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ABSTRACT 
 

In software development, applications always undergo frequent modifications to cope with the changing 
needs of the users. Hence, this will affect the reliability of the applications. Regression testing is used to 
tackle this problem in which test case prioritization (TCP) is considered as one of the effective approaches. 
Optimization methods are employed to enhance the proficiency of prioritizing test cases in terms of 
efficiency and effectiveness. Swarm intelligence (SI) algorithms are mostly applied to TCP as one of the 
effective optimization methods. This paper aims at providing state-of-the-art for TCP using SI algorithms. 
The methodological process of performing this review includes conducting a search in the Scopus database 
using predetermined keywords to obtain relevant primary studies where suitable papers have been selected 
according to a set of predefined criteria. Predefined research questions also provide a basis for assessing 
nominated studies. Hence, the most relevant papers (57 out of 420) have been identified, analyzed, and 
classified. Based on the findings, it is learned that the deployment of swarm intelligence algorithms in 
prioritizing test cases yields promising results. Moreover, this study also includes suggestions that can be 
deployed to improve existing studies. 

Keywords: Swarm Intelligence, Software Testing, Regression Testing, Test Case Prioritization, 
Optimization Algorithms 

 
1 INTRODUCTION  
 

Digital technology plays an essential role in 
contemporary daily life, where computerized 
systems represent the backbone of everyday 
transactions in aspects such as education, health, 
government, and finance. Thus, accreditation is 
required to ensure the production of worthy and 
reliable software systems as failures in such 
systems may lead to financial risk, disaster, or 
death. Krasner [1] reported that the United States 
has lost nearly $2.08 trillion due to the poor quality 
of software in 2020. Likewise, Heathrow airport 
disruption in London, British Airways glitch, social 
media (Facebook, Instagram, and WhatsApp) 
outage, TSP bank outage, and others are clear 
examples of the negative impact of software errors 
in public life [2]. 

In the software industry, producing high-quality 
systems undergo a sequential, tedious, and costly 
process that affects the digital industry’s reputation. 
As an arduous and critical part of the software 
development life cycle (SDLC), software testing is 

responsible for building confidence towards the 
developed software systems, costing around 50% of 
the overall production cost [3]. Therefore, the 
software under development is frequently modified 
to cope with the frequently changing requirements 
of customers and the market, leading to the 
occurrence of new programming errors requiring 
quality testers to deal with them seriously. Deeper 
in the testing artifacts, a test case is the smallest unit 
that is carefully designed with the intent of 
detecting errors, and sometimes test cases need to 
be optimized for effective implementation. In 
software testing, the branch that deals with 
modification errors and their adverse effects is 
called regression testing. 

Regression testing is defined by the IEEE 
standard glossary of software engineering 
terminology as: “Selective retesting of a system or 
component to verify that modifications have not 
caused unintended effects and that the system or 
component still complies with its specified 
requirements.” [4]. Furthermore, Rothermel and 
Harrold [5] define the regression testing problem 
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as: Given a program P, its modified version P’, and 
test set T used previously to test P, find a way, 
making use of T, to gain sufficient confidence in the 
correctness of P’. 

Despite its high cost and time-consuming, 
regression testing remains an unavoidable and vital 
process in software development. Regression 
testing can be performed by executing all test cases, 
selecting test cases, prioritizing test cases, or 
combining between selection and prioritization of 
test cases. Retest all is the first method in which all 
available test cases are re-executed to attain 
uncovering faults. Such a conventional method is 
costly, especially when the amount of test cases is 
huge due to increasing the size and complexity of 
the software system. The second method is called 
test selection which can select a significant subset 
of the test cases to check the amendments on the 
current program. However, discarding any related 
test case may leave some defects undiscovered. Test 
case prioritization (TCP) is a regression testing 
method that effectively reschedules test cases to 
attain a performance goal. Accordingly, this method 
avoids the drawbacks of omitting test cases as 
occurred in test selection and hybrid approaches. 
Figure 1 highlighted the regression testing 
approaches below: 

 

Figure 1: Regression Testing Approaches 

Test case prioritization is one of the most 
effective approaches of regression testing as it 
reorders the execution of test cases in an effective 
way for detecting errors as early as possible during 
the testing process. Unlike test selection and hybrid 
approaches, TCP does not omit any test case, in 
order not to allow faults to slip away, and it 
provides an effective ranking of test cases in which 
the rate of fault detection can be accelerated [6]–
[8]. Due to the complexity and complicated nature 
of regression testing, researchers have denoted the 
TCP problem as an NP-hard problem, implying the 
need for optimization algorithms [9], [10]. Recent 
research efforts indicated that artificial intelligence 
(AI) methods had gained much popularity and 
promising results for optimizing test cases [11], 
[12]. Among effective AI methods, evolutionary 
algorithms and swarm intelligence are mostly 
applied in TCP. 

This paper investigates the application of swarm 
intelligence (SI) in the software testing domain, 
specifically the regression TCP. A total of 57 
papers published between 2008 and 2021 have been 
identified. Hence, the study aims to extensively 
analyze and discuss the work that has been done in 
the software testing domain and provide future 
directions to help prospective studies in this field. 
Next section specifies the related work, followed by 
an overview of SI, the study method has been 
described in section 4, while section 5 discusses the 
results, then the study is concluded in section 6. 
 
2 RELATED WORK 
 

The increasing need for solving real-world 
problems led to the utilization of computation 
intelligence for solving such problems through 
optimization. Meanwhile, SI algorithms have 
become quite popular in which these algorithms are 
applied in different domains of software 
engineering and testing. In the context of regression 
testing, SI algorithms have been widely 
implemented for optimizing test cases, especially in 
TCP. Literature survey revealed several studies that 
involve the application of nature-inspired 
algorithms in the TCP domain. 

Catal [13] studied the effectiveness of using 
genetic algorithms (GAs) for prioritizing test cases 
by selecting seven primary studies. He reported that 
among these seven studies, five had a positive 
impact of GA on TCP than other algorithms, such 
as hill-climbing, greedy algorithm, random, and 
other TCP techniques. This research concludes with 
specific recommendations for better implementation 
of TCP techniques, such as: assessing TCP methods 
using the most common measurements in the field 
and reporting the TCP factors for the algorithm. 

Sharma and Singh [14] had briefly explored the 
implementation of ACO in the context of model-
based TCP. Seven studies were collected and 
reviewed to conclude that ACO is a robust 
algorithm and can provide positive feedback in the 
model-based TCP. 

Bajaj and Sangwan [15] investigated nature-
inspired methods, including swarm algorithms, that 
have been implemented for optimizing test cases of 
regression testing. In this study, 15 works have been 
explored and summarized. In conclusion, they 
stated that GA is the most implemented and well-
known among all nature-inspired algorithms for 
researchers in different approaches of the regression 
testing domain. The work concludes with the 
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importance of nature-inspired algorithms for 
efficient optimization and cost-effectiveness, as 
well as the need for hybridization among these 
algorithms for more effectiveness. 

Alkawaz and Silvarajoo [16] surveyed the 
optimization techniques applied in TCP. As a result, 
eight studies were collected and examined based on 
the applied algorithm, purpose, coverage, 
implementation, and metrics used for evaluation. 
However, their work does not cover SI algorithms 
in TCP. 

Bajaj and Sangwan [17] systematically 
investigated and categorized the application of GAs 
in TCP, in which 20 relevant works have been 
selected from four different databases. The selected 
studies were investigated based on several criteria 
such as prioritization method, benchmarks, size of 
the test suite, GAs type, and metrics of scaling 
performance, as well as proving a taxonomy for 
GAs applied in TCP. 

Paygude and Joshi [18] assessed the 
implementation of evolutionary algorithms in the 
context of TCP with a total of 33 papers reported 
and tabularly summarized. The study concludes that 
GA is the most popular and utilized algorithm, and 
the APFD metric is used by most of the studied 
papers. Besides evolutionary algorithms, however, 
this study also includes papers that addressed non-
evolutionary algorithms such as ant colony, 
clustering, greedy, particle swarm, and other 
algorithms. 

In summary, the work presented in this paper 
builds on previous research to explore how swarm 
intelligence algorithms affect the optimization of 
test cases in the regression testing prioritization 
process of the test cases. While earlier work 
focused either on the single algorithm (i.e., GA, 
ACO) or generally on a wide domain like 
evolutionary or nature-inspired algorithms, we 
narrowly focused on swarm algorithms 
implemented to improve TCP performance. In 
addition, we can study such algorithms at a much 
deeper scale than previously possible by 
considering only the SI discipline, which was 
applied in the TCP domain. In other words, this 
study differs from previous works in scope (i.e., a 

very narrow topic), presentation (i.e., classification 
based on TCP factors), and more suggestions for 
common issues were added. 

 
3 OVERVIEW OF SWARM 

INTELLIGENCE 
 

This section provides SI background, including 
classification, benefits, general structure, and a brief 
description of SI algorithms implemented in the 
regression TCP. 

3.1 What is Swarm Intelligence? 
Swarm Intelligence (SI) is an integral part of 

artificial intelligence (AI), which is recently gaining 
increasing usage among researchers for 
optimization due to the powerful performance and 
flexibility it provides [19], [20]. The term swarm 
intelligence was first coined in 1988 by Gerardo 
Beni, in the context of cellular robotic systems as 
simple agents interacting with each other by 
utilizing the self-organization principle [21]. 
Basically, SI computation mimics the intellectual 
cooperative behavior of the societies of the natural 
creatures such as ant colonies, bee colonies, cat 
swarms, etc. [20]. In the real world, there is a kind 
of problem called NP-hard problems where, in this 
situation, finding a global optimum (unique 
solution) becomes almost impossible because 
solutions always turn out to be infinite. In such 
cases, it becomes necessary to find a workable 
solution (near optimum) within the time constraints. 
Thus, SI algorithms found their usefulness in 
solving such real-world problems [19], [22]. 

Different types of SI algorithms exist, such as but 
not limited to ant colony optimization (ACO), 
particle swarm optimization (PSO), artificial bee 
colony (ABC), glowworm swarm optimization 
(GSO), and cat Swarm Optimization (CSO). 
Chakraborty and Kar [19] classify different types of 
SI algorithms as highlighted in Figure 2 below. 

SI algorithms have several benefits that made 
researchers prefer applying them in solving 
optimization problems. Also, SI algorithms have 
shortcomings reported by researchers such as 
Slowik [23] and Yang et al. [24]. Both the benefits 
and drawbacks are emphasized briefly in Table 1. 
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Figure 2: Swarm Intelligence Algorithms Classification (adapted from [19])

Table 1: Swarm Intelligence Algorithms Benefits and 
Drawbacks 

Benefits Drawbacks 
 Not start from a single 

point, but among 
potential solutions. 

 Provide optimal global 
search. 

 Flexible and simple to 
apply. 

 Suitable for hard and 
complex problems. 

 A diverse range of 
problems can be 
handled. 

 The simplicity of 
parallel implementation. 

 Expensive computation. 
 Unique solutions cannot 

be guaranteed. 
 Not suitable for simple 

problems. 

 

SI algorithms have been used to solve real-world 
problems, and their applications have pervaded 
many aspects, including routing, scheduling, 
tracking, sorting, and classification. The most 
famous problems in which SI has been successfully 
solved consist of the traveling-salesman problem 
(TSP), aircraft landing, vehicle routing problem 
(VRP), flow shop scheduling problem, knapsack 
problem, timetable problems, etc. [23]–[25]. 

3.2 General Structure of Swarm Intelligence 
To understand how the SI algorithms work, the 

system consists of several phases that work in an 
iterative process. Tan [26] and Yang et al. [24] 
described the staged process briefly as beneath: 

 Swarm Population – a collection of agents 
that interact locally with each other within an 
environment, i.e., the search space, have been 
initialized. 

 Fitness Function – sometimes is called 
evaluation or objective function in which each 
individual agent in the search space has been 

assessed against an identified fitness formula 
formulated carefully to represent the chosen 
near-optimal solution for the desired problem. 

 Communication – according to swarming 
behavior such as ants and bees, fitness values 
are shared among agents through the entire 
atmosphere. 

 Swarm Updating – for every iteration, each 
agent updates once necessary its individual 
and community best information as well as its 
movement (i.e., velocity and position vector). 

 End – the loop remains until termination 
conditions have been met as the optimal 
solution has been reached. Due to their 
stochastic nature, repeated solutions are 
challenging to obtain through SI. 

Figure 3 clearly illustrates the aforementioned 
stages below. 

 
Figure 3: General Structure of SI Algorithms (as in [26]) 
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3.3 Swarm Intelligence Applications in TCP 
Several SI algorithms have been implemented to 

optimize the test cases in regression TCP since 
2008. Due to their nature, researchers reported that 
SI algorithms could increase the overall regression 
testing methods proficiency, cost-effectiveness, 
accuracy, and convergence incorporated with 
providing the ability to cover multiple criteria and 
decreasing complexity [14], [15]. 

In the context of testing, the optimization process 
through SI algorithms has several considerations to 
be taken into account. First, test cases usually are 
initialized as a population of the swarm algorithm, 
where the size of the population is the total number 
of the test cases to be optimized. Furthermore, each 
agent during communication can represent any 
single test case among the population. Thus, each 
test case will be evaluated against a fitness function. 
On the other hand, the fitness function should be 
carefully designed for representing the optimization 
basis, i.e., the prioritization factors test cases are 
optimized accordingly. Thus, there are three things 
to be known about the fitness functions: (1) They 
are responsible for the communication among 
agents, where the agent movement is controlled by 
its fitness value [27], [28]. (2) Fitness functions 
should be specified mathematically to guide search 
algorithms in evaluating the quality of solutions 
when using search algorithms [29]. (3) In the test 
optimization process, test cases are being prioritized 
in the test suites based on the obtained value of 
fitness, i.e., fitness scores, which allowed the 
optimization algorithm to rank test cases in a 
manner that the most likely important test cases 
have the priority to be executed first before others 
[30], [31]. It is well known that the fitness function 
can be any evaluation metric like APFD or any 
other mathematical expression that every test case 
will be assessed accordingly and should be defined 
based on the goal to be achieved in a way that 
makes the experimental results positive [32]–[34]. 
For multi-objective optimization, the fitness 
function should be designed as multi-objective to 
reflect these objectives and constraints precisely. 
For designing a suitable fitness function for 
optimizing test cases, Arrieta et al. [32] provided a 
piece of advice in terms of Lessons Learned at the 
end of their article. 

Aside from this, a brief description is provided 
below for those algorithms that have been applied 
for prioritizing test cases in the regression testing 
domain: 

 

1. Ant Colony Optimization (ACO): 

Marco Dorigo first introduced this algorithm 
in 1992, inspired based on the observations 
of ants’ foraging behavior to solve 
computational problems [35], [36]. In reality, 
ants’ strength lies in the highly organized 
colony structure of the whole ants, i.e., the 
teamwork, where the shortest path always 
has been chosen between their nest and food 
source using pheromone trails. The ACO 
algorithm emphasizes a probabilistic model 
that simulates the ants’ behavior to choose 
the optimal solution in the shortest way [36]. 
Based on the optimization, researchers found 
the ACO algorithm promising in producing 
significant solutions when implemented in 
numerous fields, including the software 
testing domain. 

2. Particle Swarm Optimization (PSO): 

PSO algorithm was invented by Eberhart and 
Kennedy in 1995, employing the idea of 
simulating the social behavior of swarms of 
the birds flocking and fish schooling, which 
emphasizes some organized structure [23], 
[37]. Meanwhile, the algorithm utilizes what 
was called particles as agents that move 
towards the optimal solution in the search 
space, i.e., swarm, under the control of 
velocity (acceleration) and position 
(direction) of each particle [38]. Slowik [38] 
reported that the appearance of ACO, then 
PSO later, led to the formation of a new 
research discipline called Swarm Intelligence 
(SI). 

3. Artificial Bee Colony (ABC): 

In 2005, an ABC algorithm was introduced 
by Karaboga, which imitates the foraging 
behavior of honeybees out of the colony 
[39], [40]. For this process, bees are divided 
into three categories, each of which has a 
distinct task: the employed, the onlooker, 
and the scouts. Employed bees exploit and 
take nectar from flowers found to the hive. 
Onlooker bees are entrusted with selecting 
good food sources based on employed bee 
waggle dance (positive feedback). Scout bees 
search for new food sources once the 
existing food source is abandoned (negative 
feedback). Computationally, the ABC 
algorithm has three iterative searches: (1) 
scout – detects exhausted solutions in the 
search space, i.e., exploring new solutions 
(2) employed – exploits the existing 
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information of discovered solutions, and (3) 
onlooker – evaluates then selects high-
quality solutions randomly and performs 
local search around them [19], [23]. ABC 
algorithm is being touted by researchers as a 
powerful and efficient method for providing 
solid solutions to hard problems such as 
TCP. 

4. Glowworm Swarm Optimization (GSO): 

GSO algorithm was introduced based on 
ACO in 2005 by Krishnanand and Ghose for 
mobile robotics in a way that mimics the 
flashing behavior of the glowworms or 
lighting bugs [23], [41]. In reality, 
glowworms naturally release a chemical 
substance, i.e., luciferin, as a signal for 
attracting mates or prey to feed. The 
algorithm begins by initializing glowworms 
randomly across the workspace; then, each 
loop consists of three phases: luciferin 
update – for fitness assessment, movement 
update, and neighborhood range update 
[19][41][38]. 

5. Cat Swarm Optimization (CSO): 

CSO was primarily invented in 2006 by Chu 
et al. based on observing the hunting 
behavior of cats. Since then, it has been used 
for solving difficult engineering problems. 
CSO algorithm placed a swarm of cats 
randomly in the search space. Each cat 
represents a solution and can be identified 
using velocity, position, and flag mode 
information, i.e., seeking or tracing mode. 
After certain iterations, the fittest cat among 
all will be chosen by the fitness function as 
the best solution for the intended problem 
[23], [38]. 

6. Cuckoo Search Algorithm (CSA): 

In 2009, Yang and Deb developed an 
algorithm that simulates the aging behavior 
of cuckoos in which the principles of the 
search of lévy flights and cuckoos brooding 
parasitism were adapted. In the case of CSA, 
three main steps employed are initialization, 
iteration loop, and solutions modifications. 
In the initialization step, each nest egg 
symbolizes a solution at the start of the 
algorithm, while the cuckoo egg represents a 
new solution. Not all cuckoo eggs will be 
survived until the end; around 20% of them 
will be abandoned due to the detection of 
parasitism mechanism in which they are 

replaced by new eggs. This is followed by 
the generation of new solutions, i.e., 
cuckoos, as well as performing lévy flights, 
and finally, the best solutions, i.e., cuckoos, 
were selected according to the fitness 
function [23], [38], [42]. 

7. Firefly Algorithm (FFA): 

In late 2007 and early 2008, Yang developed 
a firefly algorithm based on tropical fireflies 
flashing behavior [23][43]. FFA algorithm 
first initializes a swarm population of 
fireflies randomly, then updates the fitness 
function against each firefly in the search 
space in an iterative manner to attain the best 
sequence of individuals among the solution 
pool. FFA has been employed with different 
applications in a variety of domains, 
including software testing [19], [23], [43]. 

8. Bat Algorithm (BA): 

Bat algorithm was first designed by Xin-She 
Yang in 2010, which imitates the primary 
attributes of bat echolocation in terms of 
navigating the neighborhood surroundings. 
In this algorithm, bat swarms are firstly 
initialized as the population for search; then, 
these bats randomly fly by assigning their 
positions and velocity as their movement is 
controlled by frequency, loudness, and pulse 
emission rate (PER), which are updated at 
each iteration. Secondly, execute a local 
random walk (LRW) in which frequency 
increases, while loudness decreases once the 
bat is potentially getting closer to its prey or 
food source [19], [23], [44]. Unlike 
exploitation, the algorithm exploration is 
unsatisfactory due to local trapping as stated 
by Kanwar et al. [44]. 

9. Lion Search Algorithm (LSA): 

Rajakumar developed an algorithm in 2012 
that is inspired by the lion’s social life within 
generations as frequent fighting happens 
between bride leader (territorial lion) against 
nomadic lions [45]. Apart from nature, LSA 
undergoes several processes; the first is 
randomly releasing a set of lions as pride 
generation. However, some lions were 
selected to be nomadic lions in this step. 
Secondly, the mating process is performed in 
which new lions are generated and evaluated. 
The surviving lion in the territorial defense is 
the best solution in the iteration, while the 
defeated lions and matured cubs were 
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considered as nomadic and weak solutions to 
be eliminated from the solution pool. This 
process continues until a satisfactory goal is 
reached [19], [45]. 

10. Flower Pollination Algorithm (FPA): 

In 2012, Yang et al. developed an algorithm 
in which the pollination attributes of the 
flowering plants were inspired. Accordingly, 
FPA has two steps of pollination, i.e., global 
and local. Globally, pollinators such as 
insects or animals carried flower pollens to 
long distances in which the fittest pollens 
survived as lévy flight simulated. Locally, 
pollens spread among different flowers of 
the same species in a limited neighborhood. 
FPA has been applied in different domains 
for solving complex problems, including 
software testing [46], [47]. 

11. Grey Wolf Optimization (GWO): 

In 2014, the grey wolf optimization 
algorithm was developed by Mirjalili et al. 
based on grey wolves’ social behavior of 
hunting where wolves live in packs led by an 
alpha. Mathematically, the algorithm 
initializes a population of wolves ranked as 
alpha, beta, and delta. The best solution is 
represented by alpha, whereas the second 
and third best solutions were represented by 
beta and delta, respectively. In each cycle, 
the position of each wolve is updated 
according to the alpha, beta, and delta 
positions, i.e., the exploration process. Then, 
exploitation ends when the prey attack at the 
end of the iteration. The algorithm ends with 
attaining the best solution [19], [23], [38]. 

12. Shuffled Frog-Leaping Algorithm (SFLA): 

In 2006, Eusuff, Lansey, and Pasha 
developed an algorithm that simulates the 
social behavior of frogs during food search 
[21], [48]. The algorithm starts by placing 
virtual frogs randomly among the whole 
swamp to invent independently groups 
(memeplexes) for search within different 
directions. During memetic evolution, frogs 
with stronger memes (ideas) within 
memeplex are more likely to create new 
ideas than others, leading to a change in their 
positions, i.e., exploitation. After certain 
iterations, the shuffling process begins by 
forcing memeplexes to mix and creating new 
memeplexes as frogs start migration with 
sharing information, i.e., global exploration. 

The process ends with selecting the fittest 
frog (solution) among all [49]. 

13. Whale Optimization Algorithm (WOA): 

Mirjalili and Lewis established an algorithm 
in 2016 in which the hunting social behavior 
of humpback whales is modeled 
mathematically. Generally, WOA utilizes 
three major steps: (1) encircling prey – 
where all agents moved towards the best 
solution found in the search space, i.e., the 
leader; (2) bubble-net attacking method – in 
which the path of whales’ movement 
imitated to get closer to the prey, i.e., the 
exploitation process; and (3) search for prey 
– for the exploration of the workspace 
wherever agents are chosen randomly to 
change the location of the i-th search agent. 
This algorithm has been applied to solve 
several engineering problems in the search 
community [23], [38]. 

3.4 Hybrid Swarm Intelligence 
It is commonly known that not all algorithms 

have the same level of strength due to the diversity 
of search mechanisms used. So, researchers found 
that combining two or more algorithms can be more 
effective for improving performance in terms of 
accuracy and convergence in attaining optimal 
solutions. This process is known as hybridization 
[15], [50]. Accordingly, the powerful nature of 
hybrid algorithms in solving optimization problems 
has made them algorithms of choice in the research 
community [43], [47]. Concerted efforts are being 
made by researchers towards integrating several SI 
algorithms in the TCP for enhanced performance 
[15]. Example of hybridization among SI 
algorithms includes integrating SI algorithms with a 
genetic algorithm, and integration with fuzzy logic 
are obvious. 

 
4 METHODOLOGY 
 

TCP is classified as an NP-hard problem due to 
the nature and complexity of the testing 
environment in which the optimization of test cases 
can be affected by several factors. Consequently, SI 
is being proposed as a panacea to the TCP problems 
as it has not been investigated before. The aim of 
this research review is to investigate the work that 
has been done by researchers in relation to the 
application of SI in the field of regression test case 
prioritization. In short, the method consists of 
formulating research questions and defining the 
search strategy that includes database search 
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identification, key terms determination, search 
syntax formulation, identifying selection criteria for 
the retrieved papers, and finally, the selection of the 
actual papers for the investigation. Moreover, this 
review enlightened by the guidance provided by 
Kitchenham et al. [51]. 

4.1 The Research Questions 
The following research questions have been 

formulated to be answered throughout this review: 

 To what extent SI algorithms have been 
implemented for optimizing test cases in 
TCP? 

 On what basis have the test cases been 
optimized in the existing studies? 

 How has the evaluation of these studies been 
carried out? 
- What metrics have been used to scale the 

performance of these proposed methods? 
- To which existing methods are these 

studies compared? 

4.2 The Search Process 
The search strategy conducted in this review is 

started by choosing the Scopus database as a 
starting point for obtaining the relevant studies up 
to the year 2021, then formulating the search string 
to be fulfilled in the next step for obtaining the 
desired related studies. For seeking the TCP studies 
where SI algorithms are applied, we used the 
following search string to compile the algorithms 
mentioned above: 

[ ("test case prioritization" OR "test 
case prioritisation" OR "prioritizing 
test cases" OR "prioritising test 
cases") AND ("swarm" OR "intelligence" 
OR "algorithm" OR "colony" OR 
"artificial" OR "search" OR 
"optimization") ]. 

The above search string was designed according 
to the defined keywords regarding TCP and SI, 
considering the spelling differences of the word 
“prioritization” between British and American 
English as known in the academic environment. 

4.3 The Study Selection  
By conducting the search in the Scopus database, 

a total number of 420 papers were initially 
screened, and unrelated studies were discarded. 
Those studies which have been filtered based on 
specific features such as title, abstract, and 
conclusion are 67 in number. Finally, a full-text 
read round followed, resulting in the selection of 57 
papers. These stages are illustrated in Figure 4 
below: 

 

Figure 4: Paper Selection Stages 

Towards the final selection process of the related 
studies among retrieved results, the suitable studies 
have been chosen, particularly according to 
predetermined selection criteria for inclusion and 
exclusion of related work as briefly emphasized in 
Table 2. 

Table 2: Inclusion and Exclusion Criteria 

Inclusion criteria Exclusion criteria 
 English published work. 
 Journals and 

proceedings papers. 
 Application of SI in 

TCP. 

 Other languages 
published work. 

 Books, book chapters, 
posters, etc. 

 Other topics. 
 

5 RESULTS AND DISCUSSION 
 

At the end of the selection process, 57 papers 
were identified in the specified period, i.e., between 
2008 and 2021, for the application of SI algorithms 
in the regression TCP, and those studies were to be 
analyzed according to the RQs. Across those years, 
there is no published papers found in the Scopus 
database before the year 2008 as only one paper 
corresponds to the year 2008, the later four years, 
unfortunately, have no publications found, to the 
year 2013, only one paper is published. After that, 
the publications grow slowly between 2014 and 
2015. Three years later, i.e., 2016, 2017, and 2018, 
the amount of publication constantly stays at 6 
papers per year. In the year 2019, the number of 
publications increased to 14 papers. Then, the year 
2020 scored 8 published papers. Lastly, the year 
2021 got 9 papers published. Figure 5 below 
presents the publication of papers according to 
years, while other aspects will be detailed discussed 
in the later subsections. 
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Figure 5: Distribution of The Studies with Respect to 
Publication Years 

In summary, SI algorithms have been 
implemented in the context of TCP for regression 
testing since 2008. In terms of publication type, the 
obtained studies can be classified as either journal 
papers or conference proceedings, as denoted in 
Figure 6 underneath. 

 

Figure 6: Publications Type 

The application of SI algorithms varies according 
to the characteristics of the algorithms, nature of 
their implementation, and the prioritization basis, 
where ant colony is the most used algorithm, as 
reported in 19 of the papers reviewed. This is 
followed by PSO, ABC, CSO, cuckoo, bat, and 
FFA, respectively. On the other hand, hybrid 
algorithms showed increasing recently, i.e., in 2021, 
where 14 studies were reported. The publication 
distribution among SI algorithms has been 
presented in Figure 7 below. 

 

Figure 7: Swarm Intelligence Algorithms used in Regression Test Case Prioritization 

5.1 Swarm Intelligence Algorithms 
Throughout the conducted search process, the 

authors found that the application of SI algorithms 
in the context of regression TCP addressed the 
following algorithms: ant colony, particle swarm, 
artificial bee colony, glowworm swarm, cat swarm, 
cuckoo search, firefly, bat, lion search, flower 
pollination, grey wolf, shuffled frog-leap, 
dragonfly, and whale optimization. In this section, 
single SI algorithms have been discussed in detail. 

1. Ant Colony Optimization (ACO) 
Applications: 

A total of nineteen proposed work has been 
implemented since 2013, based on the ACO 

implemented in TCP. Several factors were 
used for performing prioritization of test 
cases in these studies, such as code coverage, 
fault coverage, and others emphasized as 
follow: 

- Code coverage: Lu et al. [52], Lu and 
Zhong [53], and Panwar et al. [54] 
introduced ACO-based algorithms which 
prioritize test cases according to the 
additional statement, total statement, and 
optimal path coverage, respectively. 
However, only Lu and Zhang [53] 
framework achieved 96.04% of statement 
coverage, while Lu et al. [52] did not reach 
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90%. Panwar et al. [54] study lacks 
sufficient evaluation where there is no 
metric or benchmark specified besides a 
few numbers of test cases. On the other 
hand, Dhiman and Chopra [55] utilized 
ACO for TCP based on the importance of 
functions as the slicing technique was used 
to determine the importance of the 
function. Nevertheless, no evaluation was 
specified regarding this work, and it was 
compared with manual ordering. 

- Incorporating execution time with code 
coverage (statement–coverage): Pachariya 
[56] and Bian et al. [57] implemented an 
ACO-based method for prioritizing test 
cases. While Bian et al. [57] work provide 
promising results in code-coverage (i.e., 
reached 99% of the statements coverage 
within 9.86 sec.). Code-coverage does not 
mean detecting all faults, especially when 
they are detected by test cases that are not 
unit test cases [58]. Besides, Pachariya 
[56] work, aside from not being evaluated 
against any popular metric, was not also 
compared to other techniques. 

- Fault coverage: Chen and Zhang [59] 
proposed an ACO-based algorithm to 
cover all faults through prioritized test 
cases. However, this method is not 
compared with optimization-based 
methods for better performance evaluation. 
Another study by Kumar and Srinivas [60] 
proposed the ACO method for prioritizing 
test cases of object-oriented programs 
based on fault exposing potential. 
However, this algorithm lacks proper 
evaluation as it was only compared to 
random ordering and did not use any 
public dataset like SIR or GitHub. Lastly, 
Studies such as Solanki et al. [61], Solanki 
et al. [62], and Solanki et al. [63] 
performed TCP based on maximizing 
coverage of faults diversity using the m-
ACO algorithm. Despite their promising 
results, none of Solanki et al. [61]–[63] 
studies reached 90% of faults covered, 
which means this method needs to be 
enhanced. 

- Incorporating execution time with fault-
based: Vescan et al. [64] came up with a 
multi-objective TCP method using ACO 
based on 3 factors of fault coverage, fault 
severity, and cost of execution (time 
execution of the test case). However, the 

evaluation is insufficient as only 5 test 
cases were used, the lower performance 
achieved, and the compared techniques are 
not AI-based. Likewise, no benchmark was 
specified. Next, Ansari et al. [65], and Suri 
and Singhal [66] came up with ACO-based 
methods for prioritizing test cases 
according to fault coverage and execution 
time. However, the first study requires 
more comparison, especially with 
optimization techniques under controlled 
experiments using public datasets like SIR 
to make it more reliable, while the other 
lacks adequate evaluation in terms of 
comparison and measurements. Last, Gao 
et al. [67] introduced an ant-based multi-
objective TCP method for optimizing test 
cases according to three factors: numbers 
of faults detected, faults severity, and 
execution time of test cases. The 
performance of this method reaches 82.5% 
according to APFD and covers total faults 
within 16 units of time. This method has 
been compared to original, random, and 
optimal orderings. However, this work 
lacks adequate evaluation. 

- Requirements: Zhang et al. [68] employed 
ACO for prioritizing test cases based on 
two approaches: distance-based and index-
based. Still, this method lacks proper 
evaluation as only one program is used as 
a benchmark within 6 test cases. 

- History of test execution: Noguchi et al. 
[69] suggested an ACO-based framework 
of black-box testing for TCP. However, 
this framework needs to be compared to 
optimization-based methods for better 
performance evaluation. 

- Software component metrics: A fourth 
method proposed by Silva et al. [70] uses 
ACO for prioritizing test cases based on 
software component metrics. This study 
utilized three factors: test cases’ criticality, 
execution time, and faults history. The 
proposed method used two metrics: APFD 
and cost-cognizant of the average 
percentage of faults detected per cost 
(APFDC). This method yields an average 
of 92.71% and 92.97%, respectively. A 
comparison with original, random, optimal 
ordering and the greedy algorithm was 
carried out. 
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- Multiple factors: Ahmad et al. [11] 
suggested a multi-objective TCP based on 
six test factors which are (1) importance 
(of requirement), (2) volatility (change of 
requirement), (3) complexity (of 
requirement), (4) Fault Rate (of 
requirement), (5) Time (for test case), and 
(6) Coverage (of requirement). Based on 
the test factor’s weight, test cases are 
generated and assigned values; then, they 
were prioritized using ACO. However, this 
technique is yet to be implemented. 

2. Particle Swarm Optimization (PSO) 
Applications: 

A total of 6 studies involved the applications 
of PSO in TCP in which several factors for 
prioritization were applied as follows. 

- Fault coverage: Mann et al. [71] 
introduced a PSO method that first 
generates test cases using GA, PSO, and 
ABC, then prioritizes them using PSO 
based on maximum fault coverage. 
Nevertheless, this approach needs a more 
mature comparison with existing 
optimization techniques. 

- Incorporating test-point coverage with 
execution time: Xing et al. [72] developed 
an artificial fish school algorithm (AFSA) 
for prioritizing test cases based on two 
factors, i.e., test points coverage and 
execution time. The AFSA implemented 
using python used 4 C programs from SIR 
for experiments and compared with GA 
and K-means. The results reported AFSA 
outperformed GA and K-means in terms of 
the average percentage of test-point 
coverage (APTC) and effective execution 
time (EET) metrics, i.e., gained an average 
of 98% of statement coverage within an 
average of 3.75 of time. However, this 
algorithm depends on source code in 
which it is absence make the algorithm 
stopped working. Also, if gained full 
coverage of code, it does not mean reached 
100% of effectiveness. 

- Incorporating execution time with code 
coverage: Sun et al. [73] proposed an 
epistatic PSO-based multi-objective 
method for prioritizing test cases according 
to branch coverage (code coverage) and 
effective execution time of test cases. 
However, the achievement of this method 
was not numerically specified. Likewise, 

the method has not been compared to other 
optimization algorithms such as GA, ACO, 
and ABC. 

- Incorporating execution time with fault 
coverage: Tyagi and Malhotra [74] 
introduced a multi-objective PSO 
(MOPSO) method for reduction, selecting 
a minimal set of test cases, then 
prioritizing them for achieving maximum 
fault coverage within minimum execution 
time (time constraint). The shortcoming of 
this technique emanates from the fact that 
a set of test cases are selected first before 
being prioritized accordingly, which 
implies that some test cases will be 
skipped. Furthermore, the amount of test 
cases is insufficient, which means that this 
technique needs further empirical 
evaluation and comparison with 
optimization techniques. 

- String distance of test cases: 
Khatibsyarbini et al. [75] proposed a PSO-
based method that prioritizes test cases 
according to their weight-hybrid string 
distance. This study takes string inputs of 
test cases and utilized four variants of term 
frequency-inverse document frequency 
(TFIDF) for prioritizing test cases without 
source code consideration. The technique 
achieved an overall average of APFD is 
94.35% and was compared to four string 
distance techniques. However, the 
precision of string distance techniques is 
based on the quality of test cases created 
and their documentation. 

- Modifications of the software units: Hla 
et al. [76] introduced a PSO-based method 
for prioritizing test cases according to 
modifications of the software units. 
Meanwhile, the evaluation criteria are not 
clear due to the lack of sufficient 
information regarding achievement, 
comparison, and measurement. Therefore, 
this technique needs empirical evaluation 
and comparison against other optimization 
algorithms. 

- Multiple factors: Samad et al. [77] built a 
multi-objective PSO that prioritizes test 
cases according to three factors, i.e., fault 
detection ability, code coverage, and 
execution time (cost of a test case). The 
algorithm achieved 17 – 86% 
inclusiveness, 33 – 85% precision, and 17 
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– 86% size reduction, compared with no 
ordering, reverse ordering, and random 
ordering techniques. However, the 
algorithm did not compare with AI 
techniques, as well as the comparison 
results with traditional techniques were not 
reported. Joseph et al. [78] proposed a 
modified PSO for prioritizing test cases 
according to seven factors: (1) customer-
assigned priority (CP), (2) implementation 
complexity (IC), (3) changes in 
requirements (RC), (4) fault impact of 
requirements (FI), (5) completeness (CT), 
(6) traceability (TR), and (7) execution 
time (ET). To overcome the local optima 
trap, this algorithm introduced the GAs 
mutation operator. However, the study 
provides little information about 
implementation, experiment, comparison, 
and evaluation. 

3. Artificial Bee Colony (ABC) applications: 

ABC has been implemented for optimizing 
test cases for TCP in a few studies. As 
observed in this study, 3 studies were found 
in the Scopus database based on ABC. 

- Fault exposing capability: Khanna et al. 
[79] presented an ABC-based algorithm 
for scheduling test cases of web 
applications. Hence, the test cases are 
generated from source code then ordered 
according to their fault exposing 
capability. However, this study did not 
clearly specify the numerical achievement 
of ABC in terms of APFD and APFDC. 

- Change coverage: Manaswini and Rama 
Mohan Reddy [80] proposed an ABC-
based algorithm for TCP using the bee’s 
nature. However, this study did not specify 
any achievement or comparison with other 
techniques. Also, the metric and objective 
of the algorithm are to cover the change in 
different versions of a program under test, 
while the fitness function ensures the 
maximum number of the requirements, 
which makes it imprecise. 

- Decision matrix: Vats and Kumar [81] 
suggested an ABC-based algorithm for 
prioritizing test cases, where the decision 
matrix is calculated as total faults divided 
by time of execution for each test case. 
However, it was not applied in a controlled 
experiment environment, and only 10 test 
cases were used. 

4. Glowworm Swarm Optimization (GSO) 
Applications: 

GSO has been implemented in several 
domains, including regression testing. In 
TCP, there is only one study that uses GSO 
for prioritizing test cases as below: 

- Multiple factors: Raman and Subramani 
[82] presented a multi-objective GSO-
based method for optimizing test cases 
according to statement and fault coverage. 
This approach reached 90% of APFD and 
was compared with PSO and ABC. Still, 
this approach lacks sufficient evaluation 
because it was not applied in a controlled 
experiment environment, and the number 
of test cases was very few. 

5. Cat Swarm Optimization (CSO) 
Applications: 

In terms of CSO applications in TCP, there 
are three studies found based on fault 
detection rate that was incorporated with 
other factors as below: 

- Incorporating test case clustering with 
fault detection rate: Vats and Kumar [83] 
and Yadav and Dutta [84] presented CSO-
based methods for prioritizing test cases. 
Nevertheless, there is insufficient 
information regarding evaluation and 
comparison as well as no controlled 
experiment was applied on these methods. 
Besides, the comparison in the second 
study was made using success rate rather 
than APFD metric. 

- Multiple factors: Likewise, Manaswini 
and Rama Mohan Reddy [85] proposed a 
CSO-based algorithm for prioritizing test 
cases based on three parameters. These 
parameters are fault detection rate, time of 
execution for the test case, and coverage 
scope. However, the algorithm lacks 
adequate evaluation as there is no 
measurement or comparison nor any 
controlled experiments specified. 

6. Cuckoo Search Algorithm (CSA) 
Applications: 

There are only two applications of CSA 
proposed for TCP as follow: 

- Code coverage: Dhareula and Ganpati [86] 
presented a CSA for TCP. Even though 
this method was based on code coverage, 
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its proficiency is measured using APFD, 
which falls below the 80% mark. 

- Incorporating execution time with faults 
coverage: Nagar et al. [87] proposed a 
CSA for optimizing test cases by 
prioritizing and selecting only effective 
test cases that capture faults. Nonetheless, 
this algorithm needs sufficient evaluation 
in terms of measurements, achievement, 
benchmarking, and comparison with other 
algorithms. 

7. Firefly Algorithm (FFA) Applications: 

Only two studies were found as regard 
applications of FFA in TCP as follows: 

- Incorporating the importance of test cases 
with their edit distance: Su et al. [88] 
presented an FFA for prioritizing test cases 
based on a hybrid model, which is the 
correlation between edit distance of test 
cases, i.e., the similarity, and their 
importance, i.e., the test data. The 
algorithm was measured using APFD and 
time of execution as well as compared with 
PSO, Greedy, and original FFA. Besides 
that, the achievement gained was an 
average of 95.27 as in APFD within an 
average of 221 sec as execution time. 

- String distance of test cases: 
Khatibsyarbini et al. [12] introduced an 
FFA method for TCP. The approach was 
evaluated using the APFD metric and 
execution time and was compared against 
PSO, local beam search (LBS), greedy, 
and GA. The reported achievements 
obtained was an average of 94.07% as 
APFD within 373 sec as a time of 
execution. 

8. Bat Algorithm (BA) Applications: 

In terms of bat algorithm application for 
TCP, there is only one study as detailed 
below: 

- Fault coverage: Bajaj and Sangwan [89] 
suggested a bat algorithm for prioritizing 
test cases based on fault coverage. 
Compared with untreated, random, reverse 
order, and GA, this algorithm gained 84 – 
88.07% APFD values. However, the 
algorithm lacks sufficient evaluation, only 
applied on one project with 10 test cases 
matched with 13 faults. 

- Metrics of code maintainability: Öztürk 
[90] introduced a TCP method using the 
bat algorithm. In this study, 12 metrics of 
code maintainability were investigated, 
including LOC. However, the achievement 
of this method was not clearly specified as 
the comparison with other algorithms was 
only specified in figures instead of 
numbers. 

9. Lion Search Algorithm (LSA) 
Applications: 

LSA was employed for prioritizing test cases 
in only one study presented here: 

- Historical failure patterns: Asthana et al. 
[91] introduced a lion-based algorithm for 
optimizing test cases. This algorithm first 
prioritizes test cases then selects only an 
effective set for execution where 80% of 
faults were detected as reported in the 
experiments. Even though the APFD 
metric has been used for measurement, no 
comparison and achievements are 
specified. 

10. Flower Pollination Algorithm (FPA) 
Applications: 

In TCP, FPA was applied in only one article 
found in this study as detailed: 

- Code coverage: Dhareula and Ganpati [92] 
presented an FPA-based method for 
prioritizing test cases. However, this 
algorithm suffers from insufficient 
evaluation against optimization techniques. 

11. Gray Wolf Optimization (GWO) 
Applications: 

The applications of GWO in TCP were 
found in one study as presented in this work. 

- Incorporating test case clustering with 
code coverage: Badanahatti and Murthy 
[93] introduced a cloud-based regression 
testing method for generating, clustering, 
and prioritizing test cases, respectively. 
This technique first generates test cases (in 
the cloud) based on code coverage 
(including loop, statement, line, and 
comment coverage), then clusters them 
according to closeness using Kernel Fuzzy 
C-Means (KFCM) clustering algorithm, 
and finally prioritizes test cases using a 
GWO algorithm. However, the comparison 
was conducted just between clustering 
algorithms, i.e., K-means against KFCM, 
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and memory usage metric is merely related 
to regression testing. 

12. Shuffled Frog-Leaping Algorithm (SFLA) 
Applications: 

For SFLA, a single study was found as 
detailed below: 

- Multiple factors: Manaswini and Rama 
Mohan Reddy [94] employed SFLA for 
prioritizing test cases according to the 
coverage of code, cost (time of execution), 
and fault. However, not enough 
information about implementation, 
comparison, and achievement is specified. 

5.2 Hybrid Swarm Intelligence Algorithms 
In terms of hybrid algorithms where two or more 

algorithms are integrated to improve proficiency, 
convergence, and accuracy, those hybrid algorithms 
were improved. As mentioned earlier, hybridization 
resulted in efficiency and effectiveness 
improvements for TCP methods. In this review, 13 
studies were found that implemented hybrid 
algorithms in TCP as improvements in which they 
were popularly categorized as hybridization among 
SI algorithms, integrating SI algorithms with a 
genetic algorithm, integration with fuzzy logic, and 
integration with SVM. 

1. Hybrid within Swarm: 

Five studies were found in terms of 
hybridization among SI. 

- Requirement-based: Dahiya and Solanki 
[95] provide a hybrid technique where ACO 
and PSO are combined for TCP. In this 
technique, four factors were used, i.e., 
customer-assigned priority (CP), 
implementation complexity (IC), requirement 
changes (RC), and fault impact of 
requirements (FI). This technique used an 
industrial case study written in java, matched 
with unprioritized, random, and reverse 
prioritized sequence, as well as ACO and 
PSO. Also, it was measured by APFD (91%) 
and PTR (54%) metrics. 

- Code-coverage: Bajaj and Sangwan [96] 
integrated CSA with PSO for optimizing test 
cases based on statement coverage. The 
algorithm first prioritizes test cases, selects 
modification-revealed among them, then 
eliminates redundant test cases. The 
algorithm used 3 java programs from SIR for 
experiments and achieved 98.27% as an 
average of APSC within 373.55 sec. Also, 

the algorithm outperformed GA, GSA and 
PSO. 

- Quality metrics: Kumar and 
Muthukumaravel [97] proposed a TCP 
approach using PSO and an improved CSA, 
prioritizing test cases based on quality 
metrics, i.e., coupling, cohesion, and intended 
fault IF value. The workings of this approach 
are by firstly generating test cases from the 
application, then extracting quality metrics 
from the test cases, and finally optimizing 
test cases using PSO. The PSO output is 
considered input for ICSA in producing final 
optimized test suites. However, no evaluation 
is specified for this approach to show 
hybridization improvements against other 
optimization methods. 

- Incorporating test case clustering with 
multiple factors: earlier, Kale and Murthy 
[98] presented a hybrid swarm algorithm by 
integrating FFA with ABC for regression 
testing. The hybrid algorithm utilized the 
scout bee phase of the ABC algorithm in the 
FFA to improve the search quality in 
exploitation and exploration. This algorithm 
has four phases. First, it generates test cases. 
Second, it identifies factors for identifying 
test cases for prioritization, i.e., time, trace 
events, behavioral dependency, and 
responsibility. Then, the identified test cases 
were clustered using the K-means algorithm 
to separate relevant and irrelevant test cases. 
The end, prioritizing relevant test cases using 
the previously identified factors. The 
algorithm was measured using APFD and 
compared with an existing method which is 
not identified. Authors claimed that the 
performance of their algorithms according to 
APFD metric reached 85% and 70%, 
respectively. However, it seems that this 
algorithm lacks sufficient evaluation in terms 
of the application in reliable projects as in 
controlled experiments and needs to be 
compared with other optimization algorithms 
to prove its superiority. 

- Fault coverage: Bajaj and Abraham [99] 
introduced a hybrid DAPSO (dragonfly with 
PSO) algorithm for optimizing test cases. The 
algorithm first prioritizes test cases based on 
fault coverage then minimizes them. DAPSO 
compared with random search, GA, PSO, Bat 
and dragonfly algorithms (discrete and 
combinatorial) and achieved an average of 
93.64% of APFD for TCP and an average of 



Journal of Theoretical and Applied Information Technology 
30th June 2022. Vol.100. No 12 

  © 2022 Little Lion Scientific    

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 

 
4011 

 

83.69% of test minimization percentage 
(TMP) for reduction. 

2. Swarm Intelligence with Genetic Algorithm 
(GA) Integration: 

GA has been combined with SI in which four 
works were found for optimizing test cases as 
detailed: 

- Fault coverage: Bajaj and Sangwan [100] 
suggested a discrete CSA for prioritizing test 
cases based on fault coverage. The algorithm 
used 4 office applications in the experiment 
and was compared with random search (RS), 
ACO, GA, tree seed algorithm (TSA), CSA, 
where the APFD metric was used for 
measuring effectiveness. 

- Code coverage: Dhareula and Ganpati [101] 
proposed FPA that is genetically modified for 
prioritizing test cases. In this work, the 
EclEmma tool is used for code coverage to 
optimize test cases accordingly. Then 
optimizing test cases starts using FPA while 
the output is supplied as input to the GA. 
GM-FPA algorithm outperforms GA, FPA, 
random, and reverse random ordering as it 
achieves an average of 73% of APFD within 
an average of 0.165 sec. of execution time. 
However, this method’s performance falls 
below 80% of the APFD metric. 

- Incorporating execution time with historical 
failure patterns: Padmnav et al. [102] 
presented a hybrid algorithm for TCP based 
on historical failure patterns of regression 
cycles and execution time of test cases. The 
lack of information about experiments and 
the comparison of this algorithm makes the 
evaluation of this algorithm unclear for 
researchers. 

- Fault detection: Saraswat and Singhal [103] 
introduced a hybrid algorithm for optimizing 
test cases using GA and PSO. The algorithm 
first prioritizes test cases using GA, then 
takes the optimized test cases as an input to 
the PSO. Furthermore, in the PSO phase, the 
only global best value is shared with others, 
not the whole population. However, this 
hybrid algorithm was not compared with any 
optimization techniques. 

3. Swarm Integration with Fuzzy: 

Only a study was found that compounds with 
fuzzy logic with swarm as: 

- Fault coverage: Nayak et al. [104] combined 
the honeybee algorithm with a fuzzy rule for 
prioritizing test cases according to the rate of 
fault detection. This method used a fault 
matrix matched with related test cases and 
execution time as inputs. The method 
experimented on two VB projects, and no 
prioritization, reverse, random, Kavitha and 
Sureshkumar [105], Tyagi and Malhotra 
[106], and Nayak et al. [107] techniques. 
They reported that their technique achieved 
85% of APFD within 40% of tests executed 
to detect all faults. However, there is 
insufficient evidence on this technique's 
performance, as only 18 test cases were used 
within two VB projects, and no public dataset 
like SIR was used. 

4. Swarm integration with Artificial Neural 
Networks (ANN): 

One proposed work detected in this study is as 
below: 

- Incorporating test case clustering with fault 
detection: Harikarthik et al. [108] presented a 
hybrid algorithm for prioritizing test cases. 
The algorithm first generates test cases from 
program source code and then clusters them 
to choose relevant test cases intended to be 
optimized using a modified kernel fuzzy c-
means (MKFCM) algorithm. After picking 
appropriate test cases, optimization is then 
carried out using the ANN-Whale algorithm 
according to maximum faults detection. This 
algorithm outperforms the existing ANN 
algorithm in terms of the time of execution 
and the required amount of memory. Despite 
its success in reducing execution time and 
memory required during execution, this 
algorithm needs more evaluation in terms of 
controlled experiments as well as its specified 
performance is relatively low according to 
the APFD metric. 

5. Swarm Integration with Integer Linear 
Programming: 

Combing SI with linear programming was 
observed in one study as: 

- Incorporating method-call with code 
coverage: Wong et al. [109] applied a TCP 
technique for a time-constraint environment 
using CSA and integer linear programming. 
The prioritization of test cases was carried 
out based on code coverage and method-call 
information using CSA, then selecting the 
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best test cases was performed using integer 
linear programming model. Concerning the 
generalizability and reliability of the 
technique, the amount of optimized test cases 
is still very few, and more controlled 
experiments are needed to be involved in the 
evaluation. 

6. Swarm integration with SVM: 

There is only one study that SI integrated with 
Support Vector Machine (SVM) was observed 
as: 

- Requirement-based: Dahiya and Solanki 
[110] recommended a CSA integrated with 
SVM for prioritizing test cases according to 
the distance matrix of requirements. This 
algorithm matched with firefly algorithm, 
where the achievement is 90.02% of APFD 
within 108.4456 MS, Max = 0.994366, Min = 

0.187267, mean = 0.810716, median = 
0.999526, and SD = 0.057313. However, the 
experimental evaluation has not been 
specified and compared to just one algorithm, 
which may be insufficient for evaluation. 

5.3 Measurement and Evaluation 
In regression testing, it is known that new TCP 

methods must be assessed for their performance by 
formal measurement and comparison against 
existing methods [9], [111]. Studies in this domain, 
such as Hao et al. [9] and Harman et al. [112], have 
identified two aspects of performance to be 
measured, which are efficiency and effectiveness; 
efficiency can be scaled using actual execution time 
of prioritization, i.e., sometimes noted as testing 
cost and effectiveness depends on the bases of the 
prioritization process. Accordingly, Figure 8 
demonstrates the current evaluation metrics in TCP 
that are widely employed. 

 

Figure 8: Measurements used in Current Test Case Prioritization 

As evident in Figure 8, it can be observed that the 
weighted average percentage faults detected 
(APFD) metric is the most used, in which 
approximately 66.7% of the current studies have 
been evaluated and compared against others. This is 
followed by execution time at 8.8% of these studies. 
Next, the average percentage of statement coverage 
(APSC) for measuring statements coverage. Then 
cost-cognizant of the average percentage of faults 
detected per cost (APFDC), Average percentage of 
branch coverage (APBC), effective executing time 
(EET), and percentage of test suite required for 
complete fault coverage (PTR), which was used in 
just three studies for each of them. Finally, the 
Average percentage of function coverage (APFC), 

the average percentage of test-point coverage 
(APTC), Cov(x), Cost(x), Fault(x), SQM, Memory 
usage (bits), and change coverage metrics have only 
been used in one study for each. Notably, 
inclusiveness, precision, size reduction, test 
selection percentage (TSP), mean, min, max, and 
standard deviation are metrics used for scaling the 
reduction of test cases in studies that combined TCP 
with test selection or reduction. Remarkably, 14% 
of the previous studies did not disclose any 
evaluation metric used for assessing their 
performance. 

On the experimental side, benchmarking is 
necessary for evaluating the performance of any 
TCP method. For reliability and scalability, 
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assessing testing techniques via real-world or 
industrial projects is the best choice as used only in 
5% of the reported studies. However, industrial 
projects cannot be available due to confidentiality 
concerns [17]. For this reason, public datasets such 
as Software-artifact Infrastructure Repository (SIR) 
and GitHub are an excellent choice for evaluating 
testing techniques in which researchers can 
replicate or empirically assess such methods [17]. 
As public datasets, SIR is the most popular dataset, 
which has been used in 22.8%, and GitHub also has 
been used in 7% of these current studies. However, 
around 59.7% of the studies were not implemented 
on public datasets, adversely affecting their results' 
generalizability and reproducibility, as stated by 
Bajaj and Sangwan [17]. For seeking more 
information, refer to Table 3 in the appendix. 

5.4 Single vs Multi-objective TCP 
With the increasing use of multi-objective 

optimization to solve NP-hard problems, TCP has 
been treated as a multi-objective problem in the 
research community [9], [17], [56], [104]. Several 
researchers reported that multi-objective TCP 
methods outperform single-objective TCP for 
several reasons, such as their capability to cope 
with the increasing complexity of test case 
optimization and to tackle two or more objectives 
for optimization [111], [113]–[115]. Recently, there 
has been a notable growth of multi-objective TCP 
among SI algorithms in which 24 (i.e., around 42%) 
of the current studies were multi-objective since 
2014, as demonstrated by Figure 9 below. 

 

Figure 9: Single and Multi-objective TCP 

 

6 PROBLEMS AND OPEN RESEARCH 
ISSUES 

 
In conclusion, based on the observations in this 

study, there are a few issues and future directions to 
be drawn as follows: 

1. Incorporating more swarm techniques: more 
SI algorithms have not been explored in TCP, 
such as African buffalo, bacterial foraging, 
monkey search, cockroach, wolf search, 
chicken swarm, grasshopper optimization, etc. 

Exploring more swarm algorithms will enrich 
the domain of TCP with more methods and 
empirical studies with different perspectives in 
which experiencing such algorithms in terms of 
optimization proficiency, scalability, and 
reliability. 

2. Evaluation issues: at the end of this study, it 
was observed that most of the work reviewed 
suffers from a sufficient amount of evaluation 
at different levels of perspectives. This issue is 
evidently clear when looking at Table 3 in the 
appendix. It was also confirmed by previous 
studies such as Arrieta et al. [32], Ba-
Quttayyan et al. [116], Bajaj and Sangwan [17] 
and Brunetto et al. [117]. 

(a) Empirical Studies: the existing publications 
were mostly expressed in the initial form of 
ideas or methods in which their results still 
need to be confirmed empirically. So, more 
empirical studies were needed to confirm 
the reliability of such studies. 

(b) Dataset Publicity: using public datasets, 
such as SIR or GitHub, provides a stable 
environment for assessing and reproducing 
researchers’ work for comparison purposes 
against other modern methods. However, 
most researchers used either private or 
industrial datasets. Due to confidentiality, 
other researchers cannot reproduce and 
evaluate their results against prior research, 
which affects the generalizability and 
reliability of such publications. 

(c) Fitness Function: Most reviewed studies 
do not express their fitness functions, while 
others use famous metrics as fitness 
functions. Hence, fitness function should 
be precisely determined cost-effectively 
due to its significant effects on producing 
accurate results, especially when 
optimizing multiple objectives. 

(d) Measurements: according to Figure 8, the 
most common metrics used are APFD and 
Execution Time. Moreover, most of the 
current publications used single 
performance metrics, whereas researchers 
like Bajaj and Sangwan [17] and Arrieta et 
al. [32] suggested the usage of two or more 
metrics for the robustness of the proposed 
work. 

(e) Experiments: it is noticed that most of the 
studies compared their results with 
traditional ordering. However, this will not 
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make results solid unless matched against 
current optimization methods. Besides, 
when proposing multi-objective methods, it 
should also be compared against the multi-
objective method. Likewise, the number of 
test cases and the size of subjects 
(programs) used during experiments should 
be sufficient to obtain satisfying results. 
Equally, it is good to take advantage of the 
support of commonly and publicly 
available tools such as selenium, gcov, and 
EclEmma, for improving the optimization 
process. Lastly, when applying 
optimization methods to the industry, 
Arrieta et al. [32] suggested using a user-
friendly tool form because practitioners are 
always concerned about friendly tool 
support. 

3. Hybridization: due to the increased 
performance and interest of hybrid algorithms, 
more hybridization is needed for SI and other 
optimization techniques for enhancing 
algorithms proficiency. 

4. Multi-objective: In this review, it is noticed that 
there is an increasing growth in fault-based 
TCP methods of about 38.6% (22 papers), 
much more than code-based TCP methods with 
about 24.6% (14 paper). Also, 4 studies (around 
7%) combined code with fault. Consequently, 
test cases were prioritized according to several 
bases in regression testing. TCP factors that 
have been used independently as reported by 
this study were: code coverage, statement 
coverage, fault coverage, fault detection, 
requirements (distance-based and index-based), 
history of test execution, string distance of test 
cases, modifications of the software units, fault 
exposing capability, change coverage, decision 
matrix (total faults/time of execution for each 
test case), historical failure patterns. It is also 
remarked that there is increasing interest in 
using multi-objective optimization of test cases. 
Due to this, the diversity of factors (objectives 
and criteria/constraints) can improve the 
proficiency of TCP methods. As observed in 
this study, TCP is carried out based on multiple 
factors as: 

(a) Execution Time: as observed in this review, 
test cases were not prioritized based on 
their execution time alone but incorporated 
with other factors such as code coverage, 
statement coverage, fault coverage, fault 
detection, coverage scope, historical failure 
patterns, etc. However, the execution time 

can also be incorporated with other factors 
such as fault history, fault severity, test 
case importance, and others. 

(b) Test Case Clustering: clustering test cases 
as observed has been incorporated with 
other factors such as fault detection rate, 
code coverage, test case clustering with 
multiple factors (time, trace events, 
behavioral dependency, and responsibility 
for), and fault detection. However, test case 
clustering can also be incorporated with 
fault severity, requirements, change 
coverage, and other factors. Furthermore, 
test cases can be clustered based on 
different bases such as similarity, 
dissimilarity, relevance, or other bases. 

(c) Statement Coverage: As mentioned before, 
statement coverage has been incorporated 
with execution time. It is also incorporated 
with fault coverage in one study. 

(d) Metrics of Code Maintainability: It is a 
group of metrics for code maintenance. The 
used metrics of code maintainability were 
12 as the total number of fields in the class 
(NOF), the total number of methods in the 
class (NOM), the total number of 
properties in the class (NOP), the total 
number of public fields in the class 
(NOPF), the total number of public 
methods in the class (NOPM), the total 
number of source-code lines in the class 
(LOC), weighted methods per class 
(WMC), the total number of children (sub-
classes) of the class (NC), depth of 
inheritance tree (DIT), lack of cohesion of 
methods (LCOM), the total number of 
classes that reference the class (FANIN), 
and the total number of classes referenced 
by the class (FANOUT). Yet, the above-
mentioned were class metrics. Other 
metrics, called method metrics, can be used 
that consist of LOC, cyclomatic complexity 
(CC), and parameter count (PC). Likewise, 
there are other code maintainability metrics 
such as Lines of Executable code, Efferent 
Coupling (EC), number of Lines Changed 
in the Class (CHANGE), Comment Line of 
Code (CLOC), maintainability Index (MI), 
etc. as reported by Ardito et al. [118] in 
their review. 

(e) Software Component Metrics: in terms of 
component metrics, the used metrics were 
test cases’ criticality, execution time, and 
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faults history. These metrics were closely 
related to test execution history, and other 
data can be considered. 

(f) Importance of Test Case with their Edit 
Distance: as observed in this study, which 
is related to test data, more features of test 
cases are needed, such as similarity and 
dissimilarity. 

(g) Quality Metrics: in this study, quality 
metrics used were coupling, cohesion, and 
intended fault (IF) value. Other metrics 
also can be integrated. 

(h) Method-Call with Code Coverage: as 
mentioned before, method-call is a kind of 
code maintainability metric. 

(i) Multiple Factors: in one of the previous 
studies, a combination of factors was used 
as (1) importance (of requirement), (2) 
volatility (change of requirement), (3) 
complexity (of requirement), (4) Fault Rate 
(of requirement), (5) Time (for test case), 
and (6) Coverage (of requirement). Also, 
customer-assigned priority (CP), 
implementation complexity (IC), 
requirement changes (RC), and fault 
impact of requirements (FI) were used in 
one study. Such factors related more to 
requirements. Another study used multiple 
diverse factors, which were: (1) customer-
assigned priority (CP), (2) implementation 
complexity (IC), (3) changes in 
requirements (RC), (4) fault impact of 
requirements (FI), (5) completeness (CT), 
(6) traceability (TR), and (7) execution 
time (ET). Lastly, fault detection ability, 
code coverage, and execution time have 
been used in one study here. As observed, a 
more diverse combination of related factors 
is needed for TCP enhancements. 

Accordingly, more factors were needed to be 
involved in the optimization process of test cases 
and integrating them with others as a multi-
objective process against single-objective 
optimization. Furthermore, Parejo et al. [119] 
asserted that better results and distribution could be 
gained for APFD values when using multi-objective 
combinations for prioritizing test cases than single 
objectives. 

Lastly, this study has limitations on the scope, 
search databases, and studied domain which are 
briefly emphasized below: 

 Scope: only the SI applications on the TCP 
were investigated in this study as a specific 
topic and narrowed research area. In general, 
AI, ML, and evolutionary computation are 
wider areas and have been studied broadly in 
the literature. 

 Search databases: this study considered only 
the Scopus database for obtaining the primary 
studies. Other research databases, including 
google scholar, web of science, research gate, 
etc., can provide more primary studies for 
investigating SI in the TCP domain. 

 Domain: regression testing domain has 
different categories as TCP is considered one of 
them. Test case selection, hybrid, test 
generation, and other testing categories are not 
included here. These are recent trends for 
potential studies in the research community. 

7 CONCLUSION 
 

Prioritizing test cases is one of the most effective 
ways of performing regression testing, especially 
when optimization methods are employed. SI has 
attained remarkable importance among optimization 
methods, with a growing number of publications 
based on SI in the context of TCP. In this study, 57 
papers were identified, analyzed, and classified 
according to predefined research questions to 
determine the current state of SI applications in 
TCP. The study addresses internal structure, single, 
hybrid SI algorithms, multi-objective optimization, 
and evaluating such studies in the field. In 
summary, this study offered insights into the 
application of SI to prioritize test cases ideally and 
provide ideas for future research, in the previous 
sub-section, in terms of employing SI for TCP. 
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APPENDIX A: ALL PAPERS SUMMARY 

Table 3: The Summary of All Involved Studies 

No. Study Year Algorithm Application # of TC Benchmarks Tools Metric 

S1 [72] 2021 AFSA Python 8,156 SIR – APTC, EET 
S2 [100] 2021 CSA + GA MATLAB 2,400 Terp Office 

applications 
Minitab 
software 

APFD 

S3 [104] 2021 ABC + 
Fuzzy 
Logic 

C 18  Private QTP APFD 

S4 [95] 2021 ACO + 
PSO 

MATLAB 100 Industrial 
“Cosmosoft 

Technologies” 

– APFD, PTR 

S5 [96] 2021 GSA + 
PSO 

MATLAB 1,184 SIR JUnit, 
Emma 

APSC, 
Inclusiveness, 
FDCLP, TSP, 

CRP 
S6 [77] 2021 PSO MATLAB 313 Open source EclEmma Inclusiveness, 

precision, and 
size reduction 

S7 [99] 2021 PSO + DA MATLAB 2,400 Open source – APFD, TMP 
S8 [110] 2021 CSA + 

SVM 
MATLAB – – – APFD, Mean, 

SD, Min, 
Max 

S9 [89] 2021 Bat – 10 Private – APFD 
S10 [52] 2020 ACO – 1,198 Defects4J – – 
S11 [81] 2020 ABC – 10 Private – APFD 
S12 [83] 2020 CSO – 10 – – APFD, 

Exec. time 
S13 [56] 2020 ACO MATLAB 8,259 SIR gcov – 

S14 [88] 2020 FFA – 1,593 SIR – APFD, Exec. 

time 

S15 [64] 2020 ACO C++ 5 – – APFD 

S16 [92] 2020 FPA Java 191 Open source Eclipse 
IDE, 

TestNG, 
EclEmma 

APFD 

S17 [91] 2020 LSA MATLAB 888 Private Excel APFD 

S18 [101] 2019 FPA+GA Java 191 SIR Eclipse, 
EclEmma 

APFD, Exec. 

time 

S19 [70] 2019 ACO Java 35392 SIR – APFD, 

APFDC 

S20 [108] 2019 Whale + 
ANN 

Java – – – APFD 

S21 [86] 2019 CSA Java ≈ 33 Open source Eclipse, 
TestNG 

and 
EclEmma 

APFD 

S22 [68] 2019 ACO – 6 – – APTC 

S23 [80] 2019 ABC – 14 SIR – Change 

coverage 

S24 [94] 2019 SFLA – 10 SIR – Cov(x), 
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No. Study Year Algorithm Application # of TC Benchmarks Tools Metric 

Cost(x), 

Fault(x) 

S25 [55] 2019 ACO MATLAB - - – – 

S26 [85] 2019 CSO – 15 SIR – – 

S27 [79] 2019 ABC Python 500 Private Selenium 
IDE 

APFD, 

APFDC 

S28 [102] 2019 ABC+GA – 2086 Private – APFD 

S29 [84] 2019 CSO MATLAB 50 – – APFD 

S30 [12] 2019 FFA Java 6,336 SIR 
(Siemens) 

NetBeans APFD, Exec. 

time 

S31 [109] 2019 CSA + ILP – 10 SIR Emma, 
Source 

monitor, 
time.pl, 
Lingo 

APFD 

S32 [73] 2018 PSO – – GitHub – APBC, EET 

S33 [53] 2018 ACO – – SIR 
(Siemens) 

– APSC 

S34 [71] 2018 PSO MATLAB 1,628 Industry 
(Visual 

Analytics 
Benchmark 
Repository) 

– APFD 

S35 [54] 2018 ACO – 7 – – – 

S36 [97] 2018 PSO+ICSA – – – – Software 

quality 

metrics 

S37 [11] 2018 ACO – – – – – 

S38 [90] 2017 Bat – – GitHub – APFD 

S39 [103] 2017 PSO+GA Java 30 Private – APFD 

S40 [75] 2017 PSO – 1608 Siemens – APFD 

S41 [57] 2017 ACO – 8,216 SIR, Google gcov, 
GCC 

APSC, EET 

S42 [93] 2017 GWO Java – Private Cloud Exec. Time, 

Memory 

Usage (bits) 

S43 [98] 2017 FFA+ABC Java 82 Private – APFD 

S44 [78] 2016 PSO – 8 – – APFD 

S45 [60] 2016 ACO MATLAB 794 Private Emma, 
ant 

APFD 

S46 [61] 2016 ACO Perl 24 Private – APFD 

S47 [65] 2016 ACO – 6 – – APFD 

S48 [62] 2016 ACO Perl 45 Defects4J – APFD, PTR 

S49 [63] 2016 ACO Perl 24 Private – APFD, PTR 
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No. Study Year Algorithm Application # of TC Benchmarks Tools Metric 

S50 [82] 2015 GSO – 8 – – APFD 

S51 [67] 2015 ACO – 8 – – APFD 

S52 [69] 2015 ACO – 20,000 Industry – APFD 

S53 [87] 2015 CSA Java 6 – MATLAB – 

S54 [74] 2014 PSO MATLAB 18 – – APFD 

S55 [66] 2014 ACO Turbo C++ 61 Private – – 

S56 [59] 2013 ACO – 8 – – APFD 

S57 [76] 2008 PSO – 20 JUnit – – 

 
 


