TVERSKY INDEXIVE CRAMER–SHOUP CRYPTOGRAPHY BASED DEEP STRUCTURED BELIEF NEURAL LEARNING FOR SECURED ROUTING IN MANET

Mrs.R.NAVAMANI¹, Dr.N.ELAMATHI²

¹Ph.D Research Scholar (PT), Department of Computer Science, Periyar University, Salem, India
²Assistant Professor & Head, Department of Computer Science, Trinity College For Women, Namakkal, India
E-mail: ¹navamanikathir@gmail.com, ²kavimathipriyan@gmail.com

ABSTRACT

A secure routing is a significant concern due to its self-organizing and cooperative nature, capable of independent process, rapid changing topologies, limited physical security and so on. With the routing being a critical aspect for MANETs, existing routing protocols are not sufficient for security constraints. In this paper, a novel routing algorithm called a Tversky Indexive Cramer–Shoup Cryptography based Deep Structured Belief Neural Learning (TICSC-DSBNL) technique is introduced with security and higher data confidentiality in MANET. The TICSC-DSBNL technique comprises one input layer, three hidden layers and one output layer. The number of mobile nodes is taken as input in the input layer and sends the mobile node to the hidden layer 1. For every mobile node in the hidden layer 1, the trust value is calculated to identify the node as normal node or malicious node using Tversky Similarity index. The index is used to find the similarity between mobile nodes for classifying the node as normal node or malicious node. After that, the normal nodes are given to the hidden layer 2. In that layer, a route path between the nodes gets established and selects the shortest route path. In third hidden layer, the Cramer–Shoup cryptosystem is applied for encryption and decryption to perform secure routing with higher confidentiality in MANET. Simulation is conducted in with different performance metrics such as packet delivery ratio, packet drop rate, and delay, throughput, and data confidentiality rate with respect to the number of data packets. The discussed results indicates that the proposed TICSC-DSBNL technique improves the performance of secure routing with higher delivery ratio, data confidentiality with lesser delay as well as packet drop than the state-of-the-art methods.

Keywords: MANET, Secure Routing, Deep Structured Belief Neural Learning, Tversky Similarity Index, Cramer–Shoup Cryptosystem.

1. INTRODUCTION

A MANET is a dynamic and infrastructure-less networks includes a set of wireless nodes that linked with one another through the wireless connection. Due to the dynamic nature, security is an important concern in MANET since the network is vulnerable to several attacks during the communication. Therefore an efficient technique is required to improve the security as well as enhance the higher confidentiality.

A Cluster-based Key Management Scheme for Secured Multipath Routing (CKMSMPR) scheme was developed in [1] to enhance the secure data transmission using the Diffie-Hellman method of key exchange and elliptic curve cryptography. But the cryptography technique was more complex for improving security and data confidentiality.

An optimal Energy-Efficient Routing Protocol (EERP) with the signcryption (optimal EERP-signcryption) algorithm was developed in [2] for secure and reliable data transmission. The EERP was developed for clustering the mobile nodes. Then, the Modified Discrete Particle Swarm Optimization (MDPSO) was applied for CH selection. For enhanced the security of data transmission, a signcryption algorithm was introduced. The designed algorithm enhances overall efficiency and confidentiality but the multi-key encryption technique was not applied to achieve reliable security in the MANET.
A Multiplicative Diffie Hellman key exchange (MDKE) algorithm was introduced in [3] for enhancing the security. But the algorithm failed to concentrate on trust evaluation to further improve the MANE security. A trust-based secure and energy-aware (T-SEA) routing protocol was designed in [4] for detection of black/gray hole nodes. But the cryptographic technique was not applied to enhance the security.

An Evolutionary Self Self-Cooperative Trust (ESCT) technique was developed in [5] to prevent the different routing disruption attacks. The designed technique minimizes the delay but the packet loss rate was not minimized. An efficient Random Repeat Trust Computational method was designed in [6] for enhancing the security based on various trust evaluation. But the method failed to achieve higher delivery ratio.

A novel Privacy-Preserving History-Based (PPHB) routing method was introduced in [7] to increase the message delivery and minimize the drop. But the higher throughput was not achieved. A novel trust and fuzzy cluster-based dynamic secure routing algorithm were developed in [8] for enhancing the security. The algorithm increases the packet delivery and minimized the delay but it failed to perform the effective communication and coordination among the nodes.

A simple dual-key method was developed in [9] using fully homomorphic encryption for improving the privacy of data transmission. But the method failed to improve data confidentiality. A novel trust-based energy-aware routing (TEAR) method was introduced in [10] for providing the efficient security of data transmission. However, the performance of delay was not reduced.

The major contribution of the TICSC-DSBNL technique is summarized as given below,

- To improve the security of data routing in MANET, a TICSC-DSBNL technique is introduced based on Cramer–Shoup Cryptography. The technique is based on Secure Communication based pseudo-randomness key generation is performed to generate the private and public key for each normal node in the network. The sender node encrypts the data packets and sends them to the receiver. The authorized receiver gets the original data through the decryption process. This process increases the security of data delivery and enhances confidentiality.
- The extensive simulation is carried out to measure the performance of the TICSC-DSBNL technique and other related approaches. The simulation result illustrates that our TICSC-DSBNL technique provides improved performance.

1.1 Organization of the paper

The structure of the article is organized as follows. Section 2 briefly describes the proposed methodology TICSC-DSBNL for secure routing in MANET. Section 3 provides information on the simulation settings. In section 4, the simulation outcomes and comparative analysis are presented using various performance metrics. In section 5, the related works of secure routing are discussed. Finally, section 6 concludes the paper.

Methodology

With the number of mobile nodes deployed in the MANET, a secure routing is a new paradigm of wireless communication due to its high dynamics. A MANET is an autonomous system of set of mobile routers and nodes which are connected by wireless links. Routing security is essential and it needed to improve the communication and protection of data from the attacks. Based on this motivation, the deep learning-based technique called TICSC-DSBNL technique is introduced in this paper.

The MANET is organized in a directed graph $g = (v, e)$, where ‘v’ represents a vertex i.e. mobile nodes $\{Mn_1, Mn_2, Mn_3, \ldots Mn_n\}$ distributed in a squared area $m \times m$ and ‘e’ represents the link between the nodes within the communication range ‘r_c’. The wireless network begins the source node ‘Sn’ and transmits data packets $p_1, p_2, p_3 \ldots p_m$ to the destination node ‘Dn’ via the neighboring node ‘Nn’ in a secure manner. The source node finds the neighboring node which having maximum trust value.
The Tversky similarity index is applied to find the normal or malicious node based on the trust value. With the selected normal node, the secured data transmission is performed using Cramer–Shoup cryptography.

The deep structured belief neural learning consists of only three layers such as one input layer, three hidden layers, and one output layer.

Where, \(Q(t) \) indicates the activity of the neuron, \(M_n(t) \) denotes an input i.e. number of mobile nodes \(M_{n1}, M_{n2}, M_{n3}, ..., M_{nn} \), \(k_1 \) indicates a weight to strengthen the connections between the layers, \(d \) denotes a bias and it simply stores the integer value is 1. Then the input is moved into the first hidden layer. In the first hidden layer, the node trust value is calculated to find the normal or malicious node. The trust values of the mobile nodes are measured as the ratio of a number of data packets correctly forwarded by the individual node to the ratio of a number of data packets forwarded. Therefore, the trust is calculated as given below,

\[
T_{Mn} = \left[\frac{\text{Number of packets correctly forwarded}}{n} \right] \tag{2}
\]

Where, \(T_{Mn} \) represents a trust of the mobile nodes, \(n \) symbolizes a number of data packets forwarded. Based on the trust value, the normal or malicious nodes are determined based on the Tversky index.

The Tversky correlative index is used to measure the similarity between the trust value of the mobile nodes and the trust value of the normal nodes.
node. Therefore, the similarity index is measured as given below,

$$ R = \frac{T_{Mn} \cap T_N}{p(T_{Mn} \Delta T_N) + q(T_{Mn} \cap T_N)} $$

(3)

From (4), ‘R’ denotes a similarity coefficient, T_{Mn} denotes a trust value of the mobile nodes, T_N denotes a trust value of the normal node, $T_{Mn} \cap T_N$ denotes a mutual dependence between the nodes trust value, $T_{Mn} \Delta T_N$ indicates a variance between the node trust value, from (3) p and q denotes parameters of the Tversky index ($u, v \geq 0$). The coefficient provides the output ranges value between 0 or 1. If both the trust values are matched, then the node is said to a normal node. Otherwise, the mobile node is said to be malicious. Then the normal nodes are forwards to a hidden layer 2 for determining the route paths.

- **Route discovery**

After classifying the normal or malicious nodes, the route paths are established between the normal nodes for secure data transmission using two control messages namely route request (req) and route reply (rep).

$$ S_n \xrightarrow{\text{req}} \sum_{i=1}^{n} (N_{ni}) \xrightarrow{\text{req}} D_n $$

(4)

Where, S_n is the source node, req indicates a route request, N_{ni} denotes a neighboring node, D_n is the destination node. Then the receiver node sent a reply to the source node through the intermediate neighboring nodes.

$$ S_n \xleftarrow{\text{rep}} \sum_{i=1}^{n} (N_{ni}) \xleftarrow{\text{rep}} D_n $$

(5)

Where, ‘rep’ denotes a reply message, D_n denotes a destination, N_{ni} symbolizes neighboring nodes, S_n denotes a source node. Based on the control message distribution, multiple paths are established between source and destination. Among the multiple paths, the shortest path is selected for secure routing in MANET with minimum delay.

- **Cramer–Shoup system for secure routing in MANET.**

Finally, the secure data transmission between the nodes is performed using Cramer–Shoup cryptosystem in the third hidden layer. A Cramer–Shoup cryptography is an asymmetric key encryption algorithm and it efficient for protecting the data from the attack than the standard cryptographic techniques. The cryptography algorithm comprises three major processes namely key generation, encryption, and decryption.

- **Time-based pseudo-randomness key generation**

The proposed Cramer–Shoup system performs the key pair generation to perform encryption and decryption of data packets before the data transmission. The proposed cryptosystem performs the time-based pseudo-randomness key generation for each mobile node in the routing process. It is a time based key pair generation. It means that the generated private and public keys of mobile nodes are valid only for a particular time. Once the time is exhausted, keys are disabled and the algorithm creates a new key for the next session. This helps to avoid the attacks for hacking the keys during the data communication between the nodes.

Let us consider the cyclic group ‘g’ and randomly chose the two numbers $(a, b) \in g$ and the five pseudo-random values $(c, e, f, h, p) \in Z$ where Z denotes an integer value. Then the key generation is formulated as given below,

$$ W = a^c b^e $$

(6)

$$ B = a^f b^h $$

(7)

$$ Y = a^p $$

(8)

From (6), (7), (8), the private key of the node is $K_r = (c, e, f, h, p)$ and the public key of the node is $K_p = (a, b, W, B, Y)$. The public keys are distributed and the private key of the node is kept secret. These generated key pair is valid only for a particular time.

- **Encryption**

After the key generation, the proposed technique performs encryption before the data transmission. Encryption is the process of converting the original data i.e. plaintext into ciphertext. The proposed cryptography is an asymmetric key algorithm it means that the public key used for encryption and the private key used for decryption. In other words, the different keys (i.e. related pair of keys) are used for encryption as well as decryption. This helps to improve the security of data packet transmission from source to destination and reduce packet loss.
Figure 3 Block Diagram of Encryption

Figure 3 illustrates the block diagram of encryption to improve the secure data transmission from sender to receiver. The sender to node performs encryption with the receiver public key.

Let us consider the given input message 'm' ∈ g and select the random value 'r' such that:

\[
\begin{align*}
v_1 &= a^r, \quad v_2 = b^r, \\
t &= Y^r m \quad \varphi &= W^r B^r \delta \\
\delta &= H(v_1, v_2, t)
\end{align*}
\] (9)

Where, \(H\) denotes a one-way hash function, \(a, b, W, B, Y\) denotes a public key of the receiver. Then the ciphertext \((T)\) of the given message 'm' is given below,

\[
T = (v_1, v_2, t, \varphi)
\] (10)

Then the ciphertext of the data is sent to the receiver node.

Decryption

Finally, the proposed technique performs the decryption at the receiver end to obtain the plaintext using the receiver's private key.

\[
\beta = H(v_1, v_2, t)
\] (11)

Then the algorithm verifies that \(v_1^e, v_2^e (v_1', v_2')^β\). If it is satisfied, then the receiver decrypts the data otherwise it is rejected. The decryption is performed as given below,

\[
m = \frac{t}{v_1^p}
\] (12)

Where, \(m\) denotes a plaintext, \(t\) denotes a ciphertext, \('p'\) denotes a private key of receiver. In this way, secure communication between sender and receiver is obtained. The algorithmic process of the proposed technique is described as given below,

Algorithm 1: Tversky Indexive Cramer–Shoup Cryptography based deep structured belief neural learning

Input: Number of mobile nodes \(M_{n_1}, M_{n_2}, M_{n_3}, ..., M_{n_n}\), data packets \(p_1, p_2, p_3, ..., p_m\)

Output: Increase secure routing

Begin
1. Collect the number of mobile nodes \(M_{n_1}, M_{n_2}, M_{n_3}, ..., M_{n_n}\) at input layer
2. for each \(M_{n_i}\)
3. Calculate trust value \(T_{M_{n_i}}\)
4. Measure the similarity \(R\)
5. If \((R = 1)\) then
6. Node is said to be a normal
7. Else
8. Node is said to be a malicious
9. End if
10. End for
// hidden layer 2 (route discovery)
11. For each normal node
12. Establishes the route paths based on \(req_r\) and route reply \(rep_r\)
13. End for
// hidden layer 3 (secure routing)
14. For each mobile node \(M_{n_i}\)
15. The base station generates a pair of keys \((K_b, K_r)\)
16. End for
// Encryption
17. For each data packet \(p_i\)
18. Encrypt the data \(T = (v_1, v_2, t, \varphi)\) using receiver public key \(K_b\)
19. Source node sends the ciphertext to the receiver node
20. End for

// Decryption
21. For each ciphertext
22. If ($\phi = v_1^c, v_2^e (v_1^y, v_2^h)$) then
23. The receiver performs decryption and obtains the original data '$m'.
24. Else if
25. Decryption is rejected
26. End if
27. End for

Algorithm 1 given above illustrates the step by step process of Tversky Indexive Cramer–Shoup Cryptography based deep structured belief neural learning for secure routing in MANET. In the input layer, the numbers of nodes are taken as input. In the first hidden layer, the trust value of each mobile node is measured. In that layer, the similarities between the nodes are measured for finding the normal or malicious node. With the normal nodes, the route paths are established in the second hidden layer. In the third hidden layer, the Cramer–Shoup Cryptography is applied to perform the secure data communication between sender and receiver. Finally, the secure data transmission is performed at the output layer. This helps to improve the delivery ratio and minimizes the packet drop.

3. SIMULATION SETUP

In this section, the simulation of the TICSC-DSBNL technique and existing methods namely CKMSMPR [1], Optimal EERP-Signcryption [2] are implemented using the NS2.34 network simulator. In order to perform the simulation, 500 mobile nodes are randomly deployed in a squared area $(1100 \text{ m} \times 1100 \text{ m})$ in MANET. A Random Waypoint model is used as a mobility model for secured routing. The mobile nodes are moved with a speed of 0 to 20m/sec. The simulation time is set as 300 sec. The Dynamic Source Routing (DSR) protocol is implemented for secure routing in MANET. The simulation parameters with the values are listed in Table 1.

<table>
<thead>
<tr>
<th>Simulation parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Simulator</td>
<td>NS2.34</td>
</tr>
<tr>
<td>Simulation area</td>
<td>$1100 \text{ m} \times 1100 \text{ m}$</td>
</tr>
<tr>
<td>Number of mobile nodes</td>
<td>50,100,150,200,250,300,350,400,450,500</td>
</tr>
<tr>
<td>Number of data packets</td>
<td>25,50,75,100,125,150,175,200,225,250</td>
</tr>
<tr>
<td>Mobility model</td>
<td>Random Waypoint model</td>
</tr>
<tr>
<td>Nodes speed</td>
<td>0 – 20 m/s</td>
</tr>
<tr>
<td>Simulation time</td>
<td>300 sec</td>
</tr>
<tr>
<td>Routing Protocol</td>
<td>DSR</td>
</tr>
<tr>
<td>Number of runs</td>
<td>10</td>
</tr>
</tbody>
</table>

4. RESULTS AND DISCUSSION

Performance analysis of the TICSC-DSBNL technique and the conventional routing methods namely CKMSMPR [1], Optimal EERP-Signcryption [2] are discussed with different metrics such as packet delivery ratio, packet drop rate, delay, throughput, and data confidentiality rate. The parameters are described as given below,

Packet delivery ratio: It is defined as the number of data packets that are successfully delivered at the destination to the total number of (i.e. no. of) data packets. The packet delivery ratio is mathematically formulated as given below,

$$Ratio_{PD} = \left(\frac{\text{No of packets received}}{\text{No of packets}} \right) \times 100 \quad (13)$$

Where, $Ratio_{PD}$ symbolizes the packet delivery ratio is measured in the unit of percentage (%).

Packet drop rate: It is measured as the ratio of number of data packets dropped during the transmission from the total number of data packets. The formula for calculating the packet drop rate is given below,

$$Rate_{PD} = \left(\frac{\text{No of packets dropped}}{\text{No of packets}} \right) \times 100 \quad (14)$$

Where $Rate_{PD}$ represents the packet drop rate and it is measured in terms of percentage (%).

End to end delay: It is defined as the difference between the actual arrival time of the packet and
the expected arrival time of the data packets. The overall end to end delay is expressed as given below,

\[D_{ETE} = [T_{actual}] - [T_{ex}] \] \hspace{1cm} (15)

Where, ‘\(D_{ETE} \)’ represents the end to end delay, \(T_{ex} \) indicates an expected arrival time and ‘\(T_{actual} \)’ indicates the actual arrival time. The overall delay is measured in terms of milliseconds (ms).

Throughput: It is measured as the amount of data packets received at the destination at a particular time. The throughput is measured as follows,

\[T_{put} = \left(\frac{\text{size of packets received}}{\text{time (sec)}} \right) \] \hspace{1cm} (16)

Where, ‘\(T_{put} \)’ represents the throughput and it is measured in terms of bits per second (bps).

Confidentiality rate: It is the security parameter and it measured as the ratio of the number of data packets only accessed by the authorized receiver. The formula is expressed as given below,

\[DCR = \left(\frac{P_{AN}}{\text{No of packets}} \right) \times 100 \] \hspace{1cm} (17)

Where \(DCR \) denotes a data confidentiality rate, \(P_{AN} \) denotes the number of data packets received by the authorized receiver. The confidentiality rate is measured in terms of percentage (%).

Table 2 Comparison Of Packet Delivery Ratio And Packet Drop Rate

<table>
<thead>
<tr>
<th>No. of data packets</th>
<th>Packet delivery ratio (%)</th>
<th>Packet drop rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TICSC-DSBNL</td>
<td>CKMSMPR</td>
</tr>
<tr>
<td>25</td>
<td>96</td>
<td>88</td>
</tr>
<tr>
<td>50</td>
<td>96</td>
<td>86</td>
</tr>
<tr>
<td>75</td>
<td>97</td>
<td>89</td>
</tr>
<tr>
<td>100</td>
<td>94</td>
<td>87</td>
</tr>
<tr>
<td>125</td>
<td>95</td>
<td>88</td>
</tr>
<tr>
<td>150</td>
<td>96</td>
<td>89</td>
</tr>
<tr>
<td>175</td>
<td>94</td>
<td>88</td>
</tr>
<tr>
<td>200</td>
<td>93</td>
<td>87</td>
</tr>
<tr>
<td>225</td>
<td>95</td>
<td>89</td>
</tr>
<tr>
<td>250</td>
<td>96</td>
<td>87</td>
</tr>
</tbody>
</table>

Table 1 describes the simulation results of the packet delivery ratio and packet drop rate using three different methods namely TICSC-DSBNL technique and the conventional routing methods namely CKMSMPR [1], Optimal EERP-Signcryption [2]. The numbers of data packets are taken as input to calculate the packet delivery ratio as well as packet drop rate. For each method, ten runs are carried out with a different number of data packets. The observed results demonstrate that the TICSC-DSBNL technique increases the packet delivery ratio and minimizes the packet drop. Let us consider the 25 data packets transmitted from the source node. By applying the TICSC-DSBNL technique, 24 data packets are successfully delivered and 1 data packet gets dropped. The packet delivery ratio of the TICSC-DSBNL technique is 96% and the drop rate is 4%. Whereas, the packet delivery ratio of CKMSMPR [1] is 88% and the drop rate is 12% and the packet delivery ratio and drop rate of Optimal EERP-Signcryption [2] is 84%, and 16% using [2]. The ten different runs are carried out for each method. The overall observed results of the TICSC-DSBNL technique are compared to existing results. Similarly, various runs are carried out with different counts of data packets. The average of ten results indicates that the packet delivery ratio of the TICSC-DSBNL technique is considerably increased by 8% when compared to [1] and 11% when compared to [2] respectively. In addition, the average results of packet drop rate of TICSC-DSBNL technique is considerably reduced by 61% and 67% when compared to existing CKMSMPR [1] and Optimal EERP-Signcryption [2] respectively.

Figure 5 Performance Analysis Of Packet Delivery Ratio

Figure 5 depicts the performance results of packet delivery ratio with respect to a number of data taken in the range from 25 to 250. As revealed in the above graph, the number of data is taken on the horizontal axis and the different results of packet delivery ratio are obtained at the vertical axis. The graphical results illustrate that the
proposed TICSC-DSBNL technique achieves a higher delivery ratio than the conventional methods namely CKMSMPR [1], Optimal EERP-Signcryption [2]. This improvement is achieved by classifying the normal node or malicious node using the Tversky Similarity index. The Similarity Index is measured between the mobile nodes and classified as a normal node or malicious node based on the trust value. After that, the secure data transmission is performed using Cramer–Shoup cryptosystem is applied to improve the data delivery between sender and receiver.

Table 3 reports the performance results of end to end delay versus a number of data packets taken in the ranges from 25 to 250. The observed simulation results illustrate that the number of data packets is directionally proportional to the delay. In other words, while increasing the number of data packets, the delay gets increased. But comparatively the TICSC-DSBNL technique consumes lesser delay of data delivery. Let us consider the ‘25 data packets taken as input, the TICSC-DSBNL technique consumes ‘7ms’ of delay. Similarly, the delay of the other two existing methods namely CKMSMPR [1] and Optimal EERP-Signcryption [2] consumes ‘11ms’ and ‘13ms’ of delay to deliver the data packets. There are ten different results are obtained for each method. The overall results indicate that the TICSC-DSBNL technique minimizes the end to end delay by 30% and 37% when compared to existing methods.

Figure 6 Performance Analysis Of Packet Drop Rate

The comparative results analysis of the packet drop rate of three routing techniques with respect to the number of data packets is shown in figure 6. The graphical results inferred that the packet drop rate of the TICSC-DSBNL technique is minimized than the conventional routing techniques. This is because of selecting the normal node for data transmission. Besides, the Cramer–Shoup cryptosystem encrypts the data packets before the transmission. The authorized receiver gets the original data and it minimizes the packet drop.

Figure 7 Performance Analysis Of End To End Delay

Figure 7 given above illustrates the end to end delay of data transmission from source to destination. From the figure, it is noted that the end to end delay is directly proportional to the number of data packets. But the TICSC-DSBNL technique reduces the delay than the other two conventional routing techniques. The reason behind the reduced end to end delay was due to the incorporation of shortest route path discovery from source to destination. By distributing the two control message via the normal mobile nodes, the multiple route paths are established. The data packets are transmitted along the shortest route path resulting it minimizes the delay.
Table 4 Comparison Of Throughput

<table>
<thead>
<tr>
<th>Data packet size (KB)</th>
<th>Throughput (bps)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TICSC-DSBNL</td>
</tr>
<tr>
<td>15</td>
<td>225</td>
</tr>
<tr>
<td>30</td>
<td>330</td>
</tr>
<tr>
<td>45</td>
<td>400</td>
</tr>
<tr>
<td>60</td>
<td>485</td>
</tr>
<tr>
<td>75</td>
<td>560</td>
</tr>
<tr>
<td>90</td>
<td>690</td>
</tr>
<tr>
<td>105</td>
<td>795</td>
</tr>
<tr>
<td>120</td>
<td>915</td>
</tr>
<tr>
<td>135</td>
<td>1080</td>
</tr>
<tr>
<td>150</td>
<td>1310</td>
</tr>
</tbody>
</table>

Table 5 Comparison Of Data Confidentiality Rate

<table>
<thead>
<tr>
<th>No. of data packets</th>
<th>Data confidentiality rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TICSC-DSBNL</td>
</tr>
<tr>
<td>25</td>
<td>92</td>
</tr>
<tr>
<td>50</td>
<td>94</td>
</tr>
<tr>
<td>75</td>
<td>96</td>
</tr>
<tr>
<td>100</td>
<td>93</td>
</tr>
<tr>
<td>125</td>
<td>94</td>
</tr>
<tr>
<td>150</td>
<td>95</td>
</tr>
<tr>
<td>175</td>
<td>93</td>
</tr>
<tr>
<td>200</td>
<td>92</td>
</tr>
<tr>
<td>225</td>
<td>94</td>
</tr>
<tr>
<td>250</td>
<td>95</td>
</tr>
</tbody>
</table>

Table 4 and Figure 8 depict the impact of throughput with respect to the size of data packets taken in the ranges from 15KB to 150KB. From the figure, it is illustrative that the throughput is in the increasing trend while increasing the size of the data packets. Besides, for experimentation, the 10 iterations are used and hence a fair comparison is said to be performed for all three routing methods. The graphical results demonstrate that the throughput is found to be increased using the TICSC-DSBNL technique when compared to [1] and [2]. This significant improvement is achieved by selecting the shortest route path from source to destination.

Let us consider 10KB sizes of data packets and 225 bits of the data packets are successfully delivered at the destination. Whereas 205bits and 190bits of the data packets are delivered per one second at the destination end using CKMSMPR [1], Optimal EERP-Signcryption [2]. The different results are observed for each method. The average of ten results indicates that the TICSC-DSBNL technique increases the throughput by 8% and 14% when compared to existing routing methods.

Figure 8 Performance Analysis Of Throughput

Table 5 describes the simulation results of the data confidentiality rate versus the number of a number of data packets in the counts from 25 to 250. The reported results indicate that the TICSC-DSBNL achieves a higher data confidentiality rate than the other two existing methods. For example, 25 data packets are considered for simulation. By applying the TICSC-DSBNL technique, 23 data are correctly accessed by the authorized receiver and the confidentiality rate of the proposed TICSC-DSBNL technique is 92% whereas the confidentiality rate of existing CKMSMPR [1], Optimal EERP-Signcryption [2] is 84%, and 80% respectively. For each method, ten different runs are performed and results are compared. The comparison of ten results shows that the data confidentiality is increased by 9% and 12% using the TICSC-DSBNL technique than the existing methods.

Figure 9 exhibits the performance analysis of the data confidentiality rate of different methods. The graphical plot noticed that the proposed TICSC-DSBNL achieved a higher data confidentiality rate during transmission in MANET.
The reason for this significant improvement is to apply the Cramer–Shoup system in the deep neural network. The cryptography performs the Time based pseudo-randomness key generation for each node in the network. The time based key generation avoids unauthorized access. This helps to protect the data packets and improve the confidentiality rate.

4. RELATED WORKS

A Bayesian approach and Dempster Shafer Theory was developed in [11] for creating the Secure Routing Path based on trust. The designed approach increases the throughput but higher confidentiality was not achieved. A QoS-Aware Secured End-to-End data Communication (QASEC) technique was introduced in [12] to identify the normal or malicious node for authentication. But, the technique method failed to improve the performance of the packet delivery ratio.

Bird swarm-whale optimization algorithm was introduced in [13] for optimal-secure multi-path routing with minimum delay. The designed algorithm failed to increase the network’s system performance. Various security routing protocols was presented in [14] based on a machine learning technique to improve the delivery ratio and minimize the delay. A QoS based secure routing was performed in [15] for improving the communication efficiency. But the routing model failed to analyze the performance of packet loss. A trust enhanced cluster-based multipath routing (TECM) algorithm was designed in [16] to minimize the security problems.

A disruption tolerant secure opportunistic routing technique was introduced in [17] to ensure reliable and secured communication. The technique increases the delivery ratio and throughput but the delay was not minimized. An efficient trust model and distributed clustering framework were introduced in [18] for enhancing security. But it failed to implement the cryptographic-based schemes to secure the clustering process.

A trust-based secure QoS routing method was introduced in [19] based on the trust estimation. The method minimized the routing overhead but the packet loss was not minimized. An energy-aware and social trust inspired multi-dimensional trust management approach was developed in [20]. But it failed to identify the node behavior such as malicious and legitimate nodes for achieving higher security.

5. CONCLUSION

To guarantee secure data routing in MANET, the TICSC-DSBNL technique is proposed for improving the data delivery with higher data confidentiality. The proposed TICSC-DSBNL technique uses multiple layers for identifying the normal or malicious node and secure data transmission. For each node in the network, the trust value is measured using the Tversky Similarity index. The node which has higher trust is selected as a normal node. Otherwise, the node is said to be malicious. Followed by, the route paths between source and destination are established to find the shortest path. Finally, the Cramer–Shoup cryptosystem is applied for secure routing and avoid the unauthorized node to access the data with higher confidentiality in MANET. Simulation is performed to estimate the performance of the TICSC-DSBNL technique over the two conventional routing methods and different performance metrics such as packet delivery ratio, packet drop rate, delay, throughput, and data confidentiality rate. The numerical validated results demonstrate that the TICSC-DSBNL technique achieves improved performance in terms of higher data confidentiality, packet delivery with lesser delay and drop than the conventional routing techniques.

REFERENCES

