
Journal of Theoretical and Applied Information Technology
30th June 2022. Vol.100. No 12

 © 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3997

A CRITICAL ANALYSIS OF SWARM INTELLIGENCE FOR
REGRESSION TEST CASE PRIORITIZATION

BAKR BA-QUTTAYYAN1, HASLINA MOHD2, YUHANIS YUSOF3

School of Computing, College of Arts and Sciences, Universiti Utara Malaysia (UUM), 06010, Sintok,

Kedah, Malaysia

E-mail: 1baksam1@gmail.com, 2haslina@uum.edu.my, 3yuhanis@uum.edu.my

ABSTRACT

In software development, applications always undergo frequent modifications to cope with the changing
needs of the users. Hence, this will affect the reliability of the applications. Regression testing is used to
tackle this problem in which test case prioritization (TCP) is considered as one of the effective approaches.
Optimization methods are employed to enhance the proficiency of prioritizing test cases in terms of
efficiency and effectiveness. Swarm intelligence (SI) algorithms are mostly applied to TCP as one of the
effective optimization methods. This paper aims at providing state-of-the-art for TCP using SI algorithms.
The methodological process of performing this review includes conducting a search in the Scopus database
using predetermined keywords to obtain relevant primary studies where suitable papers have been selected
according to a set of predefined criteria. Predefined research questions also provide a basis for assessing
nominated studies. Hence, the most relevant papers (57 out of 420) have been identified, analyzed, and
classified. Based on the findings, it is learned that the deployment of swarm intelligence algorithms in
prioritizing test cases yields promising results. Moreover, this study also includes suggestions that can be
deployed to improve existing studies.

Keywords: Swarm Intelligence, Software Testing, Regression Testing, Test Case Prioritization,
Optimization Algorithms

1 INTRODUCTION

Digital technology plays an essential role in
contemporary daily life, where computerized
systems represent the backbone of everyday
transactions in aspects such as education, health,
government, and finance. Thus, accreditation is
required to ensure the production of worthy and
reliable software systems as failures in such
systems may lead to financial risk, disaster, or
death. Krasner [1] reported that the United States
has lost nearly $2.08 trillion due to the poor quality
of software in 2020. Likewise, Heathrow airport
disruption in London, British Airways glitch, social
media (Facebook, Instagram, and WhatsApp)
outage, TSP bank outage, and others are clear
examples of the negative impact of software errors
in public life [2].

In the software industry, producing high-quality
systems undergo a sequential, tedious, and costly
process that affects the digital industry’s reputation.
As an arduous and critical part of the software
development life cycle (SDLC), software testing is

responsible for building confidence towards the
developed software systems, costing around 50% of
the overall production cost [3]. Therefore, the
software under development is frequently modified
to cope with the frequently changing requirements
of customers and the market, leading to the
occurrence of new programming errors requiring
quality testers to deal with them seriously. Deeper
in the testing artifacts, a test case is the smallest unit
that is carefully designed with the intent of
detecting errors, and sometimes test cases need to
be optimized for effective implementation. In
software testing, the branch that deals with
modification errors and their adverse effects is
called regression testing.

Regression testing is defined by the IEEE
standard glossary of software engineering
terminology as: “Selective retesting of a system or
component to verify that modifications have not
caused unintended effects and that the system or
component still complies with its specified
requirements.” [4]. Furthermore, Rothermel and
Harrold [5] define the regression testing problem

Journal of Theoretical and Applied Information Technology
30th June 2022. Vol.100. No 12

 © 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3998

as: Given a program P, its modified version P’, and
test set T used previously to test P, find a way,
making use of T, to gain sufficient confidence in the
correctness of P’.

Despite its high cost and time-consuming,
regression testing remains an unavoidable and vital
process in software development. Regression
testing can be performed by executing all test cases,
selecting test cases, prioritizing test cases, or
combining between selection and prioritization of
test cases. Retest all is the first method in which all
available test cases are re-executed to attain
uncovering faults. Such a conventional method is
costly, especially when the amount of test cases is
huge due to increasing the size and complexity of
the software system. The second method is called
test selection which can select a significant subset
of the test cases to check the amendments on the
current program. However, discarding any related
test case may leave some defects undiscovered. Test
case prioritization (TCP) is a regression testing
method that effectively reschedules test cases to
attain a performance goal. Accordingly, this method
avoids the drawbacks of omitting test cases as
occurred in test selection and hybrid approaches.
Figure 1 highlighted the regression testing
approaches below:

Figure 1: Regression Testing Approaches

Test case prioritization is one of the most
effective approaches of regression testing as it
reorders the execution of test cases in an effective
way for detecting errors as early as possible during
the testing process. Unlike test selection and hybrid
approaches, TCP does not omit any test case, in
order not to allow faults to slip away, and it
provides an effective ranking of test cases in which
the rate of fault detection can be accelerated [6]–
[8]. Due to the complexity and complicated nature
of regression testing, researchers have denoted the
TCP problem as an NP-hard problem, implying the
need for optimization algorithms [9], [10]. Recent
research efforts indicated that artificial intelligence
(AI) methods had gained much popularity and
promising results for optimizing test cases [11],
[12]. Among effective AI methods, evolutionary
algorithms and swarm intelligence are mostly
applied in TCP.

This paper investigates the application of swarm
intelligence (SI) in the software testing domain,
specifically the regression TCP. A total of 57
papers published between 2008 and 2021 have been
identified. Hence, the study aims to extensively
analyze and discuss the work that has been done in
the software testing domain and provide future
directions to help prospective studies in this field.
Next section specifies the related work, followed by
an overview of SI, the study method has been
described in section 4, while section 5 discusses the
results, then the study is concluded in section 6.

2 RELATED WORK

The increasing need for solving real-world
problems led to the utilization of computation
intelligence for solving such problems through
optimization. Meanwhile, SI algorithms have
become quite popular in which these algorithms are
applied in different domains of software
engineering and testing. In the context of regression
testing, SI algorithms have been widely
implemented for optimizing test cases, especially in
TCP. Literature survey revealed several studies that
involve the application of nature-inspired
algorithms in the TCP domain.

Catal [13] studied the effectiveness of using
genetic algorithms (GAs) for prioritizing test cases
by selecting seven primary studies. He reported that
among these seven studies, five had a positive
impact of GA on TCP than other algorithms, such
as hill-climbing, greedy algorithm, random, and
other TCP techniques. This research concludes with
specific recommendations for better implementation
of TCP techniques, such as: assessing TCP methods
using the most common measurements in the field
and reporting the TCP factors for the algorithm.

Sharma and Singh [14] had briefly explored the
implementation of ACO in the context of model-
based TCP. Seven studies were collected and
reviewed to conclude that ACO is a robust
algorithm and can provide positive feedback in the
model-based TCP.

Bajaj and Sangwan [15] investigated nature-
inspired methods, including swarm algorithms, that
have been implemented for optimizing test cases of
regression testing. In this study, 15 works have been
explored and summarized. In conclusion, they
stated that GA is the most implemented and well-
known among all nature-inspired algorithms for
researchers in different approaches of the regression
testing domain. The work concludes with the

Journal of Theoretical and Applied Information Technology
30th June 2022. Vol.100. No 12

 © 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3999

importance of nature-inspired algorithms for
efficient optimization and cost-effectiveness, as
well as the need for hybridization among these
algorithms for more effectiveness.

Alkawaz and Silvarajoo [16] surveyed the
optimization techniques applied in TCP. As a result,
eight studies were collected and examined based on
the applied algorithm, purpose, coverage,
implementation, and metrics used for evaluation.
However, their work does not cover SI algorithms
in TCP.

Bajaj and Sangwan [17] systematically
investigated and categorized the application of GAs
in TCP, in which 20 relevant works have been
selected from four different databases. The selected
studies were investigated based on several criteria
such as prioritization method, benchmarks, size of
the test suite, GAs type, and metrics of scaling
performance, as well as proving a taxonomy for
GAs applied in TCP.

Paygude and Joshi [18] assessed the
implementation of evolutionary algorithms in the
context of TCP with a total of 33 papers reported
and tabularly summarized. The study concludes that
GA is the most popular and utilized algorithm, and
the APFD metric is used by most of the studied
papers. Besides evolutionary algorithms, however,
this study also includes papers that addressed non-
evolutionary algorithms such as ant colony,
clustering, greedy, particle swarm, and other
algorithms.

In summary, the work presented in this paper
builds on previous research to explore how swarm
intelligence algorithms affect the optimization of
test cases in the regression testing prioritization
process of the test cases. While earlier work
focused either on the single algorithm (i.e., GA,
ACO) or generally on a wide domain like
evolutionary or nature-inspired algorithms, we
narrowly focused on swarm algorithms
implemented to improve TCP performance. In
addition, we can study such algorithms at a much
deeper scale than previously possible by
considering only the SI discipline, which was
applied in the TCP domain. In other words, this
study differs from previous works in scope (i.e., a

very narrow topic), presentation (i.e., classification
based on TCP factors), and more suggestions for
common issues were added.

3 OVERVIEW OF SWARM

INTELLIGENCE

This section provides SI background, including
classification, benefits, general structure, and a brief
description of SI algorithms implemented in the
regression TCP.

3.1 What is Swarm Intelligence?
Swarm Intelligence (SI) is an integral part of

artificial intelligence (AI), which is recently gaining
increasing usage among researchers for
optimization due to the powerful performance and
flexibility it provides [19], [20]. The term swarm
intelligence was first coined in 1988 by Gerardo
Beni, in the context of cellular robotic systems as
simple agents interacting with each other by
utilizing the self-organization principle [21].
Basically, SI computation mimics the intellectual
cooperative behavior of the societies of the natural
creatures such as ant colonies, bee colonies, cat
swarms, etc. [20]. In the real world, there is a kind
of problem called NP-hard problems where, in this
situation, finding a global optimum (unique
solution) becomes almost impossible because
solutions always turn out to be infinite. In such
cases, it becomes necessary to find a workable
solution (near optimum) within the time constraints.
Thus, SI algorithms found their usefulness in
solving such real-world problems [19], [22].

Different types of SI algorithms exist, such as but
not limited to ant colony optimization (ACO),
particle swarm optimization (PSO), artificial bee
colony (ABC), glowworm swarm optimization
(GSO), and cat Swarm Optimization (CSO).
Chakraborty and Kar [19] classify different types of
SI algorithms as highlighted in Figure 2 below.

SI algorithms have several benefits that made
researchers prefer applying them in solving
optimization problems. Also, SI algorithms have
shortcomings reported by researchers such as
Slowik [23] and Yang et al. [24]. Both the benefits
and drawbacks are emphasized briefly in Table 1.

Journal of Theoretical and Applied Information Technology
30th June 2022. Vol.100. No 12

 © 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4000

Figure 2: Swarm Intelligence Algorithms Classification (adapted from [19])

Table 1: Swarm Intelligence Algorithms Benefits and
Drawbacks

Benefits Drawbacks
 Not start from a single

point, but among
potential solutions.

 Provide optimal global
search.

 Flexible and simple to
apply.

 Suitable for hard and
complex problems.

 A diverse range of
problems can be
handled.

 The simplicity of
parallel implementation.

 Expensive computation.
 Unique solutions cannot

be guaranteed.
 Not suitable for simple

problems.

SI algorithms have been used to solve real-world
problems, and their applications have pervaded
many aspects, including routing, scheduling,
tracking, sorting, and classification. The most
famous problems in which SI has been successfully
solved consist of the traveling-salesman problem
(TSP), aircraft landing, vehicle routing problem
(VRP), flow shop scheduling problem, knapsack
problem, timetable problems, etc. [23]–[25].

3.2 General Structure of Swarm Intelligence
To understand how the SI algorithms work, the

system consists of several phases that work in an
iterative process. Tan [26] and Yang et al. [24]
described the staged process briefly as beneath:

 Swarm Population – a collection of agents
that interact locally with each other within an
environment, i.e., the search space, have been
initialized.

 Fitness Function – sometimes is called
evaluation or objective function in which each
individual agent in the search space has been

assessed against an identified fitness formula
formulated carefully to represent the chosen
near-optimal solution for the desired problem.

 Communication – according to swarming
behavior such as ants and bees, fitness values
are shared among agents through the entire
atmosphere.

 Swarm Updating – for every iteration, each
agent updates once necessary its individual
and community best information as well as its
movement (i.e., velocity and position vector).

 End – the loop remains until termination
conditions have been met as the optimal
solution has been reached. Due to their
stochastic nature, repeated solutions are
challenging to obtain through SI.

Figure 3 clearly illustrates the aforementioned
stages below.

Figure 3: General Structure of SI Algorithms (as in [26])

Journal of Theoretical and Applied Information Technology
30th June 2022. Vol.100. No 12

 © 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4001

3.3 Swarm Intelligence Applications in TCP
Several SI algorithms have been implemented to

optimize the test cases in regression TCP since
2008. Due to their nature, researchers reported that
SI algorithms could increase the overall regression
testing methods proficiency, cost-effectiveness,
accuracy, and convergence incorporated with
providing the ability to cover multiple criteria and
decreasing complexity [14], [15].

In the context of testing, the optimization process
through SI algorithms has several considerations to
be taken into account. First, test cases usually are
initialized as a population of the swarm algorithm,
where the size of the population is the total number
of the test cases to be optimized. Furthermore, each
agent during communication can represent any
single test case among the population. Thus, each
test case will be evaluated against a fitness function.
On the other hand, the fitness function should be
carefully designed for representing the optimization
basis, i.e., the prioritization factors test cases are
optimized accordingly. Thus, there are three things
to be known about the fitness functions: (1) They
are responsible for the communication among
agents, where the agent movement is controlled by
its fitness value [27], [28]. (2) Fitness functions
should be specified mathematically to guide search
algorithms in evaluating the quality of solutions
when using search algorithms [29]. (3) In the test
optimization process, test cases are being prioritized
in the test suites based on the obtained value of
fitness, i.e., fitness scores, which allowed the
optimization algorithm to rank test cases in a
manner that the most likely important test cases
have the priority to be executed first before others
[30], [31]. It is well known that the fitness function
can be any evaluation metric like APFD or any
other mathematical expression that every test case
will be assessed accordingly and should be defined
based on the goal to be achieved in a way that
makes the experimental results positive [32]–[34].
For multi-objective optimization, the fitness
function should be designed as multi-objective to
reflect these objectives and constraints precisely.
For designing a suitable fitness function for
optimizing test cases, Arrieta et al. [32] provided a
piece of advice in terms of Lessons Learned at the
end of their article.

Aside from this, a brief description is provided
below for those algorithms that have been applied
for prioritizing test cases in the regression testing
domain:

1. Ant Colony Optimization (ACO):

Marco Dorigo first introduced this algorithm
in 1992, inspired based on the observations
of ants’ foraging behavior to solve
computational problems [35], [36]. In reality,
ants’ strength lies in the highly organized
colony structure of the whole ants, i.e., the
teamwork, where the shortest path always
has been chosen between their nest and food
source using pheromone trails. The ACO
algorithm emphasizes a probabilistic model
that simulates the ants’ behavior to choose
the optimal solution in the shortest way [36].
Based on the optimization, researchers found
the ACO algorithm promising in producing
significant solutions when implemented in
numerous fields, including the software
testing domain.

2. Particle Swarm Optimization (PSO):

PSO algorithm was invented by Eberhart and
Kennedy in 1995, employing the idea of
simulating the social behavior of swarms of
the birds flocking and fish schooling, which
emphasizes some organized structure [23],
[37]. Meanwhile, the algorithm utilizes what
was called particles as agents that move
towards the optimal solution in the search
space, i.e., swarm, under the control of
velocity (acceleration) and position
(direction) of each particle [38]. Slowik [38]
reported that the appearance of ACO, then
PSO later, led to the formation of a new
research discipline called Swarm Intelligence
(SI).

3. Artificial Bee Colony (ABC):

In 2005, an ABC algorithm was introduced
by Karaboga, which imitates the foraging
behavior of honeybees out of the colony
[39], [40]. For this process, bees are divided
into three categories, each of which has a
distinct task: the employed, the onlooker,
and the scouts. Employed bees exploit and
take nectar from flowers found to the hive.
Onlooker bees are entrusted with selecting
good food sources based on employed bee
waggle dance (positive feedback). Scout bees
search for new food sources once the
existing food source is abandoned (negative
feedback). Computationally, the ABC
algorithm has three iterative searches: (1)
scout – detects exhausted solutions in the
search space, i.e., exploring new solutions
(2) employed – exploits the existing

Journal of Theoretical and Applied Information Technology
30th June 2022. Vol.100. No 12

 © 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4002

information of discovered solutions, and (3)
onlooker – evaluates then selects high-
quality solutions randomly and performs
local search around them [19], [23]. ABC
algorithm is being touted by researchers as a
powerful and efficient method for providing
solid solutions to hard problems such as
TCP.

4. Glowworm Swarm Optimization (GSO):

GSO algorithm was introduced based on
ACO in 2005 by Krishnanand and Ghose for
mobile robotics in a way that mimics the
flashing behavior of the glowworms or
lighting bugs [23], [41]. In reality,
glowworms naturally release a chemical
substance, i.e., luciferin, as a signal for
attracting mates or prey to feed. The
algorithm begins by initializing glowworms
randomly across the workspace; then, each
loop consists of three phases: luciferin
update – for fitness assessment, movement
update, and neighborhood range update
[19][41][38].

5. Cat Swarm Optimization (CSO):

CSO was primarily invented in 2006 by Chu
et al. based on observing the hunting
behavior of cats. Since then, it has been used
for solving difficult engineering problems.
CSO algorithm placed a swarm of cats
randomly in the search space. Each cat
represents a solution and can be identified
using velocity, position, and flag mode
information, i.e., seeking or tracing mode.
After certain iterations, the fittest cat among
all will be chosen by the fitness function as
the best solution for the intended problem
[23], [38].

6. Cuckoo Search Algorithm (CSA):

In 2009, Yang and Deb developed an
algorithm that simulates the aging behavior
of cuckoos in which the principles of the
search of lévy flights and cuckoos brooding
parasitism were adapted. In the case of CSA,
three main steps employed are initialization,
iteration loop, and solutions modifications.
In the initialization step, each nest egg
symbolizes a solution at the start of the
algorithm, while the cuckoo egg represents a
new solution. Not all cuckoo eggs will be
survived until the end; around 20% of them
will be abandoned due to the detection of
parasitism mechanism in which they are

replaced by new eggs. This is followed by
the generation of new solutions, i.e.,
cuckoos, as well as performing lévy flights,
and finally, the best solutions, i.e., cuckoos,
were selected according to the fitness
function [23], [38], [42].

7. Firefly Algorithm (FFA):

In late 2007 and early 2008, Yang developed
a firefly algorithm based on tropical fireflies
flashing behavior [23][43]. FFA algorithm
first initializes a swarm population of
fireflies randomly, then updates the fitness
function against each firefly in the search
space in an iterative manner to attain the best
sequence of individuals among the solution
pool. FFA has been employed with different
applications in a variety of domains,
including software testing [19], [23], [43].

8. Bat Algorithm (BA):

Bat algorithm was first designed by Xin-She
Yang in 2010, which imitates the primary
attributes of bat echolocation in terms of
navigating the neighborhood surroundings.
In this algorithm, bat swarms are firstly
initialized as the population for search; then,
these bats randomly fly by assigning their
positions and velocity as their movement is
controlled by frequency, loudness, and pulse
emission rate (PER), which are updated at
each iteration. Secondly, execute a local
random walk (LRW) in which frequency
increases, while loudness decreases once the
bat is potentially getting closer to its prey or
food source [19], [23], [44]. Unlike
exploitation, the algorithm exploration is
unsatisfactory due to local trapping as stated
by Kanwar et al. [44].

9. Lion Search Algorithm (LSA):

Rajakumar developed an algorithm in 2012
that is inspired by the lion’s social life within
generations as frequent fighting happens
between bride leader (territorial lion) against
nomadic lions [45]. Apart from nature, LSA
undergoes several processes; the first is
randomly releasing a set of lions as pride
generation. However, some lions were
selected to be nomadic lions in this step.
Secondly, the mating process is performed in
which new lions are generated and evaluated.
The surviving lion in the territorial defense is
the best solution in the iteration, while the
defeated lions and matured cubs were

Journal of Theoretical and Applied Information Technology
30th June 2022. Vol.100. No 12

 © 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4003

considered as nomadic and weak solutions to
be eliminated from the solution pool. This
process continues until a satisfactory goal is
reached [19], [45].

10. Flower Pollination Algorithm (FPA):

In 2012, Yang et al. developed an algorithm
in which the pollination attributes of the
flowering plants were inspired. Accordingly,
FPA has two steps of pollination, i.e., global
and local. Globally, pollinators such as
insects or animals carried flower pollens to
long distances in which the fittest pollens
survived as lévy flight simulated. Locally,
pollens spread among different flowers of
the same species in a limited neighborhood.
FPA has been applied in different domains
for solving complex problems, including
software testing [46], [47].

11. Grey Wolf Optimization (GWO):

In 2014, the grey wolf optimization
algorithm was developed by Mirjalili et al.
based on grey wolves’ social behavior of
hunting where wolves live in packs led by an
alpha. Mathematically, the algorithm
initializes a population of wolves ranked as
alpha, beta, and delta. The best solution is
represented by alpha, whereas the second
and third best solutions were represented by
beta and delta, respectively. In each cycle,
the position of each wolve is updated
according to the alpha, beta, and delta
positions, i.e., the exploration process. Then,
exploitation ends when the prey attack at the
end of the iteration. The algorithm ends with
attaining the best solution [19], [23], [38].

12. Shuffled Frog-Leaping Algorithm (SFLA):

In 2006, Eusuff, Lansey, and Pasha
developed an algorithm that simulates the
social behavior of frogs during food search
[21], [48]. The algorithm starts by placing
virtual frogs randomly among the whole
swamp to invent independently groups
(memeplexes) for search within different
directions. During memetic evolution, frogs
with stronger memes (ideas) within
memeplex are more likely to create new
ideas than others, leading to a change in their
positions, i.e., exploitation. After certain
iterations, the shuffling process begins by
forcing memeplexes to mix and creating new
memeplexes as frogs start migration with
sharing information, i.e., global exploration.

The process ends with selecting the fittest
frog (solution) among all [49].

13. Whale Optimization Algorithm (WOA):

Mirjalili and Lewis established an algorithm
in 2016 in which the hunting social behavior
of humpback whales is modeled
mathematically. Generally, WOA utilizes
three major steps: (1) encircling prey –
where all agents moved towards the best
solution found in the search space, i.e., the
leader; (2) bubble-net attacking method – in
which the path of whales’ movement
imitated to get closer to the prey, i.e., the
exploitation process; and (3) search for prey
– for the exploration of the workspace
wherever agents are chosen randomly to
change the location of the i-th search agent.
This algorithm has been applied to solve
several engineering problems in the search
community [23], [38].

3.4 Hybrid Swarm Intelligence
It is commonly known that not all algorithms

have the same level of strength due to the diversity
of search mechanisms used. So, researchers found
that combining two or more algorithms can be more
effective for improving performance in terms of
accuracy and convergence in attaining optimal
solutions. This process is known as hybridization
[15], [50]. Accordingly, the powerful nature of
hybrid algorithms in solving optimization problems
has made them algorithms of choice in the research
community [43], [47]. Concerted efforts are being
made by researchers towards integrating several SI
algorithms in the TCP for enhanced performance
[15]. Example of hybridization among SI
algorithms includes integrating SI algorithms with a
genetic algorithm, and integration with fuzzy logic
are obvious.

4 METHODOLOGY

TCP is classified as an NP-hard problem due to
the nature and complexity of the testing
environment in which the optimization of test cases
can be affected by several factors. Consequently, SI
is being proposed as a panacea to the TCP problems
as it has not been investigated before. The aim of
this research review is to investigate the work that
has been done by researchers in relation to the
application of SI in the field of regression test case
prioritization. In short, the method consists of
formulating research questions and defining the
search strategy that includes database search

Journal of Theoretical and Applied Information Technology
30th June 2022. Vol.100. No 12

 © 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4004

identification, key terms determination, search
syntax formulation, identifying selection criteria for
the retrieved papers, and finally, the selection of the
actual papers for the investigation. Moreover, this
review enlightened by the guidance provided by
Kitchenham et al. [51].

4.1 The Research Questions
The following research questions have been

formulated to be answered throughout this review:

 To what extent SI algorithms have been
implemented for optimizing test cases in
TCP?

 On what basis have the test cases been
optimized in the existing studies?

 How has the evaluation of these studies been
carried out?
- What metrics have been used to scale the

performance of these proposed methods?
- To which existing methods are these

studies compared?

4.2 The Search Process
The search strategy conducted in this review is

started by choosing the Scopus database as a
starting point for obtaining the relevant studies up
to the year 2021, then formulating the search string
to be fulfilled in the next step for obtaining the
desired related studies. For seeking the TCP studies
where SI algorithms are applied, we used the
following search string to compile the algorithms
mentioned above:

[("test case prioritization" OR "test
case prioritisation" OR "prioritizing
test cases" OR "prioritising test
cases") AND ("swarm" OR "intelligence"
OR "algorithm" OR "colony" OR
"artificial" OR "search" OR
"optimization")].

The above search string was designed according
to the defined keywords regarding TCP and SI,
considering the spelling differences of the word
“prioritization” between British and American
English as known in the academic environment.

4.3 The Study Selection
By conducting the search in the Scopus database,

a total number of 420 papers were initially
screened, and unrelated studies were discarded.
Those studies which have been filtered based on
specific features such as title, abstract, and
conclusion are 67 in number. Finally, a full-text
read round followed, resulting in the selection of 57
papers. These stages are illustrated in Figure 4
below:

Figure 4: Paper Selection Stages

Towards the final selection process of the related
studies among retrieved results, the suitable studies
have been chosen, particularly according to
predetermined selection criteria for inclusion and
exclusion of related work as briefly emphasized in
Table 2.

Table 2: Inclusion and Exclusion Criteria

Inclusion criteria Exclusion criteria
 English published work.
 Journals and

proceedings papers.
 Application of SI in

TCP.

 Other languages
published work.

 Books, book chapters,
posters, etc.

 Other topics.

5 RESULTS AND DISCUSSION

At the end of the selection process, 57 papers
were identified in the specified period, i.e., between
2008 and 2021, for the application of SI algorithms
in the regression TCP, and those studies were to be
analyzed according to the RQs. Across those years,
there is no published papers found in the Scopus
database before the year 2008 as only one paper
corresponds to the year 2008, the later four years,
unfortunately, have no publications found, to the
year 2013, only one paper is published. After that,
the publications grow slowly between 2014 and
2015. Three years later, i.e., 2016, 2017, and 2018,
the amount of publication constantly stays at 6
papers per year. In the year 2019, the number of
publications increased to 14 papers. Then, the year
2020 scored 8 published papers. Lastly, the year
2021 got 9 papers published. Figure 5 below
presents the publication of papers according to
years, while other aspects will be detailed discussed
in the later subsections.

Journal of Theoretical and Applied Information Technology
30th June 2022. Vol.100. No 12

 © 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4005

Figure 5: Distribution of The Studies with Respect to
Publication Years

In summary, SI algorithms have been
implemented in the context of TCP for regression
testing since 2008. In terms of publication type, the
obtained studies can be classified as either journal
papers or conference proceedings, as denoted in
Figure 6 underneath.

Figure 6: Publications Type

The application of SI algorithms varies according
to the characteristics of the algorithms, nature of
their implementation, and the prioritization basis,
where ant colony is the most used algorithm, as
reported in 19 of the papers reviewed. This is
followed by PSO, ABC, CSO, cuckoo, bat, and
FFA, respectively. On the other hand, hybrid
algorithms showed increasing recently, i.e., in 2021,
where 14 studies were reported. The publication
distribution among SI algorithms has been
presented in Figure 7 below.

Figure 7: Swarm Intelligence Algorithms used in Regression Test Case Prioritization

5.1 Swarm Intelligence Algorithms
Throughout the conducted search process, the

authors found that the application of SI algorithms
in the context of regression TCP addressed the
following algorithms: ant colony, particle swarm,
artificial bee colony, glowworm swarm, cat swarm,
cuckoo search, firefly, bat, lion search, flower
pollination, grey wolf, shuffled frog-leap,
dragonfly, and whale optimization. In this section,
single SI algorithms have been discussed in detail.

1. Ant Colony Optimization (ACO)
Applications:

A total of nineteen proposed work has been
implemented since 2013, based on the ACO

implemented in TCP. Several factors were
used for performing prioritization of test
cases in these studies, such as code coverage,
fault coverage, and others emphasized as
follow:

- Code coverage: Lu et al. [52], Lu and
Zhong [53], and Panwar et al. [54]
introduced ACO-based algorithms which
prioritize test cases according to the
additional statement, total statement, and
optimal path coverage, respectively.
However, only Lu and Zhang [53]
framework achieved 96.04% of statement
coverage, while Lu et al. [52] did not reach

Journal of Theoretical and Applied Information Technology
30th June 2022. Vol.100. No 12

 © 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4006

90%. Panwar et al. [54] study lacks
sufficient evaluation where there is no
metric or benchmark specified besides a
few numbers of test cases. On the other
hand, Dhiman and Chopra [55] utilized
ACO for TCP based on the importance of
functions as the slicing technique was used
to determine the importance of the
function. Nevertheless, no evaluation was
specified regarding this work, and it was
compared with manual ordering.

- Incorporating execution time with code
coverage (statement–coverage): Pachariya
[56] and Bian et al. [57] implemented an
ACO-based method for prioritizing test
cases. While Bian et al. [57] work provide
promising results in code-coverage (i.e.,
reached 99% of the statements coverage
within 9.86 sec.). Code-coverage does not
mean detecting all faults, especially when
they are detected by test cases that are not
unit test cases [58]. Besides, Pachariya
[56] work, aside from not being evaluated
against any popular metric, was not also
compared to other techniques.

- Fault coverage: Chen and Zhang [59]
proposed an ACO-based algorithm to
cover all faults through prioritized test
cases. However, this method is not
compared with optimization-based
methods for better performance evaluation.
Another study by Kumar and Srinivas [60]
proposed the ACO method for prioritizing
test cases of object-oriented programs
based on fault exposing potential.
However, this algorithm lacks proper
evaluation as it was only compared to
random ordering and did not use any
public dataset like SIR or GitHub. Lastly,
Studies such as Solanki et al. [61], Solanki
et al. [62], and Solanki et al. [63]
performed TCP based on maximizing
coverage of faults diversity using the m-
ACO algorithm. Despite their promising
results, none of Solanki et al. [61]–[63]
studies reached 90% of faults covered,
which means this method needs to be
enhanced.

- Incorporating execution time with fault-
based: Vescan et al. [64] came up with a
multi-objective TCP method using ACO
based on 3 factors of fault coverage, fault
severity, and cost of execution (time
execution of the test case). However, the

evaluation is insufficient as only 5 test
cases were used, the lower performance
achieved, and the compared techniques are
not AI-based. Likewise, no benchmark was
specified. Next, Ansari et al. [65], and Suri
and Singhal [66] came up with ACO-based
methods for prioritizing test cases
according to fault coverage and execution
time. However, the first study requires
more comparison, especially with
optimization techniques under controlled
experiments using public datasets like SIR
to make it more reliable, while the other
lacks adequate evaluation in terms of
comparison and measurements. Last, Gao
et al. [67] introduced an ant-based multi-
objective TCP method for optimizing test
cases according to three factors: numbers
of faults detected, faults severity, and
execution time of test cases. The
performance of this method reaches 82.5%
according to APFD and covers total faults
within 16 units of time. This method has
been compared to original, random, and
optimal orderings. However, this work
lacks adequate evaluation.

- Requirements: Zhang et al. [68] employed
ACO for prioritizing test cases based on
two approaches: distance-based and index-
based. Still, this method lacks proper
evaluation as only one program is used as
a benchmark within 6 test cases.

- History of test execution: Noguchi et al.
[69] suggested an ACO-based framework
of black-box testing for TCP. However,
this framework needs to be compared to
optimization-based methods for better
performance evaluation.

- Software component metrics: A fourth
method proposed by Silva et al. [70] uses
ACO for prioritizing test cases based on
software component metrics. This study
utilized three factors: test cases’ criticality,
execution time, and faults history. The
proposed method used two metrics: APFD
and cost-cognizant of the average
percentage of faults detected per cost
(APFDC). This method yields an average
of 92.71% and 92.97%, respectively. A
comparison with original, random, optimal
ordering and the greedy algorithm was
carried out.

Journal of Theoretical and Applied Information Technology
30th June 2022. Vol.100. No 12

 © 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4007

- Multiple factors: Ahmad et al. [11]
suggested a multi-objective TCP based on
six test factors which are (1) importance
(of requirement), (2) volatility (change of
requirement), (3) complexity (of
requirement), (4) Fault Rate (of
requirement), (5) Time (for test case), and
(6) Coverage (of requirement). Based on
the test factor’s weight, test cases are
generated and assigned values; then, they
were prioritized using ACO. However, this
technique is yet to be implemented.

2. Particle Swarm Optimization (PSO)
Applications:

A total of 6 studies involved the applications
of PSO in TCP in which several factors for
prioritization were applied as follows.

- Fault coverage: Mann et al. [71]
introduced a PSO method that first
generates test cases using GA, PSO, and
ABC, then prioritizes them using PSO
based on maximum fault coverage.
Nevertheless, this approach needs a more
mature comparison with existing
optimization techniques.

- Incorporating test-point coverage with
execution time: Xing et al. [72] developed
an artificial fish school algorithm (AFSA)
for prioritizing test cases based on two
factors, i.e., test points coverage and
execution time. The AFSA implemented
using python used 4 C programs from SIR
for experiments and compared with GA
and K-means. The results reported AFSA
outperformed GA and K-means in terms of
the average percentage of test-point
coverage (APTC) and effective execution
time (EET) metrics, i.e., gained an average
of 98% of statement coverage within an
average of 3.75 of time. However, this
algorithm depends on source code in
which it is absence make the algorithm
stopped working. Also, if gained full
coverage of code, it does not mean reached
100% of effectiveness.

- Incorporating execution time with code
coverage: Sun et al. [73] proposed an
epistatic PSO-based multi-objective
method for prioritizing test cases according
to branch coverage (code coverage) and
effective execution time of test cases.
However, the achievement of this method
was not numerically specified. Likewise,

the method has not been compared to other
optimization algorithms such as GA, ACO,
and ABC.

- Incorporating execution time with fault
coverage: Tyagi and Malhotra [74]
introduced a multi-objective PSO
(MOPSO) method for reduction, selecting
a minimal set of test cases, then
prioritizing them for achieving maximum
fault coverage within minimum execution
time (time constraint). The shortcoming of
this technique emanates from the fact that
a set of test cases are selected first before
being prioritized accordingly, which
implies that some test cases will be
skipped. Furthermore, the amount of test
cases is insufficient, which means that this
technique needs further empirical
evaluation and comparison with
optimization techniques.

- String distance of test cases:
Khatibsyarbini et al. [75] proposed a PSO-
based method that prioritizes test cases
according to their weight-hybrid string
distance. This study takes string inputs of
test cases and utilized four variants of term
frequency-inverse document frequency
(TFIDF) for prioritizing test cases without
source code consideration. The technique
achieved an overall average of APFD is
94.35% and was compared to four string
distance techniques. However, the
precision of string distance techniques is
based on the quality of test cases created
and their documentation.

- Modifications of the software units: Hla
et al. [76] introduced a PSO-based method
for prioritizing test cases according to
modifications of the software units.
Meanwhile, the evaluation criteria are not
clear due to the lack of sufficient
information regarding achievement,
comparison, and measurement. Therefore,
this technique needs empirical evaluation
and comparison against other optimization
algorithms.

- Multiple factors: Samad et al. [77] built a
multi-objective PSO that prioritizes test
cases according to three factors, i.e., fault
detection ability, code coverage, and
execution time (cost of a test case). The
algorithm achieved 17 – 86%
inclusiveness, 33 – 85% precision, and 17

Journal of Theoretical and Applied Information Technology
30th June 2022. Vol.100. No 12

 © 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4008

– 86% size reduction, compared with no
ordering, reverse ordering, and random
ordering techniques. However, the
algorithm did not compare with AI
techniques, as well as the comparison
results with traditional techniques were not
reported. Joseph et al. [78] proposed a
modified PSO for prioritizing test cases
according to seven factors: (1) customer-
assigned priority (CP), (2) implementation
complexity (IC), (3) changes in
requirements (RC), (4) fault impact of
requirements (FI), (5) completeness (CT),
(6) traceability (TR), and (7) execution
time (ET). To overcome the local optima
trap, this algorithm introduced the GAs
mutation operator. However, the study
provides little information about
implementation, experiment, comparison,
and evaluation.

3. Artificial Bee Colony (ABC) applications:

ABC has been implemented for optimizing
test cases for TCP in a few studies. As
observed in this study, 3 studies were found
in the Scopus database based on ABC.

- Fault exposing capability: Khanna et al.
[79] presented an ABC-based algorithm
for scheduling test cases of web
applications. Hence, the test cases are
generated from source code then ordered
according to their fault exposing
capability. However, this study did not
clearly specify the numerical achievement
of ABC in terms of APFD and APFDC.

- Change coverage: Manaswini and Rama
Mohan Reddy [80] proposed an ABC-
based algorithm for TCP using the bee’s
nature. However, this study did not specify
any achievement or comparison with other
techniques. Also, the metric and objective
of the algorithm are to cover the change in
different versions of a program under test,
while the fitness function ensures the
maximum number of the requirements,
which makes it imprecise.

- Decision matrix: Vats and Kumar [81]
suggested an ABC-based algorithm for
prioritizing test cases, where the decision
matrix is calculated as total faults divided
by time of execution for each test case.
However, it was not applied in a controlled
experiment environment, and only 10 test
cases were used.

4. Glowworm Swarm Optimization (GSO)
Applications:

GSO has been implemented in several
domains, including regression testing. In
TCP, there is only one study that uses GSO
for prioritizing test cases as below:

- Multiple factors: Raman and Subramani
[82] presented a multi-objective GSO-
based method for optimizing test cases
according to statement and fault coverage.
This approach reached 90% of APFD and
was compared with PSO and ABC. Still,
this approach lacks sufficient evaluation
because it was not applied in a controlled
experiment environment, and the number
of test cases was very few.

5. Cat Swarm Optimization (CSO)
Applications:

In terms of CSO applications in TCP, there
are three studies found based on fault
detection rate that was incorporated with
other factors as below:

- Incorporating test case clustering with
fault detection rate: Vats and Kumar [83]
and Yadav and Dutta [84] presented CSO-
based methods for prioritizing test cases.
Nevertheless, there is insufficient
information regarding evaluation and
comparison as well as no controlled
experiment was applied on these methods.
Besides, the comparison in the second
study was made using success rate rather
than APFD metric.

- Multiple factors: Likewise, Manaswini
and Rama Mohan Reddy [85] proposed a
CSO-based algorithm for prioritizing test
cases based on three parameters. These
parameters are fault detection rate, time of
execution for the test case, and coverage
scope. However, the algorithm lacks
adequate evaluation as there is no
measurement or comparison nor any
controlled experiments specified.

6. Cuckoo Search Algorithm (CSA)
Applications:

There are only two applications of CSA
proposed for TCP as follow:

- Code coverage: Dhareula and Ganpati [86]
presented a CSA for TCP. Even though
this method was based on code coverage,

Journal of Theoretical and Applied Information Technology
30th June 2022. Vol.100. No 12

 © 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4009

its proficiency is measured using APFD,
which falls below the 80% mark.

- Incorporating execution time with faults
coverage: Nagar et al. [87] proposed a
CSA for optimizing test cases by
prioritizing and selecting only effective
test cases that capture faults. Nonetheless,
this algorithm needs sufficient evaluation
in terms of measurements, achievement,
benchmarking, and comparison with other
algorithms.

7. Firefly Algorithm (FFA) Applications:

Only two studies were found as regard
applications of FFA in TCP as follows:

- Incorporating the importance of test cases
with their edit distance: Su et al. [88]
presented an FFA for prioritizing test cases
based on a hybrid model, which is the
correlation between edit distance of test
cases, i.e., the similarity, and their
importance, i.e., the test data. The
algorithm was measured using APFD and
time of execution as well as compared with
PSO, Greedy, and original FFA. Besides
that, the achievement gained was an
average of 95.27 as in APFD within an
average of 221 sec as execution time.

- String distance of test cases:
Khatibsyarbini et al. [12] introduced an
FFA method for TCP. The approach was
evaluated using the APFD metric and
execution time and was compared against
PSO, local beam search (LBS), greedy,
and GA. The reported achievements
obtained was an average of 94.07% as
APFD within 373 sec as a time of
execution.

8. Bat Algorithm (BA) Applications:

In terms of bat algorithm application for
TCP, there is only one study as detailed
below:

- Fault coverage: Bajaj and Sangwan [89]
suggested a bat algorithm for prioritizing
test cases based on fault coverage.
Compared with untreated, random, reverse
order, and GA, this algorithm gained 84 –
88.07% APFD values. However, the
algorithm lacks sufficient evaluation, only
applied on one project with 10 test cases
matched with 13 faults.

- Metrics of code maintainability: Öztürk
[90] introduced a TCP method using the
bat algorithm. In this study, 12 metrics of
code maintainability were investigated,
including LOC. However, the achievement
of this method was not clearly specified as
the comparison with other algorithms was
only specified in figures instead of
numbers.

9. Lion Search Algorithm (LSA)
Applications:

LSA was employed for prioritizing test cases
in only one study presented here:

- Historical failure patterns: Asthana et al.
[91] introduced a lion-based algorithm for
optimizing test cases. This algorithm first
prioritizes test cases then selects only an
effective set for execution where 80% of
faults were detected as reported in the
experiments. Even though the APFD
metric has been used for measurement, no
comparison and achievements are
specified.

10. Flower Pollination Algorithm (FPA)
Applications:

In TCP, FPA was applied in only one article
found in this study as detailed:

- Code coverage: Dhareula and Ganpati [92]
presented an FPA-based method for
prioritizing test cases. However, this
algorithm suffers from insufficient
evaluation against optimization techniques.

11. Gray Wolf Optimization (GWO)
Applications:

The applications of GWO in TCP were
found in one study as presented in this work.

- Incorporating test case clustering with
code coverage: Badanahatti and Murthy
[93] introduced a cloud-based regression
testing method for generating, clustering,
and prioritizing test cases, respectively.
This technique first generates test cases (in
the cloud) based on code coverage
(including loop, statement, line, and
comment coverage), then clusters them
according to closeness using Kernel Fuzzy
C-Means (KFCM) clustering algorithm,
and finally prioritizes test cases using a
GWO algorithm. However, the comparison
was conducted just between clustering
algorithms, i.e., K-means against KFCM,

Journal of Theoretical and Applied Information Technology
30th June 2022. Vol.100. No 12

 © 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4010

and memory usage metric is merely related
to regression testing.

12. Shuffled Frog-Leaping Algorithm (SFLA)
Applications:

For SFLA, a single study was found as
detailed below:

- Multiple factors: Manaswini and Rama
Mohan Reddy [94] employed SFLA for
prioritizing test cases according to the
coverage of code, cost (time of execution),
and fault. However, not enough
information about implementation,
comparison, and achievement is specified.

5.2 Hybrid Swarm Intelligence Algorithms
In terms of hybrid algorithms where two or more

algorithms are integrated to improve proficiency,
convergence, and accuracy, those hybrid algorithms
were improved. As mentioned earlier, hybridization
resulted in efficiency and effectiveness
improvements for TCP methods. In this review, 13
studies were found that implemented hybrid
algorithms in TCP as improvements in which they
were popularly categorized as hybridization among
SI algorithms, integrating SI algorithms with a
genetic algorithm, integration with fuzzy logic, and
integration with SVM.

1. Hybrid within Swarm:

Five studies were found in terms of
hybridization among SI.

- Requirement-based: Dahiya and Solanki
[95] provide a hybrid technique where ACO
and PSO are combined for TCP. In this
technique, four factors were used, i.e.,
customer-assigned priority (CP),
implementation complexity (IC), requirement
changes (RC), and fault impact of
requirements (FI). This technique used an
industrial case study written in java, matched
with unprioritized, random, and reverse
prioritized sequence, as well as ACO and
PSO. Also, it was measured by APFD (91%)
and PTR (54%) metrics.

- Code-coverage: Bajaj and Sangwan [96]
integrated CSA with PSO for optimizing test
cases based on statement coverage. The
algorithm first prioritizes test cases, selects
modification-revealed among them, then
eliminates redundant test cases. The
algorithm used 3 java programs from SIR for
experiments and achieved 98.27% as an
average of APSC within 373.55 sec. Also,

the algorithm outperformed GA, GSA and
PSO.

- Quality metrics: Kumar and
Muthukumaravel [97] proposed a TCP
approach using PSO and an improved CSA,
prioritizing test cases based on quality
metrics, i.e., coupling, cohesion, and intended
fault IF value. The workings of this approach
are by firstly generating test cases from the
application, then extracting quality metrics
from the test cases, and finally optimizing
test cases using PSO. The PSO output is
considered input for ICSA in producing final
optimized test suites. However, no evaluation
is specified for this approach to show
hybridization improvements against other
optimization methods.

- Incorporating test case clustering with
multiple factors: earlier, Kale and Murthy
[98] presented a hybrid swarm algorithm by
integrating FFA with ABC for regression
testing. The hybrid algorithm utilized the
scout bee phase of the ABC algorithm in the
FFA to improve the search quality in
exploitation and exploration. This algorithm
has four phases. First, it generates test cases.
Second, it identifies factors for identifying
test cases for prioritization, i.e., time, trace
events, behavioral dependency, and
responsibility. Then, the identified test cases
were clustered using the K-means algorithm
to separate relevant and irrelevant test cases.
The end, prioritizing relevant test cases using
the previously identified factors. The
algorithm was measured using APFD and
compared with an existing method which is
not identified. Authors claimed that the
performance of their algorithms according to
APFD metric reached 85% and 70%,
respectively. However, it seems that this
algorithm lacks sufficient evaluation in terms
of the application in reliable projects as in
controlled experiments and needs to be
compared with other optimization algorithms
to prove its superiority.

- Fault coverage: Bajaj and Abraham [99]
introduced a hybrid DAPSO (dragonfly with
PSO) algorithm for optimizing test cases. The
algorithm first prioritizes test cases based on
fault coverage then minimizes them. DAPSO
compared with random search, GA, PSO, Bat
and dragonfly algorithms (discrete and
combinatorial) and achieved an average of
93.64% of APFD for TCP and an average of

Journal of Theoretical and Applied Information Technology
30th June 2022. Vol.100. No 12

 © 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4011

83.69% of test minimization percentage
(TMP) for reduction.

2. Swarm Intelligence with Genetic Algorithm
(GA) Integration:

GA has been combined with SI in which four
works were found for optimizing test cases as
detailed:

- Fault coverage: Bajaj and Sangwan [100]
suggested a discrete CSA for prioritizing test
cases based on fault coverage. The algorithm
used 4 office applications in the experiment
and was compared with random search (RS),
ACO, GA, tree seed algorithm (TSA), CSA,
where the APFD metric was used for
measuring effectiveness.

- Code coverage: Dhareula and Ganpati [101]
proposed FPA that is genetically modified for
prioritizing test cases. In this work, the
EclEmma tool is used for code coverage to
optimize test cases accordingly. Then
optimizing test cases starts using FPA while
the output is supplied as input to the GA.
GM-FPA algorithm outperforms GA, FPA,
random, and reverse random ordering as it
achieves an average of 73% of APFD within
an average of 0.165 sec. of execution time.
However, this method’s performance falls
below 80% of the APFD metric.

- Incorporating execution time with historical
failure patterns: Padmnav et al. [102]
presented a hybrid algorithm for TCP based
on historical failure patterns of regression
cycles and execution time of test cases. The
lack of information about experiments and
the comparison of this algorithm makes the
evaluation of this algorithm unclear for
researchers.

- Fault detection: Saraswat and Singhal [103]
introduced a hybrid algorithm for optimizing
test cases using GA and PSO. The algorithm
first prioritizes test cases using GA, then
takes the optimized test cases as an input to
the PSO. Furthermore, in the PSO phase, the
only global best value is shared with others,
not the whole population. However, this
hybrid algorithm was not compared with any
optimization techniques.

3. Swarm Integration with Fuzzy:

Only a study was found that compounds with
fuzzy logic with swarm as:

- Fault coverage: Nayak et al. [104] combined
the honeybee algorithm with a fuzzy rule for
prioritizing test cases according to the rate of
fault detection. This method used a fault
matrix matched with related test cases and
execution time as inputs. The method
experimented on two VB projects, and no
prioritization, reverse, random, Kavitha and
Sureshkumar [105], Tyagi and Malhotra
[106], and Nayak et al. [107] techniques.
They reported that their technique achieved
85% of APFD within 40% of tests executed
to detect all faults. However, there is
insufficient evidence on this technique's
performance, as only 18 test cases were used
within two VB projects, and no public dataset
like SIR was used.

4. Swarm integration with Artificial Neural
Networks (ANN):

One proposed work detected in this study is as
below:

- Incorporating test case clustering with fault
detection: Harikarthik et al. [108] presented a
hybrid algorithm for prioritizing test cases.
The algorithm first generates test cases from
program source code and then clusters them
to choose relevant test cases intended to be
optimized using a modified kernel fuzzy c-
means (MKFCM) algorithm. After picking
appropriate test cases, optimization is then
carried out using the ANN-Whale algorithm
according to maximum faults detection. This
algorithm outperforms the existing ANN
algorithm in terms of the time of execution
and the required amount of memory. Despite
its success in reducing execution time and
memory required during execution, this
algorithm needs more evaluation in terms of
controlled experiments as well as its specified
performance is relatively low according to
the APFD metric.

5. Swarm Integration with Integer Linear
Programming:

Combing SI with linear programming was
observed in one study as:

- Incorporating method-call with code
coverage: Wong et al. [109] applied a TCP
technique for a time-constraint environment
using CSA and integer linear programming.
The prioritization of test cases was carried
out based on code coverage and method-call
information using CSA, then selecting the

Journal of Theoretical and Applied Information Technology
30th June 2022. Vol.100. No 12

 © 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4012

best test cases was performed using integer
linear programming model. Concerning the
generalizability and reliability of the
technique, the amount of optimized test cases
is still very few, and more controlled
experiments are needed to be involved in the
evaluation.

6. Swarm integration with SVM:

There is only one study that SI integrated with
Support Vector Machine (SVM) was observed
as:

- Requirement-based: Dahiya and Solanki
[110] recommended a CSA integrated with
SVM for prioritizing test cases according to
the distance matrix of requirements. This
algorithm matched with firefly algorithm,
where the achievement is 90.02% of APFD
within 108.4456 MS, Max = 0.994366, Min =

0.187267, mean = 0.810716, median =
0.999526, and SD = 0.057313. However, the
experimental evaluation has not been
specified and compared to just one algorithm,
which may be insufficient for evaluation.

5.3 Measurement and Evaluation
In regression testing, it is known that new TCP

methods must be assessed for their performance by
formal measurement and comparison against
existing methods [9], [111]. Studies in this domain,
such as Hao et al. [9] and Harman et al. [112], have
identified two aspects of performance to be
measured, which are efficiency and effectiveness;
efficiency can be scaled using actual execution time
of prioritization, i.e., sometimes noted as testing
cost and effectiveness depends on the bases of the
prioritization process. Accordingly, Figure 8
demonstrates the current evaluation metrics in TCP
that are widely employed.

Figure 8: Measurements used in Current Test Case Prioritization

As evident in Figure 8, it can be observed that the
weighted average percentage faults detected
(APFD) metric is the most used, in which
approximately 66.7% of the current studies have
been evaluated and compared against others. This is
followed by execution time at 8.8% of these studies.
Next, the average percentage of statement coverage
(APSC) for measuring statements coverage. Then
cost-cognizant of the average percentage of faults
detected per cost (APFDC), Average percentage of
branch coverage (APBC), effective executing time
(EET), and percentage of test suite required for
complete fault coverage (PTR), which was used in
just three studies for each of them. Finally, the
Average percentage of function coverage (APFC),

the average percentage of test-point coverage
(APTC), Cov(x), Cost(x), Fault(x), SQM, Memory
usage (bits), and change coverage metrics have only
been used in one study for each. Notably,
inclusiveness, precision, size reduction, test
selection percentage (TSP), mean, min, max, and
standard deviation are metrics used for scaling the
reduction of test cases in studies that combined TCP
with test selection or reduction. Remarkably, 14%
of the previous studies did not disclose any
evaluation metric used for assessing their
performance.

On the experimental side, benchmarking is
necessary for evaluating the performance of any
TCP method. For reliability and scalability,

Journal of Theoretical and Applied Information Technology
30th June 2022. Vol.100. No 12

 © 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4013

assessing testing techniques via real-world or
industrial projects is the best choice as used only in
5% of the reported studies. However, industrial
projects cannot be available due to confidentiality
concerns [17]. For this reason, public datasets such
as Software-artifact Infrastructure Repository (SIR)
and GitHub are an excellent choice for evaluating
testing techniques in which researchers can
replicate or empirically assess such methods [17].
As public datasets, SIR is the most popular dataset,
which has been used in 22.8%, and GitHub also has
been used in 7% of these current studies. However,
around 59.7% of the studies were not implemented
on public datasets, adversely affecting their results'
generalizability and reproducibility, as stated by
Bajaj and Sangwan [17]. For seeking more
information, refer to Table 3 in the appendix.

5.4 Single vs Multi-objective TCP
With the increasing use of multi-objective

optimization to solve NP-hard problems, TCP has
been treated as a multi-objective problem in the
research community [9], [17], [56], [104]. Several
researchers reported that multi-objective TCP
methods outperform single-objective TCP for
several reasons, such as their capability to cope
with the increasing complexity of test case
optimization and to tackle two or more objectives
for optimization [111], [113]–[115]. Recently, there
has been a notable growth of multi-objective TCP
among SI algorithms in which 24 (i.e., around 42%)
of the current studies were multi-objective since
2014, as demonstrated by Figure 9 below.

Figure 9: Single and Multi-objective TCP

6 PROBLEMS AND OPEN RESEARCH
ISSUES

In conclusion, based on the observations in this

study, there are a few issues and future directions to
be drawn as follows:

1. Incorporating more swarm techniques: more
SI algorithms have not been explored in TCP,
such as African buffalo, bacterial foraging,
monkey search, cockroach, wolf search,
chicken swarm, grasshopper optimization, etc.

Exploring more swarm algorithms will enrich
the domain of TCP with more methods and
empirical studies with different perspectives in
which experiencing such algorithms in terms of
optimization proficiency, scalability, and
reliability.

2. Evaluation issues: at the end of this study, it
was observed that most of the work reviewed
suffers from a sufficient amount of evaluation
at different levels of perspectives. This issue is
evidently clear when looking at Table 3 in the
appendix. It was also confirmed by previous
studies such as Arrieta et al. [32], Ba-
Quttayyan et al. [116], Bajaj and Sangwan [17]
and Brunetto et al. [117].

(a) Empirical Studies: the existing publications
were mostly expressed in the initial form of
ideas or methods in which their results still
need to be confirmed empirically. So, more
empirical studies were needed to confirm
the reliability of such studies.

(b) Dataset Publicity: using public datasets,
such as SIR or GitHub, provides a stable
environment for assessing and reproducing
researchers’ work for comparison purposes
against other modern methods. However,
most researchers used either private or
industrial datasets. Due to confidentiality,
other researchers cannot reproduce and
evaluate their results against prior research,
which affects the generalizability and
reliability of such publications.

(c) Fitness Function: Most reviewed studies
do not express their fitness functions, while
others use famous metrics as fitness
functions. Hence, fitness function should
be precisely determined cost-effectively
due to its significant effects on producing
accurate results, especially when
optimizing multiple objectives.

(d) Measurements: according to Figure 8, the
most common metrics used are APFD and
Execution Time. Moreover, most of the
current publications used single
performance metrics, whereas researchers
like Bajaj and Sangwan [17] and Arrieta et
al. [32] suggested the usage of two or more
metrics for the robustness of the proposed
work.

(e) Experiments: it is noticed that most of the
studies compared their results with
traditional ordering. However, this will not

Journal of Theoretical and Applied Information Technology
30th June 2022. Vol.100. No 12

 © 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4014

make results solid unless matched against
current optimization methods. Besides,
when proposing multi-objective methods, it
should also be compared against the multi-
objective method. Likewise, the number of
test cases and the size of subjects
(programs) used during experiments should
be sufficient to obtain satisfying results.
Equally, it is good to take advantage of the
support of commonly and publicly
available tools such as selenium, gcov, and
EclEmma, for improving the optimization
process. Lastly, when applying
optimization methods to the industry,
Arrieta et al. [32] suggested using a user-
friendly tool form because practitioners are
always concerned about friendly tool
support.

3. Hybridization: due to the increased
performance and interest of hybrid algorithms,
more hybridization is needed for SI and other
optimization techniques for enhancing
algorithms proficiency.

4. Multi-objective: In this review, it is noticed that
there is an increasing growth in fault-based
TCP methods of about 38.6% (22 papers),
much more than code-based TCP methods with
about 24.6% (14 paper). Also, 4 studies (around
7%) combined code with fault. Consequently,
test cases were prioritized according to several
bases in regression testing. TCP factors that
have been used independently as reported by
this study were: code coverage, statement
coverage, fault coverage, fault detection,
requirements (distance-based and index-based),
history of test execution, string distance of test
cases, modifications of the software units, fault
exposing capability, change coverage, decision
matrix (total faults/time of execution for each
test case), historical failure patterns. It is also
remarked that there is increasing interest in
using multi-objective optimization of test cases.
Due to this, the diversity of factors (objectives
and criteria/constraints) can improve the
proficiency of TCP methods. As observed in
this study, TCP is carried out based on multiple
factors as:

(a) Execution Time: as observed in this review,
test cases were not prioritized based on
their execution time alone but incorporated
with other factors such as code coverage,
statement coverage, fault coverage, fault
detection, coverage scope, historical failure
patterns, etc. However, the execution time

can also be incorporated with other factors
such as fault history, fault severity, test
case importance, and others.

(b) Test Case Clustering: clustering test cases
as observed has been incorporated with
other factors such as fault detection rate,
code coverage, test case clustering with
multiple factors (time, trace events,
behavioral dependency, and responsibility
for), and fault detection. However, test case
clustering can also be incorporated with
fault severity, requirements, change
coverage, and other factors. Furthermore,
test cases can be clustered based on
different bases such as similarity,
dissimilarity, relevance, or other bases.

(c) Statement Coverage: As mentioned before,
statement coverage has been incorporated
with execution time. It is also incorporated
with fault coverage in one study.

(d) Metrics of Code Maintainability: It is a
group of metrics for code maintenance. The
used metrics of code maintainability were
12 as the total number of fields in the class
(NOF), the total number of methods in the
class (NOM), the total number of
properties in the class (NOP), the total
number of public fields in the class
(NOPF), the total number of public
methods in the class (NOPM), the total
number of source-code lines in the class
(LOC), weighted methods per class
(WMC), the total number of children (sub-
classes) of the class (NC), depth of
inheritance tree (DIT), lack of cohesion of
methods (LCOM), the total number of
classes that reference the class (FANIN),
and the total number of classes referenced
by the class (FANOUT). Yet, the above-
mentioned were class metrics. Other
metrics, called method metrics, can be used
that consist of LOC, cyclomatic complexity
(CC), and parameter count (PC). Likewise,
there are other code maintainability metrics
such as Lines of Executable code, Efferent
Coupling (EC), number of Lines Changed
in the Class (CHANGE), Comment Line of
Code (CLOC), maintainability Index (MI),
etc. as reported by Ardito et al. [118] in
their review.

(e) Software Component Metrics: in terms of
component metrics, the used metrics were
test cases’ criticality, execution time, and

Journal of Theoretical and Applied Information Technology
30th June 2022. Vol.100. No 12

 © 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4015

faults history. These metrics were closely
related to test execution history, and other
data can be considered.

(f) Importance of Test Case with their Edit
Distance: as observed in this study, which
is related to test data, more features of test
cases are needed, such as similarity and
dissimilarity.

(g) Quality Metrics: in this study, quality
metrics used were coupling, cohesion, and
intended fault (IF) value. Other metrics
also can be integrated.

(h) Method-Call with Code Coverage: as
mentioned before, method-call is a kind of
code maintainability metric.

(i) Multiple Factors: in one of the previous
studies, a combination of factors was used
as (1) importance (of requirement), (2)
volatility (change of requirement), (3)
complexity (of requirement), (4) Fault Rate
(of requirement), (5) Time (for test case),
and (6) Coverage (of requirement). Also,
customer-assigned priority (CP),
implementation complexity (IC),
requirement changes (RC), and fault
impact of requirements (FI) were used in
one study. Such factors related more to
requirements. Another study used multiple
diverse factors, which were: (1) customer-
assigned priority (CP), (2) implementation
complexity (IC), (3) changes in
requirements (RC), (4) fault impact of
requirements (FI), (5) completeness (CT),
(6) traceability (TR), and (7) execution
time (ET). Lastly, fault detection ability,
code coverage, and execution time have
been used in one study here. As observed, a
more diverse combination of related factors
is needed for TCP enhancements.

Accordingly, more factors were needed to be
involved in the optimization process of test cases
and integrating them with others as a multi-
objective process against single-objective
optimization. Furthermore, Parejo et al. [119]
asserted that better results and distribution could be
gained for APFD values when using multi-objective
combinations for prioritizing test cases than single
objectives.

Lastly, this study has limitations on the scope,
search databases, and studied domain which are
briefly emphasized below:

 Scope: only the SI applications on the TCP
were investigated in this study as a specific
topic and narrowed research area. In general,
AI, ML, and evolutionary computation are
wider areas and have been studied broadly in
the literature.

 Search databases: this study considered only
the Scopus database for obtaining the primary
studies. Other research databases, including
google scholar, web of science, research gate,
etc., can provide more primary studies for
investigating SI in the TCP domain.

 Domain: regression testing domain has
different categories as TCP is considered one of
them. Test case selection, hybrid, test
generation, and other testing categories are not
included here. These are recent trends for
potential studies in the research community.

7 CONCLUSION

Prioritizing test cases is one of the most effective
ways of performing regression testing, especially
when optimization methods are employed. SI has
attained remarkable importance among optimization
methods, with a growing number of publications
based on SI in the context of TCP. In this study, 57
papers were identified, analyzed, and classified
according to predefined research questions to
determine the current state of SI applications in
TCP. The study addresses internal structure, single,
hybrid SI algorithms, multi-objective optimization,
and evaluating such studies in the field. In
summary, this study offered insights into the
application of SI to prioritize test cases ideally and
provide ideas for future research, in the previous
sub-section, in terms of employing SI for TCP.

REFERENCES:
[1] H. Krasner, “The Cost of Poor Software

Quality in the US: A 2020 Report,” 2021.
[Online]. Available: https://www.it-
cisq.org/the-cost-of-poor-software-quality-
in-the-us-a-2020-report.htm.

[2] U. staff Computerworld, “Top software
failures in recent history,” Computerworld,
2020.
https://www.computerworld.com/article/34
12197/top-software-failures-in-recent-
history.html (accessed Jan. 10, 2021).

[3] R. Kazmi, D. N. A. A. Jawawi, R.
Mohamad, and I. Ghani, “Effective
Regression Test Case Selection: A
Systematic Literature Review,” ACM
Comput. Surv., vol. 50, no. 2, pp. 1–32, Jun.

Journal of Theoretical and Applied Information Technology
30th June 2022. Vol.100. No 12

 © 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4016

2017, doi: 10.1145/3057269.
[4] IEEE Standards Coordinating Committee,

“IEEE Standard Glossary of Software
Engineering Terminology (Std 610.12-
1990(R2002)),” IEEE Computer Society.
IEEE, New York, USA, pp. 1–88, 1990,
[Online]. Available:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?a
rnumber=159342.

[5] G. Rothermel and M. J. Harrold, “A
framework for evaluating regression test
selection techniques,” in Proceedings of
16th International Conference on Software
Engineering, 1994, pp. 201–210, doi:
10.1109/ICSE.1994.296779.

[6] H. Do, “Recent Advances in Regression
Testing Techniques,” in Advances in
Computers, vol. 103, A. M. Memon, Ed.
Elsevier, 2016, pp. 53–77.

[7] A. B. Sanchez, S. Segura, and A. Ruiz-
Cortes, “A Comparison of Test Case
Prioritization Criteria for Software Product
Lines,” in 2014 IEEE Seventh International
Conference on Software Testing,
Verification and Validation, Mar. 2014, pp.
41–50, doi: 10.1109/ICST.2014.15.

[8] S. Yoo and M. Harman, “Regression testing
minimization, selection and prioritization: a
survey,” Softw. Testing, Verif. Reliab., vol.
22, no. 2, pp. 67–120, Mar. 2012, doi:
https://doi.org/10.1002/stvr.430.

[9] D. Hao, L. Zhang, and H. Mei, “Test-case
prioritization: achievements and
challenges,” Front. Comput. Sci., vol. 10,
no. 5, pp. 769–777, Oct. 2016, doi:
10.1007/s11704-016-6112-3.

[10] K.-W. Shin and D.-J. Lim, “Model-Based
Test Case Prioritization Using an
Alternating Variable Method for
Regression Testing of a UML-Based
Model,” Appl. Sci., vol. 10, no. 21, p. 7537,
Oct. 2020, doi: 10.3390/app10217537.

[11] S. F. Ahmad, D. K. Singh, and P. Suman,
“Prioritization for Regression Testing
Using Ant Colony Optimization Based on
Test Factors,” in Intelligent
Communication, Control and Devices, 1st
ed., vol. 624, R. Singh, S. Choudhury, and
A. Gehlot, Eds. Singapore: Springer,
Singapore, 2018, pp. 1353–1360.

[12] M. Khatibsyarbini, M. A. Isa, D. N. A.
Jawawi, H. N. A. Hamed, and M. D.
Mohamed Suffian, “Test Case Prioritization
Using Firefly Algorithm for Software

Testing,” IEEE Access, vol. 7, pp. 132360–
132373, 2019, doi:
10.1109/ACCESS.2019.2940620.

[13] C. Catal, “On the application of genetic
algorithms for test case prioritization,” in
Proceedings of the 2nd international
workshop on Evidential assessment of
software technologies - EAST ’12, Sep.
2012, pp. 9–14, doi:
10.1145/2372233.2372238.

[14] S. Sharma and A. Singh, “Model-based test
case prioritization using ACO: A review,”
in 2016 Fourth International Conference
on Parallel, Distributed and Grid
Computing (PDGC), 2016, pp. 177–181,
doi: 10.1109/PDGC.2016.7913140.

[15] A. Bajaj and O. P. Sangwan, “A Survey on
Regression Testing Using Nature-Inspired
Approaches,” in 2018 4th International
Conference on Computing Communication
and Automation (ICCCA), Dec. 2018, pp.
1–5, doi: 10.1109/CCAA.2018.8777692.

[16] M. H. Alkawaz and A. Silvarajoo, “A
Survey on Test Case Prioritization and
Optimization Techniques in Software
Regression Testing,” in 2019 IEEE 7th
Conference on Systems, Process and
Control (ICSPC), Dec. 2019, no.
December, pp. 59–64, doi:
10.1109/ICSPC47137.2019.9068003.

[17] A. Bajaj and O. P. Sangwan, “A Systematic
Literature Review of Test Case
Prioritization Using Genetic Algorithms,”
IEEE Access, vol. 7, pp. 126355–126375,
2019, doi:
10.1109/ACCESS.2019.2938260.

[18] P. Paygude and S. D. Joshi, “Use of
Evolutionary Algorithm in Regression Test
Case Prioritization: A Review,” in
Proceeding of the International Conference
on Computer Networks, Big Data and IoT
(ICCBI - 2018), vol. 31, no. August 2016,
A. P. Pandian, T. Senjyu, S. M. S. Islam,
and H. Wang, Eds. Cham: Springer
International Publishing, 2020, pp. 56–66.

[19] A. Chakraborty and A. K. Kar, “Swarm
Intelligence: A Review of Algorithms,” in
Nature-Inspired Computing and
Optimization, 1st ed., vol. 10, no. March, S.
Patnaik, X.-S. Yang, and K. Nakamatsu,
Eds. Springer, Cham, 2017, pp. 475–494.

[20] D. Karaboga, B. Akay, and N. Karaboga,
“A survey on the studies employing
machine learning (ML) for enhancing

Journal of Theoretical and Applied Information Technology
30th June 2022. Vol.100. No 12

 © 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4017

artificial bee colony (ABC) optimization
algorithm,” Cogent Eng., vol. 7, no. 1, p.
1855741, Jan. 2020, doi:
10.1080/23311916.2020.1855741.

[21] A. Nayyar and N. G. Nguyen, “Introduction
to swarm intelligence,” in Advances in
swarm intelligence for optimizing problems
in computer science, 1st ed., A. Nayyar, D.-
N. Le, and N. G. Nguyen, Eds. CRC Press,
2019, pp. 53–77.

[22] N. Gunantara, “A review of multi-objective
optimization: Methods and its
applications,” Cogent Eng., vol. 5, no. 1, p.
1502242, Jan. 2018, doi:
10.1080/23311916.2018.1502242.

[23] A. Slowik, J. Yang, N. K. Meena, and P.
Singh, Swarm Intelligence Algorithms: A
Tutorial, 1st ed. First edition. | Boca Raton :
Taylor and Francis, 2020.: CRC Press,
2020.

[24] X. Yang, S. Deb, S. Fong, X. He, and Y.-X.
Zhao, “From Swarm Intelligence to
Metaheuristics: Nature-Inspired
Optimization Algorithms,” Computer
(Long. Beach. Calif)., vol. 49, no. 9, pp.
52–59, Sep. 2016, doi:
10.1109/MC.2016.292.

[25] D. M. Utama, S. K. Dewi, A. Wahid, and I.
Santoso, “The vehicle routing problem for
perishable goods: A systematic review,”
Cogent Eng., vol. 7, no. 1, p. 1816148, Jan.
2020, doi:
10.1080/23311916.2020.1816148.

[26] Y. Tan, Gpu-Based Parallel
Implementation of Swarm Intelligence
Algorithms. Elsevier, 2016.

[27] A. P. Agrawal and A. Kaur, “A
Comprehensive Comparison of Ant Colony
and Hybrid Particle Swarm Optimization
Algorithms Through Test Case Selection,”
in Data Engineering and Intelligent
Computing, vol. 542, S. C. Satapathy, V.
Bhateja, K. S. Raju, and B. Janakiramaiah,
Eds. Singapore: Springer, Singapore, 2018,
pp. 397–405.

[28] S. Kumar and P. Ranjan, “A
Comprehensive Analysis for Software Fault
Detection and Prediction using
Computational Intelligence Techniques,”
Int. J. Comput. Intell. Res., vol. 13, no. 1,
pp. 65–78, 2017, [Online]. Available:
http://www.ripublication.com.

[29] S. Wang, S. Ali, T. Yue, Ø. Bakkeli, and
M. Liaaen, “Enhancing test case

prioritization in an industrial setting with
resource awareness and multi-objective
search,” in Proceedings of the 38th
International Conference on Software
Engineering Companion, May 2016, pp.
182–191, doi: 10.1145/2889160.2889240.

[30] A. A. Ahmed, M. Shaheen, and E. Kosba,
“Software testing suite prioritization using
multi-criteria fitness function,” in 2012
22nd International Conference on
Computer Theory and Applications
(ICCTA), Oct. 2012, no. October, pp. 160–
166, doi: 10.1109/ICCTA.2012.6523563.

[31] D. B. Mishra, R. Mishra, A. A. Acharya,
and K. N. Das, “Test Case Optimization
and Prioritization Based on Multi-objective
Genetic Algorithm,” in Harmony Search
and Nature Inspired Optimization
Algorithms, 1st ed., vol. 741, N. Yadav, A.
Yadav, J. C. Bansal, K. Deep, and J. H.
Kim, Eds. Singapore: Springer Singapore,
2019, pp. 371–381.

[32] A. Arrieta, S. Wang, U. Markiegi, G.
Sagardui, and L. Etxeberria, “Employing
Multi-Objective Search to Enhance
Reactive Test Case Generation and
Prioritization for Testing Industrial Cyber-
Physical Systems,” IEEE Trans. Ind.
Informatics, vol. 14, no. 3, pp. 1055–1066,
Mar. 2018, doi: 10.1109/TII.2017.2788019.

[33] D. Di Nucci, A. Panichella, A. Zaidman,
and A. De Lucia, “Hypervolume-Based
Search for Test Case Prioritization,” in
Search-Based Software Engineering.
SSBSE 2015, 1st ed., vol. 9275, M. Barros
and Y. Labiche, Eds. Bergamo, Italy:
Springer, Cham, 2015, pp. 157–172.

[34] X. Xie, M. Stumptner, and T. H. Tse,
“Introduction to the special issue on
program debugging,” J. Syst. Softw., vol.
140, pp. 109–110, Jun. 2018, doi:
10.1016/j.jss.2018.03.006.

[35] M. Dorigo, “Optimization, learning and
natural algorithms,” Politecnico di Milano,
Italy, 1992.

[36] P. Singh, N. K. Meena, and J. Yang, “Ant
colony optimization, modifications, and
application,” in Swarm intelligence
algorithms modifications and applications,
vol. 2, A. Slowik, Ed. CRC Press, 2020, p.
392.

[37] J. Kennedy and R. Eberhart, “Particle
swarm optimization,” in Proceedings of
ICNN’95 - International Conference on

Journal of Theoretical and Applied Information Technology
30th June 2022. Vol.100. No 12

 © 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4018

Neural Networks, 1995, vol. 4, pp. 1942–
1948, doi: 10.1109/ICNN.1995.488968.

[38] A. Slowik, Ed., Swarm Intelligence
Algorithms: Modifications and
Applications, 1st ed. First edition. | Boca
Raton : Taylor and Francis, 2020.: CRC
Press, 2020.

[39] D. Karaboga, “An idea based on honey bee
swarm for numerical optimization,” 2005.

[40] A. Slowik, Ed., Swarm Intelligence
Algorithms: Modifications and
Applications, 1st Editio. CRC Press, 2020.

[41] K. N. Krishnanand and D. Ghose,
“Detection of multiple source locations
using a glowworm metaphor with
applications to collective robotics,” in
Proceedings 2005 IEEE Swarm Intelligence
Symposium, 2005. SIS 2005., 2005, pp. 84–
91, doi: 10.1109/SIS.2005.1501606.

[42] T. T. Nguyen, D. Ngoc Vo, and B. H. Dinh,
“A cuckoo bird-inspired meta-heuristic
algorithm for optimal short-term
hydrothermal generation cooperation,”
Cogent Eng., vol. 3, no. 1, p. 1266863, Dec.
2016, doi:
10.1080/23311916.2016.1266863.

[43] X.-S. Yang, “Firefly Algorithm: Variants
and Applications,” in Swarm Intelligence
Algorithms: Modifications and
Applications, vol. 7, A. Slowik, Ed. CRC
Press, 2020, pp. 175–186.

[44] N. Kanwar, N. K. Meena, and J. Yang, “Bat
Algorithm - Modifications and
Application,” in Swarm Intelligence
Algorithms: Modifications and
Applications, A. Slowik, Ed. CRC Press,
2020, pp. 43–55.

[45] B. R. Rajakumar, “Lion Algorithm and Its
Applications,” in Frontier Applications of
Nature Inspired Computation, M.
Khosravy, N. Gupta, N. Patel, and T.
Senjyu, Eds. Singapore: Springer,
Singapore, 2020, pp. 100–118.

[46] M. A. Al-Betar, M. A. Awadallah, I. Abu
Doush, A. I. Hammouri, M. Mafarja, and Z.
A. A. Alyasseri, “Island flower pollination
algorithm for global optimization,” J.
Supercomput., vol. 75, no. 8, pp. 5280–
5323, Aug. 2019, doi: 10.1007/s11227-019-
02776-y.

[47] X.-S. Yang, S. Deb, Y.-X. Zhao, S. Fong,
and X. He, “Swarm intelligence: past,
present and future,” Soft Comput., vol. 22,
no. 18, pp. 5923–5933, Sep. 2018, doi:

10.1007/s00500-017-2810-5.
[48] A. Shuaibu Hassan, Y. Sun, and Z. Wang,

“Optimization techniques applied for
optimal planning and integration of
renewable energy sources based on
distributed generation: Recent trends,”
Cogent Eng., vol. 7, no. 1, p. 1766394, Jan.
2020, doi:
10.1080/23311916.2020.1766394.

[49] M. Eusuff, K. Lansey, and F. Pasha,
“Shuffled frog-leaping algorithm: a
memetic meta-heuristic for discrete
optimization,” Eng. Optim., vol. 38, no. 2,
pp. 129–154, Mar. 2006, doi:
10.1080/03052150500384759.

[50] A. E. Hassanien and E. E. Emary, Swarm
Intelligence: Principles, Advances, and
Applications. CRC Press, 2016.

[51] S. Keele, others, and S. E. Group,
“Guidelines for performing systematic
literature reviews in software engineering,”
sn, UK, 2007.

[52] C. Lu, J. Zhong, Y. Xue, L. Feng, and J.
Zhang, “Ant Colony System With Sorting-
Based Local Search for Coverage-Based
Test Case Prioritization,” IEEE Trans.
Reliab., vol. 69, no. 3, pp. 1004–1020, Sep.
2020, doi: 10.1109/TR.2019.2930358.

[53] C. Lu and J. Zhong, “An efficient ant
colony system for coverage based test case
prioritization,” in Proceedings of the
Genetic and Evolutionary Computation
Conference Companion, Jul. 2018, pp. 91–
92, doi: 10.1145/3205651.3205680.

[54] D. Panwar, P. Tomar, H. Harsh, and M. H.
Siddique, “Improved Meta-Heuristic
Technique for Test Case Prioritization,” in
Soft Computing: Theories and Applications,
1st ed., vol. 583, M. Pant, K. Ray, T. K.
Sharma, S. Rawat, and A. Bandyopadhyay,
Eds. Singapore: Springer Singapore, 2018,
pp. 647–664.

[55] R. Dhiman and V. Chopra, “Novel
Approach for Test Case Prioritization
Using ACO Algorithm,” in 2019 IEEE 2nd
International Conference on Information
and Computer Technologies (ICICT), Mar.
2019, pp. 292–295, doi:
10.1109/INFOCT.2019.8711039.

[56] M. K. Pachariya, “Building Ant System for
Multi-Faceted Test Case Prioritization,” Int.
J. Softw. Innov., vol. 8, no. 2, pp. 23–37,
Apr. 2020, doi: 10.4018/IJSI.2020040102.

[57] Y. Bian, Z. Li, R. Zhao, and D. Gong,

Journal of Theoretical and Applied Information Technology
30th June 2022. Vol.100. No 12

 © 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4019

“Epistasis Based ACO for Regression Test
Case Prioritization,” IEEE Trans. Emerg.
Top. Comput. Intell., vol. 1, no. 3, pp. 213–
223, Jun. 2017, doi:
10.1109/TETCI.2017.2699228.

[58] O. Banias, “The drawbacks of statement
code coverage test case prioritization
related to domain testing,” in 2016 IEEE
11th International Symposium on Applied
Computational Intelligence and Informatics
(SACI), May 2016, pp. 221–224, doi:
10.1109/SACI.2016.7507373.

[59] L. L. Chen and L. Zhang, “Study of Test
Cases Prioritization Based on Ant Colony
Algorithm,” Appl. Mech. Mater., vol. 263–
266, no. PART 1, pp. 2168–2172, Dec.
2013, doi:
10.4028/www.scientific.net/AMM.263-
266.2168.

[60] M. Sudhir Kumar and P. Srinivas, “An Ant
Colony Algorithm to Prioritize the
Regression Test Cases of Object-Oriented
Programs,” Indian J. Sci. Technol., vol. 9,
no. 19, May 2016, doi:
10.17485/ijst/2016/v9i19/89458.

[61] K. Solanki, Y. Singh, and S. Dalal, “Test
case prioritization: An approach based on
modified ant colony optimization (m-
ACO),” in IEEE International Conference
on Computer, Communication and Control,
IC4 2015, Sep. 2016, pp. 1–6, doi:
10.1109/IC4.2015.7375627.

[62] K. Solanki, Y. Singh, and S. Dalal,
“Experimental Analysis of m-ACO
Technique for Regression Testing,” Indian
J. Sci. Technol., vol. 9, no. 30, Aug. 2016,
doi: 10.17485/ijst/2016/v9i30/86588.

[63] K. Solanki, Y. Singh, and S. Dalal, “A
Comparative Evaluation of ‘m-ACO’
Technique for Test Suite Prioritization,”
Indian J. Sci. Technol., vol. 9, no. 30, pp.
1–10, Aug. 2016, doi:
10.17485/ijst/2016/v9i30/86423.

[64] A. Vescan, C.-M. Pintea, and P. C. Pop,
“Solving the Test Case Prioritization
Problem with Secure Features Using Ant
Colony System,” in International Joint
Conference: 12th International Conference
on Computational Intelligence in Security
for Information Systems (CISIS 2019) and
10th International Conference on
EUropean Transnational Education
(ICEUTE 2019). CISIS 2019, ICEUTE
2019, 1st ed., vol. 951, F. M. Álvarez, A. T.

Lora, J. A. S. Muñoz, H. Quintián, and E.
Corchado, Eds. Seville, Spain: Springer
International Publishing, 2020, pp. 67–76.

[65] A. Ansari, A. Khan, A. Khan, and K.
Mukadam, “Optimized Regression Test
Using Test Case Prioritization,” Procedia
Comput. Sci., vol. 79, pp. 152–160, Jul.
2016, doi: 10.1016/j.procs.2016.03.020.

[66] B. SURI and S. SINGHAL,
“DEVELOPMENT AND VALIDATION
OF AN IMPROVED TEST SELECTION
AND PRIORITIZATION ALGORITHM
BASED ON ACO,” Int. J. Reliab. Qual.
Saf. Eng., vol. 21, no. 06, p. 1450032, Dec.
2014, doi: 10.1142/S0218539314500326.

[67] D. Gao, X. Guo, and L. Zhao, “Test case
prioritization for regression testing based
on ant colony optimization,” in 2015 6th
IEEE International Conference on Software
Engineering and Service Science (ICSESS),
Sep. 2015, vol. 2015-Novem, no.
91118007, pp. 275–279, doi:
10.1109/ICSESS.2015.7339054.

[68] W. Zhang, Y. Qi, X. Zhang, B. Wei, M.
Zhang, and Z. Dou, “On Test Case
Prioritization Using Ant Colony
Optimization Algorithm,” in 2019 IEEE
21st International Conference on High
Performance Computing and
Communications; IEEE 17th International
Conference on Smart City; IEEE 5th
International Conference on Data Science
and Systems (HPCC/SmartCity/DSS), Aug.
2019, pp. 2767–2773, doi:
10.1109/HPCC/SmartCity/DSS.2019.00388
.

[69] T. Noguchi, H. Washizaki, Y. Fukazawa,
A. Sato, and K. Ota, “History-Based Test
Case Prioritization for Black Box Testing
Using Ant Colony Optimization,” in 2015
IEEE 8th International Conference on
Software Testing, Verification and
Validation (ICST), Apr. 2015, pp. 1–2, doi:
10.1109/ICST.2015.7102622.

[70] D. S. Silva, R. Rabelo, P. S. Neto, R. Britto,
and P. A. Oliveira, “A Test Case
Prioritization Approach Based on Software
Component Metrics,” in 2019 IEEE
International Conference on Systems, Man
and Cybernetics (SMC), Oct. 2019, vol.
2019-Octob, pp. 2939–2945, doi:
10.1109/SMC.2019.8914670.

[71] M. Mann, P. Tomar, and O. P. Sangwan,
“Bio-inspired metaheuristics: evolving and

Journal of Theoretical and Applied Information Technology
30th June 2022. Vol.100. No 12

 © 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4020

prioritizing software test data,” Appl.
Intell., vol. 48, no. 3, pp. 687–702, Mar.
2018, doi: 10.1007/s10489-017-1003-3.

[72] Y. Xing, X. Wang, and Q. Shen, “Test case
prioritization based on Artificial Fish
School Algorithm,” Comput. Commun.,
vol. 180, no. September, pp. 295–302, Dec.
2021, doi: 10.1016/j.comcom.2021.09.014.

[73] J. Sun, J. Chen, and G. Wang, “Multi-
Objective Test Case Prioritization based on
Epistatic Particle Swarm Optimization,”
Int. J. Performability Eng., vol. 14, no. 10,
pp. 2441–2448, 2018, doi:
10.23940/ijpe.18.10.p20.24412448.

[74] M. Tyagi and S. Malhotra, “Test case
prioritization using multi objective particle
swarm optimizer,” in 2014 International
Conference on Signal Propagation and
Computer Technology (ICSPCT 2014), Jul.
2014, pp. 390–395, doi:
10.1109/ICSPCT.2014.6884931.

[75] M. Khatibsyarbini, M. A. Isa, D. N. A.
Jawawi, and D. N. Abang, “A hybrid
weight-based and string distances using
particle swarm optimization for prioritizing
test cases,” J. Theor. Appl. Inf. Technol.,
vol. 95, no. 12, pp. 2723–2732, 2017.

[76] K. H. S. Hla, YoungSik Choi, and Jong Sou
Park, “Applying Particle Swarm
Optimization to Prioritizing Test Cases for
Embedded Real Time Software Retesting,”
in 2008 IEEE 8th International Conference
on Computer and Information Technology
Workshops, Jul. 2008, pp. 527–532, doi:
10.1109/CIT.2008.Workshops.104.

[77] A. Samad, H. Bin Mahdin, R. Kazmi, R.
Ibrahim, and Z. Baharum, “Multiobjective
Test Case Prioritization Using Test Case
Effectiveness: Multicriteria Scoring
Method,” Sci. Program., vol. 2021, pp. 1–
13, Jun. 2021, doi: 10.1155/2021/9988987.

[78] A. K. Joseph, G. Radhamani, and V.
Kallimani, “Improving test efficiency
through multiple criteria coverage based
test case prioritization using Modified
heuristic algorithm,” in 2016 3rd
International Conference on Computer and
Information Sciences (ICCOINS), Aug.
2016, pp. 430–435, doi:
10.1109/ICCOINS.2016.7783254.

[79] M. Khanna, N. Chauhan, and D. K.
Sharma, “Search for Prioritized Test Cases
during Web Application Testing,” Int. J.
Appl. Metaheuristic Comput., vol. 10, no. 2,

pp. 1–26, Apr. 2019, doi:
10.4018/IJAMC.2019040101.

[80] B. Manaswini and A. Rama Mohan Reddy,
“A Regression Test Based on the Test Case
Prioritization Techniques by using the
Nature of Bees,” Int. J. Innov. Technol.
Explor. Eng., vol. 8, no. 9S3, pp. 320–324,
Aug. 2019, doi:
10.35940/ijitee.I3059.0789S319.

[81] R. Vats and A. Kumar, “Artificial Bee
Colony Based Prioritization Algorithm for
Test Case Prioritization Problem,” Int. J.
Adv. Trends Comput. Sci. Eng., vol. 9, no.
5, pp. 8347–8354, Oct. 2020, doi:
10.30534/ijatcse/2020/207952020.

[82] B. Raman and S. Subramani, “An Efficient
Specific Update Search Domain based
Glowworm Swarm Optimization for Test
Case Prioritization,” Int. Arab J. Inf.
Technol., vol. 12, no. 6A, pp. 748–754,
2015, [Online]. Available:
http://iajit.org/PDF/Vol 12, No. 7 (Special
Issue)/7035.pdf.

[83] R. Vats and A. Kumar, “Test Case
Prioritization Using Cat Swarm
Optimization,” Int. J. Adv. Trends Comput.
Sci. Eng., vol. 9, no. 5, pp. 8142–8148, Oct.
2020, doi:
10.30534/ijatcse/2020/175952020.

[84] D. K. Yadav and S. Dutta, “A New Cluster-
Based Test Case Prioritization Using Cat
Swarm Optimization Technique,” in
Proceedings of the Third International
Conference on Microelectronics,
Computing and Communication Systems,
1st ed., V. Nath and J. K. Mandal, Eds.
Singapore: Springer, Singapore, 2019, pp.
441–450.

[85] B. Manaswini and A. Rama Mohan Reddy,
“A Cat Swarm Optimization Based Test
Case Prioritization Technique to Perform
Regression Testing,” Int. J. Recent Technol.
Eng., vol. 8, no. 1, pp. 2677–2682, 2019.

[86] P. Dhareula and A. Ganpati, “Cuckoo
Search Algorithm for Test Case
Prioritization in Regression Testing,” Int. J.
Recent Technol. Eng., vol. 8, no. 3, pp.
6004–6009, Sep. 2019, doi:
10.35940/ijrte.C4488.098319.

[87] R. Nagar, A. Kumar, G. P. Singh, and S.
Kumar, “Test case selection and
prioritization using cuckoos search
algorithm,” in 2015 International
Conference on Futuristic Trends on

Journal of Theoretical and Applied Information Technology
30th June 2022. Vol.100. No 12

 © 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4021

Computational Analysis and Knowledge
Management (ABLAZE), Feb. 2015, pp.
283–288, doi:
10.1109/ABLAZE.2015.7155012.

[88] W. Su, Z. Li, Z. Wang, and D. Yang, “A
Meta-heuristic Test Case Prioritization
Method Based on Hybrid Model,” in 2020
International Conference on Computer
Engineering and Application (ICCEA),
Mar. 2020, pp. 430–435, doi:
10.1109/ICCEA50009.2020.00099.

[89] A. Bajaj and O. P. Sangwan, “Test Case
Prioritization Using Bat Algorithm,” Recent
Adv. Comput. Sci. Commun., vol. 14, no. 2,
pp. 593–598, May 2021, doi:
10.2174/2213275912666190226154344.

[90] M. M. Ozturk, “Adapting code
maintainability to bat-inspired test case
prioritization,” in 2017 IEEE International
Conference on INnovations in Intelligent
SysTems and Applications (INISTA), Jul.
2017, pp. 67–72, doi:
10.1109/INISTA.2017.8001134.

[91] M. Asthana, K. D. Gupta, and A. Kumar,
“Test Suite Optimization Using Lion
Search Algorithm,” in Ambient
Communications and Computer Systems,
1st ed., vol. 1097, Y.-C. Hu, S. Tiwari, M.
C. Trivedi, and K. K. Mishra, Eds.
Singapore: Springer, Singapore, 2020, pp.
77–90.

[92] P. Dhareula and A. Ganpati, “Flower
Pollination Algorithm for Test Case
Prioritization in Regression Testing,” in
ICT Analysis and Applications, 1st ed., vol.
93, S. Fong, N. Dey, and A. Joshi, Eds.
Singapore: Springer, Singapore, 2020, pp.
155–167.

[93] S. Badanahatti and Y. Murthy, “Optimal
Test Case Prioritization in Cloud based
Regression Testing with Aid of KFCM,”
Int. J. Intell. Eng. Syst., vol. 10, no. 3, pp.
96–105, Apr. 2017, doi:
10.22266/ijies2017.0430.11.

[94] B. Manaswini and A. Rama Mohan Reddy,
“A shuffled frog leap algorithm based test
case prioritization technique to perform
regression testing,” Int. J. Eng. Adv.
Technol., vol. 8, no. 5, pp. 671–674, 2019.

[95] O. Dahiya and K. Solanki, “An Efficient
APHT Technique for Requirement-Based
Test Case Prioritization,” Int. J. Eng.
Trends Technol., vol. 69, no. 4, pp. 215–
227, Apr. 2021, doi:

10.14445/22315381/IJETT-V69I4P230.
[96] A. Bajaj and O. P. Sangwan, “Tri-level

regression testing using nature-inspired
algorithms,” Innov. Syst. Softw. Eng., vol.
17, no. 1, pp. 1–16, Mar. 2021, doi:
10.1007/s11334-021-00384-9.

[97] K. Senthil Kumar and A. Muthukumaravel,
“A Hybrid Approach for Test Case
Prioritization using PSO Based on Software
Quality Metrics,” Int. J. Eng. Technol., vol.
7, no. 3.12, p. 300, Jul. 2018, doi:
10.14419/ijet.v7i3.12.16046.

[98] S. Kale and Y. S. S. R. Murthy, “Hybrid
firefly algorithm based regression testcase
prioritisation,” Int. J. Bus. Intell. Data Min.,
vol. 12, no. 4, p. 340, 2017, doi:
10.1504/IJBIDM.2017.086983.

[99] A. Bajaj and A. Abraham, “Prioritizing and
Minimizing the Test Cases using the
Dragonfly Algorithms,” Int. J. Comput. Inf.
Syst. Ind. Manag. Appl., vol. 13, no. July,
pp. 062–071, 2021.

[100] A. Bajaj and O. P. Sangwan, “Discrete
cuckoo search algorithms for test case
prioritization,” Appl. Soft Comput., vol.
110, p. 107584, Oct. 2021, doi:
10.1016/j.asoc.2021.107584.

[101] P. Dhareula and A. Ganpati, “Software test
case prioritization using genetically
modified flower pollination algorithm (Gm-
fpa),” Int. J. Sci. Technol. Res., vol. 8, no.
12, pp. 298–306, 2019.

[102] P. Padmnav, G. Pahwa, D. Singh, and S.
Bansal, “Test Case Prioritization based on
Historical Failure Patterns using ABC and
GA,” in 2019 9th International Conference
on Cloud Computing, Data Science &
Engineering (Confluence), Jan. 2019, pp.
293–298, doi:
10.1109/CONFLUENCE.2019.8776936.

[103] P. Saraswat and A. Singhal, “A hybrid
approach for test case prioritization and
optimization using meta-heuristics
techniques,” in 2016 1st India International
Conference on Information Processing
(IICIP), Aug. 2016, pp. 1–6, doi:
10.1109/IICIP.2016.7975319.

[104] S. Nayak, C. Kumar, S. Tripathi, N.
Mohanty, and V. Baral, “Regression test
optimization and prioritization using Honey
Bee optimization algorithm with fuzzy rule
base,” Soft Comput., vol. 25, no. 15, pp.
9925–9942, Aug. 2021, doi:
10.1007/s00500-020-05428-z.

Journal of Theoretical and Applied Information Technology
30th June 2022. Vol.100. No 12

 © 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4022

[105] R. Kavitha and N. Sureshkumar, “Test Case
Prioritization for Regression Testing based
on Severity of Fault,” Int. J. Comput. Sci.
Eng., vol. 02, no. 05, pp. 1462–1466, 2010.

[106] M. Tyagi and S. Malhotra, “An Approach
for Test Case Prioritization Based on Three
Factors,” Int. J. Inf. Technol. Comput. Sci.,
vol. 7, no. 4, pp. 79–86, Mar. 2015, doi:
10.5815/ijitcs.2015.04.09.

[107] S. Nayak, C. Kumar, and S. Tripathi,
“Effectiveness of prioritization of test cases
based on Faults,” in 2016 3rd International
Conference on Recent Advances in
Information Technology (RAIT), Mar. 2016,
pp. 657–662, doi:
10.1109/RAIT.2016.7507977.

[108] S. K. Harikarthik, V. Palanisamy, and P.
Ramanathan, “Optimal test suite selection
in regression testing with testcase
prioritization using modified Ann and
Whale optimization algorithm,” Cluster
Comput., vol. 22, no. S5, pp. 11425–11434,
Sep. 2019, doi: 10.1007/s10586-017-1401-
7.

[109] Y. Wong, H. Zeng, H. Miao, H. Gao, and
X. Yang, “The Cuckoo Search and Integer
Linear Programming Based Approach to
Time-Aware Test Case Prioritization
Considering Execution Environment,” in
Collaborative Computing: Networking,
Applications and Worksharing.
CollaborateCom 2018., 1st ed., vol. 268, H.
Gao, X. Wang, Y. Yin, and M. Iqbal, Eds.
Shanghai, China: Springer, Cham, 2019,
pp. 734–754.

[110] O. Dahiya and K. Solanki, “An Efficient
Requirement-based Test Case Prioritization
Technique using Optimized TFC-SVM
Approach,” Int. J. Eng. Trends Technol.,
vol. 69, no. 1, pp. 5–16, Jan. 2021, doi:
10.14445/22315381/IJETT-V69I1P202.

[111] M. Khatibsyarbini, M. A. Isa, D. N. A.
Jawawi, and R. Tumeng, “Test case
prioritization approaches in regression
testing: A systematic literature review,” Inf.
Softw. Technol., vol. 93, pp. 74–93, Jan.
2018, doi: 10.1016/j.infsof.2017.08.014.

[112] M. Harman, P. McMinn, J. T. de Souza,
and S. Yoo, “Search Based Software
Engineering: Techniques, Taxonomy,
Tutorial,” in Empirical Software
Engineering and Verification. LASER 2010,
LASER 2009, LASER 2008, vol. 7007, B.
Meyer and M. Nordio, Eds. Berlin,

Heidelberg: Springer Berlin Heidelberg,
2012, pp. 1–59.

[113] M. D. C. De Castro-Cabrera, A. García-
Dominguez, and I. Medina-Bulo, “Trends
in prioritization of test cases: 2017-2019,”
in SAC ’20: Proceedings of the 35th Annual
ACM Symposium on Applied Computing,
2020, pp. 2005–2011, doi:
10.1145/3341105.3374036.

[114] M. Harman, “Making the Case for
MORTO: Multi Objective Regression Test
Optimization,” in 2011 IEEE Fourth
International Conference on Software
Testing, Verification and Validation
Workshops, Mar. 2011, pp. 111–114, doi:
10.1109/ICSTW.2011.60.

[115] M. Harman, Y. Jia, and Y. Zhang,
“Achievements, Open Problems and
Challenges for Search Based Software
Testing,” in 2015 IEEE 8th International
Conference on Software Testing,
Verification and Validation (ICST), Apr.
2015, no. Icst, pp. 1–12, doi:
10.1109/ICST.2015.7102580.

[116] B. Ba-Quttayyan, H. Mohd, and Y. Yusof,
“Regression Test Case Prioritization
Frameworks: Challenges and Future
Directions,” Int. J. Recent Technol. Eng.,
vol. 8, no. 4, pp. 8457–8462, Nov. 2019,
doi: 10.35940/ijrte.D9735.118419.

[117] M. Brunetto, G. Denaro, L. Mariani, and M.
Pezzè, “On introducing automatic test case
generation in practice: A success story and
lessons learned,” J. Syst. Softw., vol. 176, p.
110933, Jun. 2021, doi:
10.1016/j.jss.2021.110933.

[118] L. Ardito, R. Coppola, L. Barbato, and D.
Verga, “A Tool-Based Perspective on
Software Code Maintainability Metrics: A
Systematic Literature Review,” Sci.
Program., vol. 2020, pp. 1–26, Aug. 2020,
doi: 10.1155/2020/8840389.

[119] J. A. Parejo, A. B. Sánchez, S. Segura, A.
Ruiz-Cortés, R. E. Lopez-Herrejon, and A.
Egyed, “Multi-objective test case
prioritization in highly configurable
systems: A case study,” J. Syst. Softw., vol.
122, pp. 287–310, Dec. 2016, doi:
10.1016/j.jss.2016.09.045.

Journal of Theoretical and Applied Information Technology
30th June 2022. Vol.100. No 12

 © 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4023

APPENDIX A: ALL PAPERS SUMMARY

Table 3: The Summary of All Involved Studies

No. Study Year Algorithm Application # of TC Benchmarks Tools Metric

S1 [72] 2021 AFSA Python 8,156 SIR – APTC, EET
S2 [100] 2021 CSA + GA MATLAB 2,400 Terp Office

applications
Minitab
software

APFD

S3 [104] 2021 ABC +
Fuzzy
Logic

C 18 Private QTP APFD

S4 [95] 2021 ACO +
PSO

MATLAB 100 Industrial
“Cosmosoft

Technologies”

– APFD, PTR

S5 [96] 2021 GSA +
PSO

MATLAB 1,184 SIR JUnit,
Emma

APSC,
Inclusiveness,
FDCLP, TSP,

CRP
S6 [77] 2021 PSO MATLAB 313 Open source EclEmma Inclusiveness,

precision, and
size reduction

S7 [99] 2021 PSO + DA MATLAB 2,400 Open source – APFD, TMP
S8 [110] 2021 CSA +

SVM
MATLAB – – – APFD, Mean,

SD, Min,
Max

S9 [89] 2021 Bat – 10 Private – APFD
S10 [52] 2020 ACO – 1,198 Defects4J – –
S11 [81] 2020 ABC – 10 Private – APFD
S12 [83] 2020 CSO – 10 – – APFD,

Exec. time
S13 [56] 2020 ACO MATLAB 8,259 SIR gcov –

S14 [88] 2020 FFA – 1,593 SIR – APFD, Exec.

time

S15 [64] 2020 ACO C++ 5 – – APFD

S16 [92] 2020 FPA Java 191 Open source Eclipse
IDE,

TestNG,
EclEmma

APFD

S17 [91] 2020 LSA MATLAB 888 Private Excel APFD

S18 [101] 2019 FPA+GA Java 191 SIR Eclipse,
EclEmma

APFD, Exec.

time

S19 [70] 2019 ACO Java 35392 SIR – APFD,

APFDC

S20 [108] 2019 Whale +
ANN

Java – – – APFD

S21 [86] 2019 CSA Java ≈ 33 Open source Eclipse,
TestNG

and
EclEmma

APFD

S22 [68] 2019 ACO – 6 – – APTC

S23 [80] 2019 ABC – 14 SIR – Change

coverage

S24 [94] 2019 SFLA – 10 SIR – Cov(x),

Journal of Theoretical and Applied Information Technology
30th June 2022. Vol.100. No 12

 © 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4024

No. Study Year Algorithm Application # of TC Benchmarks Tools Metric

Cost(x),

Fault(x)

S25 [55] 2019 ACO MATLAB - - – –

S26 [85] 2019 CSO – 15 SIR – –

S27 [79] 2019 ABC Python 500 Private Selenium
IDE

APFD,

APFDC

S28 [102] 2019 ABC+GA – 2086 Private – APFD

S29 [84] 2019 CSO MATLAB 50 – – APFD

S30 [12] 2019 FFA Java 6,336 SIR
(Siemens)

NetBeans APFD, Exec.

time

S31 [109] 2019 CSA + ILP – 10 SIR Emma,
Source

monitor,
time.pl,
Lingo

APFD

S32 [73] 2018 PSO – – GitHub – APBC, EET

S33 [53] 2018 ACO – – SIR
(Siemens)

– APSC

S34 [71] 2018 PSO MATLAB 1,628 Industry
(Visual

Analytics
Benchmark
Repository)

– APFD

S35 [54] 2018 ACO – 7 – – –

S36 [97] 2018 PSO+ICSA – – – – Software

quality

metrics

S37 [11] 2018 ACO – – – – –

S38 [90] 2017 Bat – – GitHub – APFD

S39 [103] 2017 PSO+GA Java 30 Private – APFD

S40 [75] 2017 PSO – 1608 Siemens – APFD

S41 [57] 2017 ACO – 8,216 SIR, Google gcov,
GCC

APSC, EET

S42 [93] 2017 GWO Java – Private Cloud Exec. Time,

Memory

Usage (bits)

S43 [98] 2017 FFA+ABC Java 82 Private – APFD

S44 [78] 2016 PSO – 8 – – APFD

S45 [60] 2016 ACO MATLAB 794 Private Emma,
ant

APFD

S46 [61] 2016 ACO Perl 24 Private – APFD

S47 [65] 2016 ACO – 6 – – APFD

S48 [62] 2016 ACO Perl 45 Defects4J – APFD, PTR

S49 [63] 2016 ACO Perl 24 Private – APFD, PTR

Journal of Theoretical and Applied Information Technology
30th June 2022. Vol.100. No 12

 © 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4025

No. Study Year Algorithm Application # of TC Benchmarks Tools Metric

S50 [82] 2015 GSO – 8 – – APFD

S51 [67] 2015 ACO – 8 – – APFD

S52 [69] 2015 ACO – 20,000 Industry – APFD

S53 [87] 2015 CSA Java 6 – MATLAB –

S54 [74] 2014 PSO MATLAB 18 – – APFD

S55 [66] 2014 ACO Turbo C++ 61 Private – –

S56 [59] 2013 ACO – 8 – – APFD

S57 [76] 2008 PSO – 20 JUnit – –

