy formula comes through the nature of 
the data, where the equation represents an atom that 
contains extra energy that makes the behavior of the 
reaction unstable according to the change of 
materials, time, or surrounding conditions, and all 
these data are considered within the Fuzzy 
description of radionuclides. Based on this logic, 
NDEs Eq.1 can be formulated within a fuzzy 
formula into FDEs. 

By calling the previous definitions of fuzzy, 
the equation will be reformulated according to 
definitions as follows: 
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If NDEs under effect of fuzzy initial 
condition: 

( ) ( ), 0 1, 0 1,
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Where tD 
 is the Caputo fractional 

derivative for order   , a  is a variable, and ( )y t  

is the count of total radionuclide's existing in any 
radioactive, It can be observed that Eq.5 is a general 
formulation of FNDEs where the initial value d  is 
a fuzzy numbers. 

 
By fuzzy properties, Eq.7 takes the 

following form: 
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Where , 1 , 2,  t r t rD D 
 is the Caputo 

fractional derivative for order   , a  is a variable, 

and 1 2( ),  and ( )r ry t y t  is the count of total 

radionuclide's existing in any radioactive, where the 
initial value d  is a fuzzy numbers. 
 
4. REPRODUCING KERNEL HILBERT 

SPACE METHOD 

In this part of the study the main steps of 
the solution using Reproducing Kernel Hilbert Space 
Method will be laid out. 
Step 1: After homogenising the initial conditions in 
Equation (6) and using r  cut definition, we apply 
the Riemann-Liouville for both sides of equations, 
which leads to new form for Equation (6) as follow:  
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That’s leads to next  form: 
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Sine 
* *
1,1 0 1,2( ) 0,  ( ) 0r ry z y z  that leads to 

the next form: 
 

* * * *
1.1 ,[ , ] 1,1 1,1 1,2

* * * *
1.2 ,[ , ] 1,2 1,1 1,2

( ) ( , ( ), ( ))

( ) ( , ( ), ( ))

r RL a z r r r

r RL a z r r r

y z I g z y z y z

y z I g z y z y z








  (10)                                                         

 
Therefore, 
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Then, 
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That's led to the next form for the solution of 

1,1 1,2( ) and ( )  r ry z y z as the following 
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             Now, to solve the last system by implements 
of the reproducing kernel theory, we adhere to the 
following steps; 
 
Step 2: By using reproducing kernel theory tools for 
the first order need to construct the space 

 1
2 , ,mFS a b

 where F mention for first and S for 

space. In the equation (5.1) 1,m   that’s leads to 

constructing the space  2
2 , .FS a b  

Step 3: The inner product in  2
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expressed by: 
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And the norm is given by: 
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Step 4:  space  2
2 , FS a b  is a reproducing kernel 

Hilbert space, that leads to the next result: for each 
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To solve Equation (5.8) as asystem by 
reproducing kernel theory need to define a 
differential operator 
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In this step the equations (5.8) converted into 

next form: 
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Step 5: By apply the differential operator:  
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Then  equation (19) converted into the next form:  
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Step 6: In this step need to construct an orthogonal 

function system of  1
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It follows: 
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Hence, ,1, ( )k jr z  expressed by the next form: 
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Theorem 1. For the Equations (5.15), suppose that 
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Now, by using Gram-Schmidt 
orthonormalization construct an orthonormal system
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Where ,k m  is orthogonalization coefficient. 

We rewrite all equation by mention 1,1 1r  and 

1,2 2r  .  
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The approximate solution 
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Proof: By applying Theorem 1, we can see that.
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For each  

 
2

* * 2 *
, ,2

1 1

( ) ( ) ,  ,  ( ) ,  ( ) ( )k m r k mm k m m
k m

y z y z F S a b y z z z


 

   
 is the Fourier series expansion of 

    

 ,2

, , 1,1
( )k m k m
z




 , the series is convergent 

2
*

, ,
1 1

( ),  ( ) ( )k m k mm
k m

y z z z 


 
              (24)                                                         

2
* *

, ,
1 1

( ) ( ),  ( ) ( )k m k mm m
k m

y z y z z z 


 

  (25)                                                            

2
* *

,, , ,
1 1 1 1

( ) ( ) ,  ( ) ( )
k m

k mm j r m l q l q
k m l q

y z y z z z  


   

            (26)

2
* *

,, , ,
1 1 1 1

( ) ( ),  ( ) ( )
k m

ad
k mm jr l q m m l q

k m l q

y z y z L e z z 


   

              (27)

2
* *

,, , ,
1 1 1 1

( ) ( ),  ( ) ( )
k m

k mm jr l q m m l q
k m l q

y z L y z e z z 


   

              (28)

I  2
2 ,  .FS a b                       

 
 

2
* * *

,, ,
1 1 1 1

( ) ,  ( ) ( )
k m

k mm jr l q q m l
k m l q

y z G z y z z 


   

              (29)

 
2

* * *
,, ,

1 1 1 1

( ) ,  ( ) ( )
N k m

N
k mm jr l q q q l

k m l q

y z G z y z z 
   

             (30)

proof is complete.                                                                
As results:  

1:- The approximate solution ( ),  1,  2.my z m 
by using Riemann-Liouville integral operator can be 
presented by: 

   

   

2
-1 * * *

, 1,2 1,1 1,2
1 1 1 1

1.1

2
-1 * * *

, 1,1 1,1 1,2
1 1 1 1

1,

1
( - ) ( ,  ( ),  ( )) *  ( )

,  

1
( - ) ( ,  ( ),  ( )) *  ( )

l

l

zn n k m

l q l l r r l r l l
k m l q a km

r

zn n k m

l q l l r r l r l l
k m l q a km

z t g t y t y t dt z

z

z t g t y t y t dt z

z





 


 


   

   

 
 

  


 
 

  


 

 

1r

 
 
 
 
 
 
 
 
 
  

       (31)

   
                                                                                            

 

 

 

2
* *

, 1 1.1
1 1 1 1

1 2
2

* *
, 1 1,1

1 1 1 1

,  ( ) ( ) ,  

( ),  ( )

,  ( ) ( )

n n k m

l q q l F l r
k m l q km N N

r r
n n k m

l q q l F l r
k m l q km

G z y z z z

y z y z

G z y z z z

 

 

   

   

  
  

              




          (32)

                                                                                                                

* * 1,1 1,2
( ) 1,1 ( ) 1,2

Riemann-Liouville integral terms  by  ,  
( ) ( ),  y ( )

(

operator

) ,  ( )
q q

NR
mr r r

odd m r r even m r r

N
y z y z z

y z z y z z

 
        

  (33)
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2: The approximate solution ( ),  1,  2.my z m   

by using Caputo fractional derivative operator can 
be presented by: 

 

 

2
* * *

, 1 ,1 1 ,1 1 , 2
1 1 1 1

1 .1

2
* * *

, 1 , 2 1 ,1 1 , 2
1 1 1 1

1 ,1

1 2

( ,  ( ) ,  ( ) ) * ( )

,  

( ,  ( ) ,  ( ) ) * ( )

( ) ,  ( )

n n k m

l q r r l r l
k m l q k m

r

n n k m

l q r r l r l
k m l q k m

r

N N
r r

g t y t y t z

z

g t y t y t z

z

y z y z

 

 

   

   

  
  
  
  
  
  
  
  

   

   

            (34)

* *
( ) 1,1 ( ) 1,2

1,1 1,2

C aputo  fractional derivaterm s  by  ,  
( )

( ) ,  ( )

( ),  

tive o

y ( )

perator

q q

N C
m r

odd m r r ev en m r r

r r

N
y z

y z z y z z

y z z

 
     

   

         (35)

 
5. NUMERICAL EXAMPLES 

Consider the following Fuzzy Fractional Nuclear 
Decay Equation 

( ) ( ), 0 1, 0 1,
 

(0) [0.5 0.5* , 1.5-0.5* ] 
tD y t ay t t

y d r r

      


   (36)
 

Where 
tD   is the Caputo fractional 

derivative for order 0.5   , 1a  , and ( )y t  is 

the count of total radionuclide's existing in any 
radioactive, and the initial value d  is a fuzzy 
numbers, and 0,5.r   

 
Where 0.5r  then [0.75,  1.25]d  . 

Table 1. and Table 2. Show the solution  
1 ( )ry t , 

and 
2 ( )ry t after applied the last steps. 

 
The exact solution where 1  give by: 

 

1

2

( ) 0.125

e25

e

( ) 1.

x

x

r

r

y t

y t







   
 

Table 1 Approximate Solution of  
1 ( )ry t  

Compared with the Exact Solution 

X 𝐸𝑥𝑎𝑐𝑡 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 
1   

Approximate Solution

1   

Approximate Solution  

0.5   

Approximate 
Solution by VIM 
(Khodadadi, & 

Karabacak,2015) 

0.5   

0.1 0.75 0.75 0.75  
0.2 0.6786280635269697 0.6786307869 0.5501221366 0.5427 
0.3 0.6140480648084864 0.6140531539 0.487463391 0.4828 
0.4 0.5556136655112884 0.5556206471 0.4471287043 0.4440 
0.4 0.5027400345267294 0.5027485034 0.4175262196 0.4152 
0.5 0.45489799478447507 0.4549076052 0.3942151239 0.3924 
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Table 2 Approximate Solution Of  2 ( )ry t  Compared With The Exact Solution 

t 𝐸𝑥𝑎𝑐𝑡 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛  

1   

Approximate Solution

1   

Approximate Solution

0.5   

Approximate 
Solution by VIM 
(Khodadadi, & 

Karabacak,2015) 

0.5   
0.1 1. 25 1. 25 1. 25 0.0 
0.2 1.1310467725449493 1.128630787 0.9168702277 0.9045 
0.3 1.0234134413474774 1.014053154 0.812438985 0.8047 
0.4 0.9260227758521473 0.9056206471 0.7452145072 0.7400 
0.4 0.8379000575445492 0.8027485034 0.6958770327 0.6920 
0.5 0.7581633246407917 0.7049076052 0.6570252065 0.6540 

 
 

 
Figure 1 Error Between Exact Solution And Approximate Solution For 1 ( )ry t  

 
 

 
Figure 2 Error Between Exact Solution And Approximate Solution For 2 ( )ry t  

 
The Tables 1, and 2 show the accuracy of 

the solution as the ratio of the approach between the 
solution and the solution in (Khodadadi, & 
Karabacak,2015) is very high. The small error 

percentage appears between the approximate 
solution and the exact solution shown in Fig 1, and 
Fig 2. 
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6. CONCLUSION 
 

In this paper, the RKHSM was investigated 
to solve FNDEs. Three models of fuzzy equations 
have been formulated by combining fuzzy logic with 
the NDEs. The final numerical findings and 
comparisons for examples in tables above indicate 
that the RKHSM is an efficient instrument to solving 
FNDEs. 
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