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ABSTRACT 
 

For a Periodic Vehicle Routing Problem (PVRP), this study offers a new mathematical model which 
optimizing vehicle travel expenses based on many assumptions. Periodic planning includes consideration of 
the following four issues that is a vehicle routing problem with time windows (VRPTW), a capacitated 
vehicle routing problem (CVRP), a vehicle routing problem with split service (VRPSS) and a vehicle 
routing problem with simultaneous pickup and delivery (VRPSPD). In large-scale issues, the computational 
complexity of this problem can be handled by any optimization program in a reasonable amount of time 
since it is based on a single model that we have created. In this paper a neighborhood search meta-heuristic 
is proposed. 

Keywords: Periodic VRP, Logistics, Split Service, Meta-heuristic, Neighborhood Search 
 
1. INTRODUCTION 

The vehicle routing problem (VRP) is a 
general issue for specifying homogenous sets of 
routes and vehicles, wherein every vehicle begins at 
a garage and travels alongside a path to service a 
number of clients with identified geographic 
positions, and returns back to the garage when tour 
ends. The service might be anything from 
delivering things to picking up items to name a few. 
An essential part of the VRP is the depot, which 
stores and employed the vehicles to transport items 
to and from the depot, and the clients who receives 
the items. Reducing the overall transport route price 
while adhering to thorough going working time and 
vehicle capability limits is a fundamental goal of a 
VRP [1]. In spite of this, there may be various gaps 
among the fundamental VRP, and real-life 
implementation, for instance, depots quantity, client 
needs numerous pickups and deliveries, vehicles 
type with varied travel durations, capacity and 
expanses of travel, path restrictions and time frames 
of vehicles and so on. Variations, formulations, and 
solution procedures of VRPs were all examined in-
depth by [2]–[4].  

In VRPs, Capacitated vehicle routing 
problem (CVRP) is the most often studied. Looking 
at a route’s overall demand and VRP with time 
windows(VRPTW) in order to make sure that the 

vehicle can handle it all [5] and [6]. [7] developed 
Open Vehicle Routing Problem (OVRP) with a 
novel mathematical model. The model utilizes 
reasonable time windows by means of which 
distributors want to serve clients sooner than 
competitors to maximize sales. They developed a 
multi-objective particle swarm optimization 
(MOPSO) approach as well as a widely used multi-
objective evolutionary method (NSGA-II) was used 
to compare their outcomes. Extending vehicle 
routing models has also been attempted(for 
example several pickups and delivery positions 
VRP [8]–[10]. In addition, there is VRP with 
Simultaneous Pickup and Delivery (VRPSPD) 
wherein clients want both delivery and collection of 
items at the same time. There is a complete 
dynamic VRP model in [11], [12]. In the classical 
VRP, only one vehicle may service each node. 
Alternatively, more than one vehicle may service 
the client by numerous vehicles that pass through 
from that node. It is recognized as the VRP with the 
same split service (VRPSS) means that a service 
may be distributed across numerous vehicles [13]. 

Using VRP, one may come up with a 
schedule of services that is as cheap as possible 
[14]. A variation of VRP that develops routes is 
called PVRP. It was initially proposed as the 
Assignment Routing Problem in 1979, a 
mathematical model version of the Periodic Vehicle 
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Routing Problem (PVRP) [15]. Minimum numbers 
of visits are established as every day nodes are not 
visited. After that, research was refined to take into 
consideration number of days that individual node 
had been visited [16]. As a result of this, PVRP 
research developed exponentially. Numerous sorts 
of items have been studied using PVRP in the past. 
It demonstrates that these issues really occur on a 
daily basis. In PVRP study, a variety of materials 
were utilized as an insight such as distribution of 
vegetables [17], auto parts [18], collecting garbage 
[15], [19] ,beverage distribution [20], utility 
services [21], home health care (HCC) logistics 
[22], and many others. The majority of PVRP 
research has been focused on developing heuristic 
approaches for solving problems. Using the 
heuristic technique, you can come up with an 
acceptable solution to your issue, but you can’t be 
certain that you’ll obtain the best one [23]. 
Heuristics method may be useful when the number 
of customers serviced is enormous. Several 
researchers have been looking for a PVRP heuristic 
solution, like using variable neighborhood search 
[24], neighborhood search [25], particle swarm 
[26], hybrid genetic algorithm [27], hybridization 
of tabu search [22], hybrid metaheuristic algorithm 
[28], and large adaptive neighborhood [29]. 
Numerous advancements have been made in PVRP 
research. In terms of PVRP, there are three primary 
groups: multi-depot PVRP (MDPVRP), PVRP with 
time windows (PVRPTW), and PVRP with service 
choice (PVRP-SC) [30]. [21], [31]demonstrate the 
presence of multi-depot PVRP. [24], [25], [31]–
[34] explain PVRP using time windows. PVRP-SC, 
on the other hand, refers to PVRP that allows 
number of visits to be used as judgment variable in 
discovering solutions, as in study [35]. It is claimed 
that PVRP-SC exhibits properties similar to those 
seen in the Inventory Routing Problem (IRP). 
PVRP-SC and IRP’s closeness to one another 
determines the visits frequency, arrangement of 
route, and deliveries in total[30]. The node’s 
schedule determines the PVRPSC attributes 
combination and the quantity of items sent to the 
node. Among the features of the IRP issue is 
quantity of deliveries at node is a decision variable 
varies from the number of visits [35]. FPVRP was 
used to develop this issue [35] by adding its flexible 
qualities to it [32]. The term “flexibility” refers to 
the ability to alter the frequency and number of 
visits. Flexibility was factored by [32] which gave a 
fresh viewpoint on modeling. Heuristic technique 
by [36] was one research that looked at flexibility. 
An FPVRP algorithm solution was found by [32] in 
two phases. Initial solutions were developed in the 

first phase, which was then followed by a tabu 
search process [37]. Additional advances in the 
two-tiered distribution channel with a flexible 
service time frame have been made [38]. Taking 
into consideration the consumer’s discount, a model 
was also designed which allows for more flexibility 
in delivery time [39]. 

The structure of the research article is 
maintained as follows. First, an overview of the 
topic and a review of relevant literature are the first 
items on the agenda. Section 2 defines the 
mathematical model, and Section 3 presents the 
suggested approach based on neighborhood search 
for resolving the presented issue. In section 4, 
calculations and results are presented. Lastly, 
Section 5 sums up the findings of this article and 
recommends prospective research avenues for 
further investigation. 

 
2. MODEL FORMULATIONS 

Following are some examples of how this 
model might be described. Let 𝐺 = (𝑉, 𝐴) be a 
chart where 𝑉 = {𝑣଴, 𝑣ଵ, … , 𝑣௡} and 𝐴 =

൛൫𝑣௜ , 𝑣௝൯ห𝑣௜ , 𝑣௝ ∈ 𝑉, 𝑖 ≠ 𝑗ൟ area set of arcs and a set 
of nodes, in that order. 𝐴 has two matrices, one for 
the expense of travel (𝑐௜௝) and one for the time it 
takes to get there (𝑡௜௝). Vertex 𝑣଴  is a depot, while 
the other vertices represent 𝑛 clients. A set of 
permissible visitation times for each client is 
represented by 𝐻௜ = {𝑆௜ଵ, … , 𝑆௜௛} and visitor 𝑆’s 
visitation schedule outlined by 𝑆 = {𝑙ଵ, … , 𝑙்}; The 
customer’s demand on day 𝑑 is indicated by the 
variable 𝑙ௗ (e.g., 𝑙ௗ = 0 shows services to on day 𝑑 
of the customer), and number of days sets are 
shown in the form of time period 𝑇. Following are 
the notations used [40], [41]. 

 
2.1 Notations and variables 
𝑛 Clients total number 
𝑚 Vehicles total number 
𝑡 Days period 
𝑐௜௝  Travel expense along arc (𝑖, 𝑗)  
𝑡௜௝ Travel period along arc (𝑖, 𝑗) 
𝑂௜  Service period for client 𝑖 
𝑝௜
ௗ Pick up amount for client 𝑖 in 𝑑  the period 

of day 
𝑞௜
ௗ Delivery amount of client 𝑖 in 𝑑 the period 

of the day 
𝑄௞ Capacity of vehicle 𝑘 
𝐷௞ Time frames for vehicle 𝑘 to serve all clients 
𝑡௜
min Lower limit of time frames for client 𝑖 
𝑡௜
max Upper limit of time frames for client 𝑖 
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1   if day  is in schedule 

0 otherwisei

i
dS

d S
a


 


 

 
2.2 Decision variables 

1   if schedule  is selected for client  

0 otherwisei

i
iS

S i
v


 


 

d
jk

 
Quantity of pick-up orders of client 𝑗 vehicle 

𝑘 served in 𝑑 day 
d
jk

 
Quantity of deliveries orders of client 𝑗 

vehicle 𝑘 served in 𝑑 day 
d
jk

 
Initial service period of client 𝑗 by vehicle 𝑘 

in day 𝑑 
1   if vehicle  serve client  immediately after client  in day  

0 otherwise
d
ijk

k j i d
x


 


 

1   if vehicle  serve customer  in day  

0 otherwise
d
jk

k j d
y


 


 

d
ijkz   Vehicle 𝑘 Load while navigating arc (𝑖, 𝑗) in 

𝑑 day 
 
2.3 Mathematical model 

1

1 0 1 1

min
T n n T

d
ij ijk

d i i d

Z c x


   


 (1)

 

s.t. 
1

0 1

,1 ,;1 1
n n

d d
jik ijk

j j

i n k m d Tx x


 

       
 

(2) 

0

1 1,1 ,1;
n

d d
ijk jk

i

j n k m dx Ty


      
 

(3) 

1 ,1 ,1;d d
ijk ijk k i n k mz x Q d T     

 
(4) 

1

;1 ,1
m

d d
jk j

k

j np d T


   
 

(5) 

1

;1 ,1
m

d d
jk j

k

j nq d T


   
 

(6) 

1, ,;1 1d d
n k ok kD k n d T      

 
(7) 

1

0 1

( ) ;
n n

d d d d
ijk jk jk jik

i i

z z 


 

   
 

 

1 ,1 ,1j n k n d T     
 

(8) 
min max ;d
i ik it t 

  
1 ,1 ,1j n k m d T     

 
(9) 

(1 ) ;d d d
ik i ij jk ijkO t x M      

 
  

, ,1 ,1i i j n k m d T       (10) 

1 1;
i

is
s S

v i n


  
 

(11) 

1

1

1 1

;

0

1

0

1 ,
i

m
d
ik

k
is sd m

S s d
ik

k

i

y

v a n T

y

d







    
  











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(12) 

1

0 1

1;1
n n

d
ijk

i j

x V d T


 

  
 

(13) 

, , {0,1 ( , , , )};  
i

d d
ijk ik isx y v i j k d

 
(14) 

, , {0,1, 2,... ( , , , )};d d d
ijk jk jk i dz j k   

 
(15) 

Keeping the cost of the route to a 
minimum is the goal of this function. Constraints 
(1) and (2) make certain that each vehicle that 
comes at a client’s location needs to depart from 
that location as soon as feasible (1), this requires 
that each vehicle allocated to a client must service 
every single day (2). Constraint (3) is designed to 
avert capacity of the vehicle from exceeding limit 
as vehicle k travels the arc (𝑖, 𝑗), At a minimum, the 
relevant load ൫𝑧௜௝௞

ௗ ൯  should not surpass the capacity 
of vehicle (𝑄௞). In order to meet the daily pickup 
and delivery needs of each client. Constraints (4) 
and (5) mandate the use of a vehicle transit system. 
The maximum time a vehicle may be in service is 
outlined in Constraint (6). After a client has been 
served, the vehicle’s load is balanced by constraint 
(7). Each vehicle must arrive at address of the 
customer within the time limit established by the 
node of constraint (8). Constraint (9) confirms if 
𝑥௜௝௞
ௗ = 1, customer’s location 𝑗 must have an arrival 

time greater than the total of the customer’s 
location 𝑆௜ arrival times, customer 𝑖 time of service 
and arc time  of travel (𝑖, 𝑗). For each client, only 
one visitation schedule is available constraint (10). 
For each client, Constraint (11) expresses in the 
number of days in their selected schedule, which 
may be supplied by many vehicles; or else, no visit 
will be made on a certain day if it does not fall 
within the predetermined timetable. The sub-tour 
elimination constraint is represented by constraint 
(12). Last but not least, constraint (13) maintains 
the integrality of the variables in the model. 
 
3. THE SOLUTION BASIC APPROACH 

Look at an example mixed integer linear 
programming (MILP) issue that has the succeeding 
structure. 

     Minimize 𝑃 = 𝑐்𝑥 (12) 
Subject to 𝐴𝑥 ≤ 𝑏 (13) 
 𝑥 ≥ 0 (14) 
𝑥௝ number for approximately 𝑗 ∈ 𝐽 (𝐽 is index set) 

(15) 
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the basic feasible vector (𝑥஻)௞ component 
in terms of  MILP solution as uninterrupted shown 
below in equation 16 
( )B kx 

 
1 1 ,( ) ( ) ( )k k N kj N j k n m N n mx x x           (16) 

This statement can be seen in the Simplex 
method’s final tableau. For example, if (𝑥஻)௞ 
would be an integer variable and we suppose k is 
not, the fractional and integer elements of k are 
provided by 

,  0 1k k k kf f        (17) 

Supposing bump (𝑥஻)௞ up to the closest integer, 
say ([𝛽] + 1). We might raise a non-basic variable 
on the basis of concept of suboptimal elucidations, 
such as (𝑥ே)௝∗, exceeding the zero limit, given that 
𝛼௞௝∗ is a negative component of the vector 𝛼௝∗. Let 
∆௝∗ be total movement of the non-variable (𝑥ே)௝∗, 
and therefore the scalar (𝑥஻)௞ numerical value is an 
integer ∆௝∗ can then be stated using Eqn. (16) as 
follows. 

*

*

1 k
f

kj

f




 


 (18) 

Non-basics remain at a constant 0. As may be 
observed, by replacing (18) into (16) for (𝑥ே)௝∗. 
When we take into consideration (17)’s division of 
the number 𝑥, then we get 

(𝑥஻)௞ = [𝛽] + 1 
Therefore, now (𝑥஻)௞  becomes an integer. 

The importance of a non-basic variable in 
integerizing the equivalent basic variable has now 
been established. As a consequence, the following 
result is required to prove that the integerizing 
procedure must operate with a non-integer variable. 
Theorem. 
If the MILP issue (1)-(4) has an optimum answer, 
then non-basic variables must be included in the 
solution. ( ) ,  1, ,N jx j n  , should be non-integer 

variables. 
Proof. 
Using slack variables as a continuous in solving the 
issue (except in the case of equality constraints, 
which are non-integer). Assuming xB is a basic 
variables of vector including total slack variables, 
so variables becomes integer values as they are 
included in the non-basic vector 𝑥ே. 

As the scalar’s (𝑥ே)௝∗ numerical value 
increases to ∆௝∗, so will the additional components 
(𝑥஻)௜ஷ௞ of vector 𝑥஻. Thus, if vector 𝛼௝∗, i.e., 𝛼௝∗  

for 𝑖 ≠ 𝑘, some elements shows positive result. 
Thus, the 𝑥஻  element starts decreasing and may 
potentially reach 0 at some point. Due to the non-

negativity condition, however, vector 𝑥 no 
components may becomes less than zero. Because 
of this, a method named the minimal proportion test 
is required to determine the non-basic’s (𝑥ே)௝∗  

maximum movement while still keeping all of 𝑥 
viable. Two aspects must be included in this ratio 
test. 
1. Firstly, a basic variable (𝑥஻)௜ஷ௞  reduces to 0 

(lower bound). 
2. The basic variable, (𝑥஻)௞  rises to an integer. 

If we were to apply these both aspects to each 
other, we’d do the following: 

*
1

| 0 *

min
j

i

i k j




 

    
    

(19) 

*2 j
  

 
(20) 

Amount of non-basic (𝑥ே)௝∗  release that 
allows vector x to remain viable despite its zero-
bound, depends on the 𝜃∗-ratio test as can be seen 
below 

 *
1 2min ,  

 
(21) 

evidently, if *
1  , one of the fundamental 

variables (𝑥஻)௜ஷ௞  will reach its lower limit prior to 

the integer value for (𝑥஻)௞. If *
2  , feasibility is 

preserved since the fundamental variable (𝑥஻)௞ will 
have an integer value. In the same way, we may 
decrease the numerical value of the fundamental 
variable (𝑥஻)௞ to its nearest integer [𝛽௞]. Any 
positive 𝛼௝∗-value in this situation corresponds to 
the movement amount caused by the (𝑥ே)௝∗ non-
basic variable and hence 

k
f

kj

f

 
 

(22) 

Ratio test 𝜃∗ is still required to keep things 
feasible. , reflect the particular non basic variable, 
as represented in equation (18) and (22). The vector 
𝛼’s corresponding element are the sole factor that 
researcher must consider during their operations. A 
vector 𝛼௝ may be represented as 

1 ,  1, ,j jB a j n m   
 (23) 

As a result, to acquire a certain vector j 

element one must first identify the associated 
matrix [𝐵]ିଵ columns. Let’s say that we want to 
find out the 𝛼௞௝∗ value allowing 𝑣௞

் become the 𝑘-
th column vector of [𝐵]ିଵ, we will get 

1T T
k kv e B  (24) 

After that, we can calculate 𝛼௞௝∗’s numerical value 
from 

* *
T

kj k jv a 
 

(25) 
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Eqns. (24) and (25) are stated to as pricing 
operation in Linear Programming (LP). 𝑑௝  

represents the vector of decreased prices. It is 
utilized to assess the decrease in the objective 
function value produced by a non-basic variable 
releasing from its bounds. When choosing which 
non-basic to release in the integerization procedure, 
especial consideration must be taken to the vector 
𝑑௝, so that degradation is diminished. A lower limit 
on any integer-equivalent solution may be found 
using the minimal continuous solution. The amount 
of movement in a given non-basic variable as given 
in Eqn. (18) or (22), is, nevertheless, influenced by 
the associated 𝛼௝-vector element. As a result, 
releasing a non-basic variable (𝑥ே)௝∗  results in 
objective function reduced value. When 
determining how to integerize 𝑥, the ratio is: 

*

k

kj

d


 

(26) 

Where |𝑎| implies the definite value of scalar 𝑎. 
To keep the best continuous solution as 

close to zero as possible, we apply the following 
technique to determine which non-basic variable 
raises from its zero limit, that is,  

*

min , 1, ,k

j kj

d
j n m



     
  



 

(27) 

Writing constraints for non-basic (𝑁), 
basic (𝐵), and superbasic (𝑆), variables may be 
done using a “active constraint” technique and the 
splitting of the constraints equivalent to these three 
variables. 

b

N
N

S

x
bB S N

x
bI

x

 
                 

(28) 

or 

b S NBx Sx Nx b  
 (29) 

N Nx b
 (30) 

It is supposed that matrix 𝐵 would be non singular 
and square matrix but we obtained as follows. 

B S Nx Wx x   
 (31) 

Where: 
1B b   (32) 
1W B S  (33) 

1B N   (34) 
Non-basic variables are being kept to their 

limit in expression (30). Eqn. (31), which uses the 
integerizing technique mentioned in the preceding 
section and suited for MILP problems, makes it 
clear that this strategy may be put into action. A 

degenerate solution would allow us to liberate a 
non-basic variable from the constraints of Eqn. (30) 
and swap it for a basic variable of the same type 
after integerization.  

The basic variable, (𝑥஻)௞ is being 
integerized right now, and as a result, the nonbasic 
variable, (𝑐ே)௝∗ , is being liberated from its zero-
bound. Assume that (𝑥ே)௝∗’s maximum movement 
fulfills *

*
j

   . 

In order to take use of the method of 
modifying the basis, (𝑥஻)௞ must be integer valued, 
we transfer (𝑥ே)௝∗  keen on 𝐵 (to substitute (𝑥஻)௞) 
and integer-valued (𝑥஻)௞ into 𝑆 to ensure that the 
integer solution remains intact. Now that a 
fundamental variable has reached its limit, we have 
a degenerate solution. With a fresh set of integers, 
the process of integerizing continues [𝐵, 𝑆]. As a 
result, total number of integral variables becomes 
superbasic. 
 
4. THE ALGORITHM 

The following approach may be used to 
find a suboptimal but integer-feasible solution from 
an optimum continuous solution once the relaxed 
issue has been solved. 
Let 

[ ] , 0 1x x f f     

be the (continuous) solution of the tranquil issue, 
[𝑥] is the integer component of non-integer variable 
𝑥 and 𝑓 is the fractional component. 

Step 1. Obtaining the smallest integer feasibility 
of row **,   min{ ,1 }i i ii f f    

Step 2. Compute 
 1

* *
T T
i iv e B  

 this operation is named as pricing 
operation 

Step 3. Compute *
T

ij i jv a   

 With j match up to min j
j

ij

d



  
 
  

 

 I. For non-basic 𝑗 at lower limit 
 If 0ij  and *i if  determine

*(1 )i

ij





 


 

 If 0ij  and
* 1i if   determine

*(1 )i

ij





   
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 If 0ij  and * 1i if   determine

*i

ij




 


 

 If 0ij  and *i if  determine

*i

ij




   

 II. For non-basic 𝑗 at upper limit 
 If 0ij  and * 1i if   determine

*(1 )i

ij





 


 

 If 0ij  and *i if  determine

*(1 )i

ij





   

 If 0ij  and * 1i if   determine

*i

ij




   

 If 0ij  and *i if  determine

*i

ij




 


 

 Else, go to available superbasic 𝑗 or 
non integer non basic variable. Finally 
column 𝑗∗ is elevated from LB or 
reduced from UB. If this never happen, 
then proceed to the next 𝑖∗. 

Step 4. Compute 

 1
* *j jB   

 i.e., solve * * *  for  .j j jB    

Step 5. Ratio test: Because non-basic 𝑗∗ has been 
released from its limits, there are three 
possible values for the basic variables. 

 If 𝑗∗ lower limit 
 Let 

  '

*

'

' * 0
*

min i

ij

B i

i i
ij

x l
A

  

    
  

 

  '

*

'

' * 0
*

min i

ij

i B

i i
ij

u x
B

  

    
  

 

  C    
 The 𝑗∗ maximum movement rely on: 

  * min( , , )A B C   

 If 𝑗∗ upper limit 
 Suppose 

  '

*

'

' * 0
*

' min i

ij

B i

i i
ij

x l
A

  

    
  

 

  '

*

'

' * 0
*

' min i

ij

i B

i i
ij

u x
B

  

      
 

  'C    
 The 𝑗∗ maximum movement rely on: 
  * min( ', ', ')A B C   

Step 6. Switching basis for all probabilities 
 1. If 𝐴 or 𝐴ᇱ 

 
'iBx befits non-basic at lower limit 'il  

 *jx befits basic (substitutes
'iBx ) 

 *ix remains basic non-integer 

 2. If 𝐵 or 𝐵ᇱ 

 
'iBx  becomes non-basic at upper 

limit 'iu  

 *jx  becomes basic (replaces 
'iBx ) 

 *ix remains basic non-integer 

 3. If 𝐶 or 𝐶ᇱ 

 *jx
 
befits basic (replaces *ix ) 

 *ix  becomes super-basic at integer-

valued 
 repeat from step 1. 
 

5. COMPUTATIONAL RESULT 

EXIT -- OPTIMAL SOLUTION FOUND. 
 

NO. OF ITERATIONS                      67      
OBJECTIVE VALUE       4.5000000000000E+02 

 
NORM OF X                       8.250E+02      NORM 
OF PI                      1.735E+02 
1 
PROBLEM NAME   P                     OBJECTIVE 
VALUE    4.5000000000E+02 

 
STATUS         OPTIMAL SOLN          
ITERATION   67 

 
Table 1: The values of variable 
1 X011 0.00000 

2 X021 0.00000 

3 X031 0.00000 

4 X041 1.00000 

5 X012 0.00000 

6 X022 0.00000 

7 X032 1.00000 

8 X042 0.00000 

9 X101 1.00000 
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10 X201 0.00000 

11 X301 0.00000 

12 X401 0.00000 

13 X102 1.00000 

14 X202 0.00000 

15 X302 0.00000 

16 X402 0.00000 

17 X121 1.00000 

18 X131 0.00000 

19 X141 0.00000 

20 X122 0.00000 

21 X132 0.00000 

22 X142 0.00000 

23 X211 1.00000 

24 X231 0.00000 

25 X241 0.00000 

26 X212 0.00000 

27 X232 0.00000 

28 X242 0.00000 

29 X311 0.00000 

30 X321 0.00000 

31 X341 0.00000 

32 X312 1.00000 

33 X322 0.00000 

34 X342 0.00000 

35 X411 1.00000 

36 X421 0.00000 

37 X431 0.00000 

38 X412 0.00000 

39 X422 0.00000 

40 X432 0.00000 

41 L11 0.00000 

42 L21 325.00000 

43 L31 825.00000 

44 L41 0.00000 

45 L12 825.00000 

46 L22 0.00000 

47 L32 825.00000 

48 L42 0.00000 

49 B -1.00000 

 

6. CONCLUSION 

The prior models failed to consider the 
true complexity of many real-world routing issues. 
To suit a variety of practical needs, we’ve 
developed a PVRP, or periodic vehicle routing 
problem in this research, incorporating the PVRP’s 
well-known models. Furthermore, it incorporates 
plenty of formerly unconsidered upgrades from 
prior models. This paper has presented a split 
service of CPVRP that includes the ability to divide 
a customer’s transportation needs across several 

vehicles. In a transportation system, this issue 
might arise when a large number of vehicles must 
pass through a node or client. Another possibility is 
that the order in certain nodes exceeds the fleet’s 
total capacity. For the purpose of this research, we 
have sought to optimize the fleet’s capacity 
utilization. As a result, numerous vehicles might 
meet the needs of certain clients. The provided 
approach is capable of finding the most cost-
effective routes for a fleet. It is clear that the 
suggested PVRP model can be solved using the 
PSO method, as shown by the simulation results. 
The PSO parameters and programming 
implementation may be improved, though, since it 
was not the greatest. A better solution and a shorter 
calculation time are now possible thanks to these 
additional efforts. Additional studies should be 
done to expand the approach to more complex real-
world issues. 
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