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ABSTRACT 

In recent years, the pace and scale of the development of minerals and energy resources in mountainous 
areas has been increasing, so various ground and underground structures are being built and operated. 
Increasing anthropogenic load on the biosphere and technosphere leads to the intensification of natural and 
man-made disasters. In addition, the occurrence of a catastrophe of the first type can provoke the 
manifestation of a catastrophe of the second type, and vice versa. Using ideas about catastrophic 
phenomena and the dynamics of their development, rock mechanics and methods of mathematical and 
computer modeling, it became possible to apply theoretical knowledge in practice. The issues of 
forecasting, preventing and minimizing events leading to loss of life and economic damage are among the 
most relevant today [1].  
The article shows a study of the stress-strain state of an underground tunnel, which is affected by the 
volumetric weight of a rock mass. Deformation and displacement of mountain ranges can lead to the loss of 
stability of the technical structure and to its collapse, and thus cause a man-made disaster. The analytical 
and numerical solution of the problem will allow engineers and specialists in the field of mining to improve 
the safety and reliability of underground structures and take preventive measures to prevent the risk of their 
destruction. In this article, formulas are obtained for determining the components of stresses, deformations 
and displacements in an untouched rock mass, as well as on the contour of a constructed underground 
structure at bifurcation points. With their help, zones of high concentration of stresses, deformations and 
displacements and changes in the nature of their distribution are identified, which signal a critical state of 
the system, in which it can lose stability. As an example, an underground working of an elliptical profile is 
considered. 

Keywords: Stress, Deformation, Collapse, Bifurcation, Catastrophe. 

 
1. INTRODUCTION 
 

 

Complex dynamic mechanical, 
ecological, technical and other systems can be in 
both unstable and stable states. The study of 
instability problems is carried out with the help of 
the theory of bifurcations and catastrophes. 

The issues of modeling natural disasters 
are considered in the work of scientists S.L. 
Castillo Daza and F. Naranjo Mayorga [1]. 
Problems of the theory of stability and 
bifurcations of various systems are reflected in the 
works of G. Whitney and A. Poincaré, A. 

Lyapunov [3]. Then, in their works, Gilmore R. 
[4] and Zhang W. [5,6] carried out a deep 
classification of catastrophe and bifurcation 
models. The risks of disasters lead to various 
material and socio-economic damage, so the study 
of the precursors of their occurrence is an 
important task [7]. 

Arnold V.I. gives the following 
definition: “Disasters are called spasmodic 
changes that occur in the form of a sudden 
response of the system 

to a smooth change in external conditions” [2]. 
In unstable systems, there is such a 

phenomenon as bifurcation. 

Bifurcation is a process when a stable 
equilibrium of a system can become unstable when 
parameters change, and a continuous process can 



Journal of Theoretical and Applied Information Technology 
31st July 2022. Vol.100. No 14 
© 2022 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
5377 

 

become discontinuous over time [8]. In this case, a 
critical change in the system can occur with minor 
changes in external influences. Then the system at 
the bifurcation point continues to develop not along 
the old trajectory, but jumps over to a new 
trajectory far from equilibrium, and then this 
process can be repeated. 

Bifurcations are classified as soft and hard 
[9]. 

A soft bifurcation is a transition from one 
stable state to another, while the new stable state 
does not have significant qualitative differences 
from the original one. 

A rigid bifurcation is a bifurcation, as a 
result of which the system acquires a qualitatively 
new stable state, not similar to the original one. It is 
the rigid bifurcations that formed the basis of the 
theory of catastrophes. 

Seismotectonic activity of the rock mass, 
anisotropy and heterogeneity of the properties of 
the environment, the influence of other 
geomechanical factors cause spatial changes in 
deformations and stresses in underground and 
surface engineering structures. Of great importance 
in science and technology are the properties of 
reliability and stability of 

devices and structures under the conditions 
of man-made disasters, in which they can 
experience destruction deformations [10].  

When designing and building structures, 
ensuring their stability is the main task, therefore, it 
is necessary to conduct a quantitative and 
qualitative assessment of the state of the mountain 
range. The use of graphic design tools and a 
package of applied programs during calculations 
will increase the accuracy of calculations and 
provide convenient visualization of the results. 

 
2. STATEMENT OF THE PROBLEM AND 

METHODS FOR ITS SOLUTION 
 

Formulation of the problem. 
Let an underground tunnel with a non-

circular profile be built in an untouched mountain 
range. It is required to find the components of the 
stress and strain vector in the rock mass in the 
vicinity of such a structure, under which its stability 
is lost, which can lead to a man-made disaster. 

The stress state of an elastic plane with a 
hole consists of the components of the main stresses 
of a rock mass without a hole, and the components 
of additional stresses due to the presence of a hole. 
Then the stress functions can be represented as a 
sum about formula (1): 

  

 ),z()z()z(),z()z()z( 000000  

)z,z(Р)z,z(Р)z,z(Р 000   (1) 

 

where )z,z(Р),z(),z( 000  - stress functions of 

the main characterizing the untouched massif; 

)z,z(Р),z(),z( 000000   - stress functions of the 

additional state caused by the presence of the 
structure, and   z,z the solution of the well-

known Helmholtz equation of the form by (2) [11]: 
 

02  PcP    (2) 

 

where  - Laplace operator, value 2с  - is the 
square of the modulus of the wave vector. 

The Helmholtz equation is an elliptic 
partial differential equation that is solved using 
numerical methods of equations of mathematical 
physics [12]. 
 Let us first consider the state of an 
untouched rock mass, in which an underground 
structure has not yet been laid, and then we will 
move 

on to the problem of determining the components of 
stresses and displacements in the vicinity of a 
horizontal construction. 
 Let us place the origin of the Cartesian 
coordinate system in the center of the proposed 
underground structure and write down the equations 
of the plane theory of elasticity. We represent the 
equilibrium equations for the initial main untouched 
state of the rock mass in the form of expression (3):   
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normal and shear stresses of the untouched massif. 
Hooke's law relates the stress and strain of 

an elastic medium according to formula (4): 
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where 0
yx

0
y

0
x γ,ε,ε  zero strain components in the 

untouched massif, G is the shear modulus, and   is 
Poisson's ratio. 

Deformations are related to the displacement 
vector components by formulas (5): 
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According to the hypothesis of A.N. 

Dinnik, in an untouched rock mass, a point can 
move vertically down [13], i by formula (6): 
  

00 u , 00     (6) 
 

Then from formulas (4) we obtain the 
following expression for stress according to 
formula (7): 

 

 
 -σ0

y    (7) 
 

where  - specific (volumetric) weight of 

a rock mass, H - depth of the considered array 
point. 

Now the main stress functions will look 
like this (8):  
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where 






1

 - side pressure coefficient, ,  

stress distribution characteristics at infinity, ),z(0
)z(0  Kolosov-Muskhelishvili stress functions 

for rock massif [14].  
Let a horizontal unfixed tunnel of non-

circular section be laid in a homogeneous elastic 
isotropic rock mass at a depth H from the day 
surface. Such an array is modeled under plane 
deformation conditions as an infinite isotropic 
elastic weightless plane with asymmetric stress 
tensors. It is weakened by a hole of a given shape in 
the plane of the complex variable z=x+iy and free 
from external forces and moments, as shown in the 
design Figure 1.  

 

Figure 1: Calculation scheme of the problem 

Using the mapping function (9), we 
conformally map the entire infinite region outside 
the hole onto the exterior of the unit circle in the 
plane of the complex variable  ipei  :  

                                                
)]([)(   Rz   (9) 

 
under condition (10): 

 
                      1+ 0)(   at 1               (10) 

Where 

n
n

N

n i   )()(
1

 ( constR,, nn  ),  - a 

small numerical parameter that is in the interval 
11    and characterizes the deviation of a 

given hole from a circular one. 
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 For an elliptical hole and the mapping 
function for R=(a+b)/2 and ε=(a-b)/(a+b) (-1≤ε≤ 1) 
will look like formula (11): 
 For an elliptical hole 0)( , and the 

mapping function for R=(a+b)/2 and ε=(a-b)/(a+b) 
(-1≤ε≤ 1) will look like formula (11): 

 

)(R)(z 1    (11) 

 
To solve the problem in the displayed area, 

the following conditions are set: 

1. Initial conditions at t=0 according to 
formula (12): 

  0,0,0  n
p

nn
p               (12) 

2. Border conditions: 
- at infinity, forces equal to the forces 

according to formula (13) act: 

 0 
  ,H,H   

(13) 
 

- on the contour of a unit circle at 
according to the formula (14): 
 

 0   i     (14) 

 

where ,,,, 
   - stress components at 

infinity,   ,  - stress components on the 

circuit. 
Then the main stress functions will take 

the following form according to formula (15): 
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and the functions of additional stresses are found 
from the boundary conditions and, according to the 
Laurent theorem, can be represented by uniformly 
convergent power series according to formula (16): 
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where   cRn  modified Bessel function of the 

second kind of the nth order of the imaginary 
argument (McDonald function) [13]. 

Potentials ),(),(),(    outside the 

contour of the hole will be sought in the form of 
series in powers of the small parameter ε according 
to formula (17) and we will restrict ourselves to the 
zeroth and first approximations: 
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We expand the functions included in the 

boundary conditions into functional series in 
powers of a small parameter and compare the 
expressions with each other for its equal powers. 
For expansion, we also use the following well-
known power series according to formula (18): 
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After all the necessary transformations, we 

obtain the desired expressions (19):      
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To find the derivatives of the function, the 

following well-known recursive formulas (20) were 
used: 
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Equating the coefficients at the same powers 

n  (n=1,3,-1) from the first condition, at and from 
2sin  and 2cos the second condition, we obtain a 

system of algebraic equations for determining the 
unknown coefficients. Having solved it, we find 
that the unknown coefficients )0(

2
)0(

3
)0(

1
)0(

1 ,,, pbba  
are 

equal to expressions (21): 
 

,
1

/
)0(

1 F
a




   2)0(
1b ,  /)0(

3 1

1






F

F
b ,   

 cRcF

F
ip

1

/
)0(

2 1 



       (21) 

 
where the notation 
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Let us now determine the stress, 

displacement, and rotation components in the 
zeroth approximation using the following 
substitution (22): 
 

,
)(Н

Г
4

1  


2

)1(,  


Н
Г

    (22) 
 

- for the main stress state at zero approximation of 
stress and displacement, we find according to 
formulas (23): 
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- for an additional stress state at zero 
approximation, the values of stresses and 

displacements on the contour of a unit circle at ρ=1 
can be found using formulas (24): 
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- the components of the main stresses and 
displacements at the first approximation on the 
working contour at ρ=1 can be found by formulas 
(25): 
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Let us calculate and determine the 
components of stresses, displacements and rotations 
in the first approximation on the working contour at 
ρ=1 using formulas (26): 
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Stresses, displacements and rotation for the 

first approximation are found as the sum of the 
main (24) and additional (26). 

The total stresses, displacements and 
rotations for a loose elliptical working will be 

obtained as the sum of the zero and first 
approximations (main and additional). 

 
3. RESULT AND DISCUSSION 
  

On the basis of the obtained theoretical 
formulas, we will carry out numerical calculations 
of stresses, deformations and displacements in the 
siltstone massif around an unfixed and fixed 
mountain structure of a transverse elliptical shape.  

The initial calculated data for such a rock 

will be as follows: ,МРа,Е 1010620   ν=0.20, 

α=0.726, 100940   ondsec. , λ=0.25, сR=3, 

Macdonald functions of the second kind are: 
,.K 034700   ,.K 040201   ,.K 061502 
,.K 122203  ,.K 305904  ,.K 937805 
..K 431836   

 The polar angle is taken in the interval 
 20  .  
Table 1 shows the values of the main 

stresses of the intact rock mass in the zero and first 
approximation, calculated by formulas (231) and 
(25) in dimensionless units. 
 

 
Table 1: The main stresses of the intact rock mass in the zero and first approximation. 

𝜃, 
grad −

𝜎ఘ
(଴)଴

𝛾Н
 −

𝜎ఘ
(ଵ)଴

𝛾Н
 −

𝜎ఏ
(଴)଴

𝛾Н
 −

𝜎ఏ
(ଵ)଴

𝛾Н
 −

𝜏ఘఏ
(଴)଴

𝛾Н
 −

𝜏ఘఏ
(ଵ)଴

𝛾Н
 −

𝜏ఏఘ
(଴)଴

𝛾Н
 −

𝜏ఏఘ
(ଵ)଴

𝛾Н
 

0 0.250 0.000 1.000 0.000 0.000 0.000 0.000 0.000 
15 0.300 0.188 0.949 -0.188 0.188 0.325 0.188 0.325 
30 0.438 0.563 0.813 -0.563 0.325 0.325 0.325 0.325 
45 0.625 0.750 0.625 -0.750 0.375 0.000 0.375 0.000 
60 0.813 0.563 0.438 -0.563 0.325 -0.325 0.325 -0.325 
75 0.949 0.188 0.302 -0.188 0.188 -0.325 0.188 -0.325 
90 1.000 0.000 0.250 0.000 0.000 0.000 0.000 0.000 

105 0.949 0.188 0.302 -0.188 -0.188 0.325 -0.188 0.325 
120 0.812 0.563 0.438 -0.563 -0.325 0.325 -0.325 0.325 
135 0.625 0.750 0.625 -0.750 -0.375 0.000 -0.375 0.000 
150 0.438 0.563 0.813 -0.563 -0.325 -0.325 -0.325 -0.325 
165 0.300 0.188 0.949 -0.188 -0.188 -0.325 -0.188 -0.325 
180 0.250 0.000 1.000 0.000 0.000 0.000 0.000 0.000 

 

Figure 2 shows the main radial stresses in 
the zeroth and first approximation, from which it 
can be seen that the radial stresses in the zeroth 
approximation are symmetrical about the 
coordinate axes and the rock mass experiences only 

compression. The radial stress at the lateral points 
of the contour is 4 times less than the stresses at the 
upper points, and the circumferential stresses, on 
the contrary, are less. 
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Figure 2: Basic radial stresses in zero and first approximation 

 
Figure 3 shows the code for the plotting program. 
 

 
 

Figure 3: Plotting program code [http://yotx.ru/ ] 
 
Figure 4 shows the main circumferential 

stresses in the zero and first approximation, from 
which it can be seen that they are symmetrical 

about the coordinate axes and the rock mass 
experiences only compression. 
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Figure 4: Basic circumferential stresses in zero and first approximation 

 
In the first approximation, the patterns of 

distribution of radial and circumferential stresses 
coincide, but instead of compression, the massif 
experiences stretching. At oooо ,,, 270180900 , the 

stress values are equal to zero, and at 
oooо ,,, 31522513545 , the maximum values are 

obtained. 
Figure 5 shows the main shear stresses in 

the zero and first approximation, from which it can 

be seen that they are symmetrical about the axis of 
the bisector of the first quarter. In this case, in the 
first and third quarters, the array experiences only 
compression, and in the rest of the area, tension. 
Shear stresses are symmetrical with respect to the 
coordinate axes, and the array alternately 
experiences compression and and stretching. 

 

 
 

 
 

Figure 5: Basic shear stresses in zero and first approximation 
 
 Let us consider the distribution of 
additional stresses in the zero and first 
approximation in the rock mass around the loose 

elliptical working. Table 2 shows the values of 
additional stresses calculated by formulas (22) and 
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(24) in dimensionless units. 
 

Table 2: Additional stresses in the rock mass around the loose elliptical working. 

𝜃, 
grad −

𝜎ఘ
(଴)଴଴

𝛾Н
 −

𝜎ఘ
(ଵ)଴଴

𝛾Н
 −

𝜎ఏ
(଴)଴଴

𝛾Н
 −

𝜎ఏ
(ଵ)଴଴

𝛾Н
 −

𝜏ఘఏ
(଴)଴଴

𝛾Н
 −

𝜏ఘఏ
(ଵ)଴଴

𝛾Н
 −

𝜏ఏఘ
(଴)଴଴

𝛾Н
 −

𝜏ఏఘ
(ଵ)଴଴

𝛾Н
 

0 -0.250 0.000 1.359 2.624 0.000 0.000 0.000 0.000 
15 -0.302 -0.188 1.261 2.177 -0.1885 -0.325 0.261 -0.543 
30 -0.434 -0.563 0.992 1.099 -0.3258 -0.325 0.452 0.005 
45 -0.625 -0.750 0.625 -0.025 -0.375 0.000 0.522 1.495 
60 -0.813 -0.563 0.258 -0.749 -0.325 0.325 0.452 2.585 
75 -0.949 -0.188 -0.011 -1.027 -0.188 0.325 0.261 2.038 
90 -1.000 0.000 -0.109 -1.074 0.000 0.000 0.000 0.000 

105 -0.949 -0.188 -0.011 -1.027 0.188 -0.325 -0.261 -2.038 
120 -0.813 -0.563 0.258 -0.749 0.325 -0.325 -0.452 -2.585 
135 -0.625 -0.750 0.625 -0.025 0.375 0.000 -0.522 -1.495 
150 -0.437 -0.563 0.992 1.099 0.325 0.325 -0.452 -0.005 
165 -0.301 -0.188 1.261 2.177 0.188 0.325 -0.261 0.5437 
180 -0.250 0.000 1.359 2.624 0.000 0.000 0.000 0.000 

 
Figure 6 shows additional radial stresses 

in zero and first approximation. Figure 6 shows 
that the pattern of distribution of radial stresses 

coincides with the picture for the main field, only 
the array is under compression. 

Figure 6: Additional stresses in zero and first approximation 
 
Figure 7 shows additional hoop stresses 

in the zero and first approximation. 
Circumferential radial stresses, in contrast to 
radial ones, are heterogeneous: in the upper part 
of the contour, an area of tensile stresses is 
found, and in the rest of the array is under 

compression. The distribution along the contour 
is uneven, and at the side points of the contour, 
the voltage is several times greater than at the 
upper points. 

Figure 8 shows additional shear stresses 
in zero and first approximation. 
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Figure 7: Additional circumferential stresses in zero and first approximation 

  

 
Figure 8: Additional shear stresses in zero and first approximation 

 
The qualitative picture of the distribution of 

the main and additional shear stresses is the same, 
but differs quantitatively. 
 
4. CONCLUSION 
  
 The obtained analytical formulas for 
calculating stresses in the initial elastic state and in 
the state due to the presence of an underground 
structure make it possible to determine the zones of 
increased concentration of impact on the structure.  

Such changes occur at the critical points of 
the bifurcation, and then the distribution law of the 

quantities under study changes. In practice, this will 
allow engineers to identify the risks of collapse of 
underground structures and take preventive 
measures to reduce a possible man-made disaster. 
Such measures will help to avoid human losses and 
reduce the material from the occurrence of 
emergencies. 

The advantage of this work lies in the fact 
that, unlike previously published works in this area 
of research, the authors obtained an analytical and 
numerical solution to the problem. In addition, a 
graphic representation of the stress distribution on 
the contour of an underground structure shows the 



Journal of Theoretical and Applied Information Technology 
31st July 2022. Vol.100. No 14 
© 2022 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
5386 

 

critical areas of bifurcations in which the structure 
can become unstable.  

The consequence of such a process is 
material damage and human losses if workers were 
underground at that time. Identification of the risks 
of possible catastrophic conditions of the 
underground structure will allow taking preventive 
measures to reduce such losses and damage.  
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