
Journal of Theoretical and Applied Information Technology
31st July 2022. Vol.100. No 14
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5134

ADJACENCY MATRIX, GRAPH THEORY AND
EQUIVALENCE PARTITIONING FOR MODELLING

CONFORMITY TESTING OF OBJECT ORIENTED
PROGRAMS

KHALID BENLHACHMI 1, KHADIJA LOUZAOUI 2

1,2Laboratory For Computer Science Research, Faculty of Science, Ibn Tofail University, Kenitra, Morocco

E-mail: 1khalid.benlhachmi@uit.ac.ma , 2khadija.louzaoui1@uit.ac.ma

ABSTRACT

We present in this work an approach for testing conformity behaviours of object oriented (OO) classes.
Our approach can be used to test overridden and overriding methods during the inheritance process. The
key idea of our work is to use a mathematical representation for developing some algorithms of test data
generation to deduce all states of conformity in the general case where behaviours of methods are not
necessarily similar.
Our mathematical model describes conformity contract of overridden and overriding methods during the
inheritance mechanism by a graph of conformity states, adjacency matrix and equivalence partitioning.
The technique of partitioning can define test cases that uncover classes of errors, thereby reducing the
total number of test cases that must be developed. The second model is based on adjacency matrix and
graphs of states to represent software behaviour and to simplify the test data generation.
We show in this paper that the test data generation can be represented by a graph of states and adjacency
matrix. Thus, it is sufficient to consider the sink vertex of graphs to check the conformity behaviour of
the program under test.

Keywords: Software Verification, Formal Specification, Conformity Testing, Robustness Testing, Valid
Data, Invalid Data, Test Data Generation, Equivalence Partitioning, Inheritance, Constraint
Resolution.

1. INTRODUCTION

Formal modelling is an important method of
discovering O example of conformity and
robustness testing.

Formal specifications represent an effective
method to improve the efficiency and quality of
software. However, the choice of test data has an
important impact on the quality of software testing.
Furthermore it is difficult to find out all anomalies
in the system. This major problem of software
testing throws an important question, as to what
would be the approach we should adopt for
generating test data. In this paper we develop a
constraint model that includes various abstraction
levels and corresponding methods for synthesis and
verification of conformity properties: the first
method is a behavioural equivalence partitioning of
input domains of derived classes of inheritance. The
second method is based on graph theory for
describing all states of conformity of overridden
and overriding methods. Our approaches are based

on formal specifications and design by contracts
(DBC) [1, 2, 3].

For Object Oriented (OO) programs, design by
contract represent a powerful technique for robust
and reliable software. DBC is based on three
Boolean constraints: precondition, postcondition
and invariant (P, Q, Inv) (Fig.1). The specification
(P, Q, Inv) must be satisfied in input and output of
programs under test, and can be used by different
languages of constraints: OCL[4] and JML[5]… .

Figure 1. Constraints and Conformity contract of an OO
program

Journal of Theoretical and Applied Information Technology
31st July 2022. Vol.100. No 14
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5135

In an OO paradigm, the conformity contract is a
property H defined for all elements of the input
domain E⨯Ic of the program under test:

() ()

:

 (,) (,) is : (,) () (,

{

))

, }

(
c

bef aft

H E I

x o H x o P x o I

true

nv o Q x o Inv o

false

This conformity constraint of the program under
test is satisfied if: “For all invocation of the
program, output specifications (Q and Inv) are
satisfied if input specifications (P and Inv) are
satisfied” (Fig.1).

Our previous approaches of conformity testing
[6] and robustness testing [7,8] in inheritance are
based on similarity of behaviours [9] between
overridden and overriding methods. In our basic
approaches we have indeed tested the conformity of
overriding methods in derived classes from test
results of overridden methods in the super class.
This reusability of test sequences of the super class
is only possible if overriding and overridden
methods have same basic behaviour [9]. In this
paper we present an approach for testing the
conformity of overriding methods in derived classes
in the general case where overriding and overridden
methods are not necessarily similar. In this work we
use the technique of equivalence partitioning to
reduce the number of test data. The second method
is the adjacency matrix and graph of states to
simplify the representation of test data results
(Fig.2).

Figure 2. Graph of conformity states and its adjacency
matrix

We organize our paper as follows: section 2 and

3 present similar approaches of software testing and
our previous works of conformity constraints in
derived classes. In section 4 we propose our
approach of conformity testing of inheritance by
using the graph of conformity states. Finally, our
approach is evaluated by an OO example of
conformity testing.

2. RELATED WORKS

Several works have been done to test the
compliance of a component or system with formal

specifications. In [4], authors propose an approach
of test cases generation, the method is based on the
constraints resolution and error anticipation in
programs specifications. In [5], they present a
method for writing all assertions of OO programs in
the abstract state defined by Java 8 streams and Java
Modelling Language (JML). In [6] we have used an
optimal model of constraints only for testing
conformity in inheritance. In [7], we propose an
approach of robustness testing for derived classes of
inheritance in an OO paradigm. The purpose of this
approach is the opportunity to reuse test sequences
of overridden methods in robustness testing of
overriding methods. This reusability of test data of
super classes is only possible if methods have same
behavior. In [8] we have used an optimal model of
constraints for testing both conformity and
robustness of derived classes of inheritance.

In [9], we have proposed a model of similar
behaviors based on an equivalence partitioning for
testing the similarity between overridden and
overriding methods of OO classes. In [10], the
paper uses the EventML software and Nuprl proof
assistant to implement a consensus protocol which
must be fault tolerant. The approach shows how to
prove sofety properties for the protocol in question.
In [11], the paper proposes an approach of test data
generation from JML specifications. This approach
is based on a randomly generation method of test
data.In [12], the paper focuses on the constraints
resolution method to reduce number of test data for
OO programs.

In [13], authors show that the ACO algorithm
can be reformed and used to generate test data for
white box testing. In order to generate test input
values, they define and apply some techniques such
as pheromone update, local transfer and global
transfer. In [14], the paper presets an approach to
generate test input values by using the Bi-Objective
function. The objective function is based on genetic
algorithm and is used to produce large spatial
distribution of input space. In addition they apply
the Clustering method to reduce the time of error
finding ability in a test data generation.

In [15], they use metaheuristic algorithms to
propose a fitness function to generate test data for
the Simulink models. The new fitness function is
based on the mutation techniques and has some
useful features. Furthermore, this fitness function
can be used to improve the mutation score in the
Simulink environment. In [16], authors present an
approach of test data generation based on the
coverage optimization. They propose to do so by
MOALO algorithm (Multi-Objective Ant Lion
Optimization). This algorithm can be used to
improve the coverage of paths.

Journal of Theoretical and Applied Information Technology
31st July 2022. Vol.100. No 14
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5136

3. MODEL OF CONSTRAINTS FOR
CONFORMITY TESTING

The work of [6,9] can be used for testing the
conformity of an overriding method in a derived
classes during the inheritance operation by using
constraint model of basic classes and constraint
propagation.

3.1 Model of constraint for basic classes

The conformity contract (Fig.1) can be
represented by the constraint model H.

Definition:
The conformity constraint H of a method
m(x1,x2,…,xn) of a class C is a property of the
pair (x,o) (x=(x1,x2,…,xn) is the vector of input
parameters and o is the receiver object) such
that:

() ()(,) : (,) () (,) () ,(,)bef aft cH x o P x o Inv o Q x o Inv o x o E I

Where o(bef) is the class object o in the state
before the calling of the method m() and o(aft) is
the class object o in the state after the calling of
the method m() (Fig.3).

Figure 3. Input-Output constraints of a method m()

3.2. Model of Conformity Testing in Inheritance

In [6,9] we have used the model of constraint H
for testing the conformity of methods in derived
classes (Fig.4).

Figure 4. Principle of conformity testing

 Constraints propagation in inheritance
We consider a method m of a class C2 which

inherits from the class C1 such that m overrides a
method of C1. The original method and its
overriding method in the subclass C2 will be
denoted respectively by m(1), m(2) (Fig.5).

Figure 5. Constraints of (Overridden method m(1),
Overriding method m(2))

The problem of behavioural constraints of types
(Classes) and subtypes (subclasses) of object
oriented programs is resolved by Meyer [1,2,3] and
Liskov, Wing [17] (Fig.6).

Figure 6. Specification of an Overriding method m(2)

In this approach, the specification
(P(2),Q(2),Inv(2)) of the overriding method m(2) is
constituted by two specifications (Fig.6).

 Constraint of conformity testing
- Conformity testing of overridden methods [6,9]:

o The overridden method m(1) is in conformity
with its specification if:

(1)

1(,) : (,)Cx o E I H x o .

o The overridden method m(1) is not in
conformity with its specification if:

(1)
1(,) : Cx o E I H (x,o) .

- Conformity testing of overriding methods [6,9]:
o The overriding method m(2) is in conformity

with its specification if:
(2)

2(,) : (,)Cx o E I H x o .

o The overriding method m(2) is not in
conformity with its specification if:

2(,) : (2)
Cx o E I H (x,o) .

3.3. Similarity Model

The similarity approach of our previous works
[9] is used for assuring if the overriding method m(2)
has the same behaviour as its original version m(1)

Journal of Theoretical and Applied Information Technology
31st July 2022. Vol.100. No 14
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5137

in the superclass according to the inherited
specification (P(1),Q(1),Inv(1)).

For each input value(x,o) of the overriding method
m(2), we associate the matrix Similarity (x,o)=(a ,b,

a', b'). The matrix represents the 16 values of the
quadruplet (a,b,a',b') (Fig.7).
The methods m(1) and m(2)are similar to the
specification (P(1),Q(1),Inv(1)) if and only if :
(a,b)=(a',b') and (a,b,a',b')∈{0,1}4 (Fig.7).

Figure 7. Condition and equivalence partitioning of similarity

The problem of programs conformity is not
restricted to classes and subclasses with similar
behaviours: if the methods m(1) and m(2) are not
similar we are unable to progress in the test process.
In the approach of this paper we show that the
similarity of behaviour is not obligatory for
verifying conformity in sub classes. So the
conformity of dissimilar methods can be tested. The
purpose of the next section is to generalize the
model of [6,9] in order to test the conformity of an
overridden and overriding methods (m(1) and m(2))
even if methods are not necessarily similar.

4. APPROACH OF CONFORMITY IN
INHERITANCE BY GRAPH OF
CONFORMITY STATES

The approach of conformity by similarity
presented in the last paragraph can be used to test
the conformity of overriding methods in derived
classes from test result of overridden methods in the
base class. This reusability of test sequences of the
base class is only possible if overriding and
overridden methods have same basic behaviour [9].
In this paragraph we present an approach of
conformity for testing the conformity of overriding
methods in derived classes in the general case
where overriding and overridden methods are not
necessarily similar.

4.1. Input Data Partitioning and Conformity
Behaviors

In this work we define the relationship between

conformity behaviours and the similarity
partitioning. Then we propose an algorithm of
conformity test data generation.

 Conformity behaviours (Fig.8)

Figure 8. Conformity behaviors of (m(1), m(2))

 Analysis of input data partitioning

In this approach we test the conformity

behaviours of (m(1),m(2)) by using the similarity
partitioning (Fig.7):

 (1)

2

1 1
P (x,o) Similarity(x,o)=

1 1
, :

C
X x o E I

(1)

2

1 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 1
, P (x,o) Similarity(x,o)

1 0 0 1 1 0

1 0 1 0 0 1

0 1 1 0 0 1

:
C

Y x o E I

 (1)

2

1 1 1 1 1 1
, P (x,o) Similarity(x,o) , ,

1 0 0 1 0 0
:

C
Z x o E I

 (1)

2

1 0 0 1 0 0
, P (x,o) Similarity(x,o) , ,

1 1 1 1 1 1
:

C
T x o E I

This parts X, Y, Z and T represent behaviours of

conformity of the methods (m(1),m(2)) : (c1,c2.1),
(Nc1, Nc2), (c1, Nc2), (Nc1, c2.1), (c1, c2.2), (Nc1,c2.2)
(Fig.9):

Journal of Theoretical and Applied Information Technology
31st July 2022. Vol.100. No 14
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5138

Figure 9. Classes of conformity behaviors of

(m(1),m(2))

 Conformity testing of overriding methods

The algorithm of conformity testing (Fig.10) is

developed for generating input test data of
overridden and overriding methods. This algorithm
is based on the specification (P(1),Q(1),Inv(1)) of the
methods (m(1),m(2)) and the domain partitioning
(X,Y,Z,T) for testing the conformity behaviours of
(m(1),m(2)) (The constant N is the test threshold limit)
(Fig.7 and Fig.9).

Figure 10. Algorithm of conformity testing

4.2. Graph of Conformity States of (m(1),m(2))

The graph is a powerful way to model various
types of processes and relations in biological,
physical and software systems. In computer
science, many practical problems of software
testing can be represented by graphs. The test data
generation of inheritance can be represented by a
directed graph, in which the vertices represent
conformity states and directed edges represent
transitions from one state to another.

In our approach, graphs are used to represent
results of conformity test of overridden and
overriding methods.

 Conformity states
Definition
The conformity state of (m(1),m(2)) is a value of the
4-tuple (x, y, z, t), where x = |X|, y = |Y|, z = |Z|
and t = |T| are the cardinal number of the sets X, Y,
Z and T after the current iteration of the do… while
loop of the test data generation algorithm (Fig.10).

There are three values for each sets (X, Y, Z and T):

 Empty set (|X|=0): x=0.
 Saturated set (|X|=N): x=N (N is the test

threshold limit).
 Nonempty set (|X|<N and |X|≠0): x=𝜀.

With 3 values (x,y,z,t)∈{0,𝜀,N}4, we will have 81

conformity states (Fig.7 and Fig.9) (Table 1 and
Table 2).

Table1. Realizable states of conformity

Conformity

state
Values

Behavio of
(m(1),m(2))

P
ra

ct
ic

ab
le

 s
ta

te
s

State 1

{(0,,0,0),(0,𝜀,0,𝜀),
(0,,𝜀,0),(0,𝜀,𝜀,𝜀),
(𝜀,,0,0),(𝜀,𝜀,,0,𝜀),
(𝜀,,𝜀,0),(𝜀,𝜀,𝜀,𝜀)}

(Nc1, Nc2)

State 2 {(0,0,N,0), (𝜀,0,N,0)} (c1, Nc2)
State 3 {(0,0,0,N), (𝜀,0,0,N)} (Nc1, c2.1)
State 4 (N,0,0,0) (c1, c2.1)

P
ar

ad
ox

ia
l

st
at

es

State e1 {(0,0,N,𝜀), (𝜀,0,N,𝜀)} (Nc1, Nc2)
State e2 {(0,0,𝜀,N), (𝜀,0,𝜀,N)} (Nc1, Nc2)
State e3 (N,0,𝜀,𝜀) (Nc1, Nc2)
State f1 (N,0,0,𝜀) (Nc1, c2.1)
State f2 (N ,0,𝜀,0) (c1, Nc2)

The conformity states (e1, e2, e3, f1, f2) have a

paradoxical relationship with the threshold limit of
test N. For example:

𝑓ଵ = (𝑁, 0,0, 𝜀):

⎩
⎪
⎨

⎪
⎧ | 𝑋 | = 𝑁 ⇒ (𝑚(ଵ), 𝑚(ଶ)) ℎ𝑎𝑠 𝑡ℎ𝑒 behavior (𝑐ଵ, 𝑐ଶ.ଵ)

⇒ 𝑚(ଵ) is in conformity with its specification.
| 𝑇 | = 𝜀 ⇒ ∃(𝑥, 𝑜): for this (x,o)

 ⇒ 𝑚(ଵ) is not in conformity with its specification.

It follows that the paradoxical states are

convenient for detecting errors of the threshold limit
N of test.

Table 2. Incomplete states of conformity of
(m(1),m(2))

State 0 : (0,0,0,0) State p : (0,0,0,𝜀)
State i : (𝜀,0,𝜀,0) State q : (0,0,𝜀,0)
State j : (𝜀,0,0,𝜀) State r : (0,0,𝜀,𝜀)
State k : (𝜀,0,0,0) State s : (𝜀,0,𝜀,𝜀)

 Graph of conformity states

Definition
A graph of conformity states of (m(1),m(2)) (Fig.11)
is a graph that satisfies the following conditions:
- Each vertex represents a conformity state of

Journal of Theoretical and Applied Information Technology
31st July 2022. Vol.100. No 14
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5139

(m(1),m(2)).
- Each edge represents a transition from a
conformity state to another conformity state or a
loop that is an edge that connects a conformity state
to itself.
- The source vertex in the graph represents the input
state and the sink vertex represents the output state
of (m(1),m(2)).

The sink vertex of the graph (Fig.11) represents

the paradoxical state e3=(N,0,𝜀,𝜀). And then the
methods (m(1),m(2)) have the behavior (Nc1,Nc2).

Figure 11. Graph of conformity states

5. EVALUATION

In this section we present an example of test data
generation of the overridden method withdraw(1)
and the overriding method withdraw(2) for two java
classes (Fig.12).

Figure 12. Java implementation of withdraw methods

In the figure 13 we present the specification of the overridden and the overriding methods withdraw:

Figure 13. specification (P(1),Q(1),Inv(1)) and (P'2,Q'2,Inv'2) of methods (withdraw(1),withdraw(2))

Journal of Theoretical and Applied Information Technology
31st July 2022. Vol.100. No 14
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5140

 Test Data Generation of Conformity Constraint

The table 3 illustrates an example of test data
generation of methods withdraw(2) and withdraw(1)
(x1 and balance(o) are in]-200,200[; The threshold
limit N=100 and X=Y=Z=T=∅).

Table 3. Result of a conformity test of (withdraw(1) , withdraw(2))

Iteration
number

x1 O |X| |Y| |Z| |T|

0: input state - - 0 0 0 0
1 73 Account2(168,0.05) 1 0 0 0
2 42 Account2(99,0.13) 2 0 0 0
3 39 Account2(117,0.19) 3 0 0 0
4 48 Account2(129,0.03) 4 0 0 0
5 27 Account2(74,0.1) 5 0 0 0
… … … … … … …
49 86 Account2(191,0.25) 49 0 0 0

50 53 Account2(158,0.17) 50 0 0 0

51 61 Account2(146,0.06) 51 0 0 0

… … … … … … …
81 33 Account2(83,0.2) 81 0 0 0

82 45 Account2(111,0.27) 82 0 0 0

83 24 Account2(101,0.12) 83 0 0 0

… … … … … … …
96 90 Account2(185,0.08) 96 0 0 0

97 97 Account2(198,0.24) 97 0 0 0

98 49 Account2(126,0.15) 98 0 0 0

99 18 Account2(66,0.08) 99 0 0 0

100 81 Account2(177,0.11) 100 0 0 0

The graph of conformity states of (withdraws (1),

withdraw (2)) is as follows (Fig.14):

Figure 14. Graph of conformity states

In this example (withdraw(1), withdraw(2))
changes from the input state 0 to the incomplete
state k=(𝜀,0,0,0), and we maintain the state k for 98
iterations.
In the end we have the output state: State 2=
(N,0,0,0).

The sink vertex represents the behaviour (c1,
c2.1). Therefore, the methods withdraw(1) and
withdraw(2) are in conformity to the specification
(P(1),Q(1),Inv(1)).

6. CONCLUSION

This paper proposes an approach of test data
generation to validate conformity contracts of OO
programs. Our work presents a formal model based
on graph theory and equivalence partitioning
technique to simplify the conformity verification
process of OO classes.

Our model of graphs is an important way to
represent and understand conformity behaviours of
subclasses of inheritance mechanism. This
approach can be applied to overriding and
overridden methods even if super and sub classes
do not have similar behaviours. The first approach
of this work is an algorithm of test data generation
based on a similarity partitioning for testing the
conformity contract of an OO model. The second
approach is a way to generate test data of
conformity by using adjacency matrix and graphs of
conformity states. This paper shows how the graph
of states and equivalence partitioning can be used to
reduce the test data generation and therefore, to
improve software testing.

Journal of Theoretical and Applied Information Technology
31st July 2022. Vol.100. No 14
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5141

REFERENCES

[1] B. Meyer, "Applying 'design by contract'" ,
Computer, vol. 25, no. 10, pp. 40-51, 1992.

[2] B. Meyer, Object-oriented software
construction, Upper Saddle River, N.J.:
Prentice Hall PTR, 1997.

[3] B. Meyer, Eiffel, New York: Prentice-Hall,
1998.

[4] B. K. Aichernig and P. A. P. Salas, "Test case
generation by OCL mutation and constraint
solving", Fifth International Conference on
Quality Software (QSIC'05), Melbourne,
Victoria, Australia, 2005, pp. 64-71.

[5] Y. Cheon, Z. Cao, and K. Rahad, "Writing JML
specifications using Java 8 streams",
University of Texas at El Paso, vol. 500, pp.
79968-0518, 2016.

[6] K. Louzaoui and K. Benlhachmi, "An Optimal
Model of Conformity Constraints of
Inheritance for an Object Oriented
Specification", In International Journal of
Tomography and simulation, Vol. 30, No. 3,
pp. 86-102, 2017.

[7] K. Louzaoui and K. Benlhachmi, "A
Robustness Testing Approach for an Object
Oriented Model", Journal of Computers, vol.
12, no. 4, pp. 335-353, 2017.

[8] K. Louzaoui, "An Optimal Constraint Model of
Robustness Behavior for Object Oriented
Programs", 2018 International Conference on
Electronics, Control, Optimization and
Computer Science (ICECOCS), Kenitra, 2018,
pp. 1-6.

[9] K. Benlhachmi and M. Benattou, "Similar
Behaviours and Conformity Testing in
Inheritance for an Object Oriented Model", In
IADIS International Journal on Computer
Science and Information Systems, Vol. 9, issue
1,pp. 30-42, 2014.

[10] V. Rahli, D. Guaspari, M. Bickford and R.
Constable, "EventML: Specification,
verification, and implementation of crash-
tolerant state machine replication
systems", Science of Computer Programming,
vol. 148, pp. 26-48, 2017.

[11] Y. Cheon and C. E. Rubio-Medrano. "Random
Test Data Generation for Java Classes
Annotated with JML Specifications". In
Proceedings of the 2007 International
Conference on Software Engineering Research
and Practice Las Vegas, Nevada, vol 2,June
2007, pp. 385–392.

[12] Y. Cheon, A. Cortes, M. Ceberio, and G. T.
Leavens, "Integrating Random Testing with
Constraints for Improved Efficiency and
Diversity". In Proceedings of SEKE 2008, The
20-th International Conference on Software
Engineering and Knowledge Engineering, San
Francisco, CA, July 2008, pp. 861–866.

[13] C. Mao, L. Xiao, X. Yu and J. Chen,
"Adapting ant colony optimization to generate
test data for software structural testing", Swarm
and Evolutionary Computation, vol. 20, pp. 23-
36, 2015.

[14] R. L. Bai and C. P. Indumathi, "Test data
generation using bi-objective function", 2016
International Conference on Advanced
Communication Control and Computing
Technologies (ICACCCT), Ramanathapuram,
2016, pp. 650-654.

[15] L. Hanh, N. Binh and K. Tung, "A Novel
Fitness function of metaheuristic algorithms
for test data generation for simulink models
based on mutation analysis", Journal of
Systems and Software, vol. 120, pp. 17-30,
2016.

[16] M. Singh, V. M. Srivastava, K. Gaurav and P.
K. Gupta, "Automatic test data generation
based on multi-objective ant lion optimization
algorithm", 2017 Pattern Recognition
Association of South Africa and Robotics and
Mechatronics (PRASA-RobMech),
Bloemfontein, 2017, pp. 168-174.

[17] B.H. Liskov and J.M. WING, "Behavioral
subtyping using invariants and constraints",
Technical Report CMU CS-99-156, School of
Computer Science, Carnegie Mellon
University, July 1999.

