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ABSTRACT 

The recommendation system has been very vital in the field of research. The objective of the recommendation 
system is to recommend items to users, but it is difficult when the user’s purchase history, ratings, personal 
information are not available. Though many recommendation systems are available to recommend products, 
it is a big problem for new users because there is no available information that helps to recommend the 
appropriate products to the new users. To get better enactment of recommendation systems, solving the cold 
start problem is an important issue for researchers. Many recommendation techniques are available for the 
last couple of years. It has been overwhelming for the new researchers, merchants, web application 
developers and etc. to know each of them very quickly. Commonly used possible solutions of coldstart 
problem, frequently used datasets for the specific domain have not been found. So, various techniques are 
summarized in this article like hybridization methods, data collection approaches, most commonly used 
possible solutions of cold start, frequently used datasets, algorithms, evaluation methods etc. This study 
examines how the cold start problem can be solved by the existing hybrid approaches that may help 
researchers to get a direction for solving the cold start problem. 
 
Keywords: Content-Based-Filtering, Collaborative-Filtering, Cold-Start, Hybrid, Recommendation Systems. 
 

1. INTRODUCTION  
 

We live in an era of online information 
technology. Data is the key to this technology. In 
recent-years, recommender systems(RS) have been 
used in various field including commercial websites 
like Netflix, Movielens, Amazon, eBay, Linkedln, 
MovieFinder, Jinni, Myspace, Facebook, and etc [1], 
[2]. The recommendation system is to access users’ 
profiles to find out their interests and gather their 
opinion either implicitly or explicitly or combine 
them both to find the relevant or most similar item to 
suggest them[1]. Recommender system is 
extensively used in YouTube, Amazon, and Netflix 
in the online industry. Collaborative-filtering(CF) 
and content-based-filtering(CBF) are the two basic 
approaches or parts to developing recommender 
systems as well as hybrid recommender system is 
created by combining the two methodologies [3]. 

One of the main issues which hamper the 
performance of the recommendation system (RS) is 
known as “cold-start”. It can be either for new users 

or new items. If the user profile is new or does not 
contain a sufficient rating, the user gets a non-
personalized recommendation until the user profile 
is enriched with information [4]. In recommendation 
system, the solution of cold-start problem is still a 
challenge for researchers. There have been many 
solutions of cold start using content-based filtering, 
collaborative-filtering, and hybrid approaches. But 
most of the papers are used hybrid approach which 
is given a better result than content-based filtering 
and collaborative-filtering approaches. After 
reviewing the papers, it has been found that some 
papers have discussed recommendation type, 
hybridization methods, and data collection 
techniques [156], but has not been found any 
discussion about datasets, cold start solutions. 
Another author discussed recommendation types and 
data collection approaches [6] but not discussed the 
all information in one paper. So, a possible 
summarize information in one paper has been 
created which help a researcher to get every possible 
and common suggestion on this field for getting 
better solution. 
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Many research papers have been found 
after the review where the authors have solved 
coldstart problem but have not found the proper 
solution. They are still working to get better solution 
of the cold start problem. To get a proper idea to 
solve cold start problem, some information like full 
details about the recommendation system, cold start 
solution, data collection techniques, hybridization 
methods, and etc. are found in one paper is helpful. 
But this full information in one paper has not been 
found. So, the main objective of this paper is to give 
an informative overview of the recommendation 
system, the solution of cold start, data collection 
technique as well as give a future direction for 
solving the cold-start problem in a hybrid approach. 
For this purpose, more than a hundred papers have 
been collected. Papers have been excluded and 
included based on some criteria. Then the papers 
have been read and tried to find out every single 
thing like how the cold start problem is solved using 
hybrid approach, algorithms, datasets, data 
collection process, and etc. Every piece of 
information is listed in the statistical process. 

The structure of the paper is as follows. The 
brief of the recommendation system is described in 
section 2, section 3 demonstrates the full procedure 
which is followed to write this review, section 4 
describes the data collection techniques section 5 
describes the most commonly used solutions of cold-
start, section 6 shows the result, and at the end, 
section 7 concludes the paper. 

2. RECOMMENDATION SYSTEM 

On the social or online platform, a feature 
is shown that gives suggestions of various items. 
This feature generates the list of tips according to 
user personal information, likes, dislikes, past 
preferences etc. This feature is called the 
Recommendation System. The suggestion generated 
by the feature is unique to the user and will be 
different from user to user. Recommender systems 
use user profiles or preferences to filter information 
and provide predictions [5]. Recommendation 
systems typically generate a list of suggestions using 
one of the strategies available. In the following Fig. 
1, the full recommendation systems are represented 
at a glance. 

 
Personalized Recommendation system is a 

sort of recommender system that aims to recommend 
users desired things based on their previous behavior 
as well as interpersonal relationships in social 
networks by taking three views into account: 1) 
Interpersonal influence, which refers to somebody 

you would trust. 2) Interest circle derivation, which 
indicates who shares your interests, and 3) User 
individual interest, which influences what things you 
would be interested in[6]. In Fig. 1, it is shown that 
personalized recommendation systems are divided 
into some categories based on how they provide 
recommendations [6]. 

 
Figure 1. Recommendation Systems 

 
Content-Based-Filtering(CBF) is based on 

the users' past preference and the item's descriptions 
that help in recommending similar things to the 
users' according to their past choice [1]. CBF 
algorithms basically work on user past preference, 
likes, dislikes etc. It does not compare others’ 
choices or similarities to recommend a user. It does 
not take other users' similarity data to recommend 
items to a user. How content-based-filtering works is 
shown in Fig. 2. 

 

 
Figure 2. Content-Based-Filtering 

 
Collaborative-filtering  (CF) strategies 

create a model based on a user's previous behavior 
like their purchased or selected items in the past, 
ratings given to those items, as well as similar 
decisions made by other users[7]. It does compare 
others’ choices or similarities to recommend a user. 
It takes other users' similarity data to recommend 
products to a user. How collaborative-filtering works 
is shown in Fig. 3. 

 

 
Figure 3. Collaborative-filtering 
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Hybrid recommender systems combine 
many recommender systems to provide a more 
robust framework [6]. This approach is more helpful 
to solve the ‘cold-start’ problem. In CF 
recommendation system, the full process is based on 
domain dependency [8]. In CBF recommendation 
systems, the full process is about people past 
preferences [8]. The process of hybrid 
recommendation system is shown in Fig. 4. 

 

 
Figure 4. Hybrid Recommendation System 

 
There are seven type of hybridization 

methods. Weighted hybridization integrates the 
findings of various recommenders to build a 
suggestion list or forecast by using a linear formula 
to incorporate the scores from each of the approaches 
in use [156].  

The switching hybrid chooses a single 
recommendation system. The model is utilized to 
build for the item-level sensitive dataset, and we 
should set the recommender selection criteria based 
on the user profile or other factors. DailyLearner is 
the Example of a switching hybrid [156]. In Fig 5, 
switching hybridization method is shown. 

 
Figure 5. Switching Recommendation System 

 
Instead of having only one suggestion per 

item, mixed hybrids simultaneously incorporate the 
findings of many recommendation algorithms.[156]. 
Each item has several requests from various 
recommendation techniques connected with it. 
Individual results do not necessarily affect a 
particular region's overall performance in mixed 
hybridization. The PTV system is an example of 
mixed hybridization[157]. Fig. 6 shows the mixed 
hybrid scenario. 

 
Figure 6. Mixed Hybridization Method 

 
The feature combination hybrid allows the 

system to analyze cooperative data without 
depending only on it; the system’s susceptibility to 
the number of user who have been rated a product is 
reduced [157]. In turn, it provides information to the 
system regarding the intrinsic similarity of things 
that would otherwise be unavailable to a 
collaborative approach. In Fig. 7, feature 
combination hybrid scenario is shown. 

 
Figure 7. Feature Combination Hybridization Method 

 
In this method, one recommendation 

methodology is used to provide a coarse rating of 
candidates, while a second technique is used to 
refine the suggestion from the candidate set. It is 
used in sparse dataset. Cascade hybridization 
permits systems to avoid using the 2nd, lower-
priority strategy on things that have already been 
well differentiated by the 1st or are so less-rated that 
they will never be suggested [157].  

In comparison to feature-combination 
approaches, feature augmentation hybrids add a 
modest number of characteristics to the primary 
recommender [156]. This method is used to improve 
the performance of CBF. It generates a ratio on the 
classification of the use or item profile. The 
approach takes advantage of the preceding 
recommender's ratings and other data, and it also 
necessitates new capability from the recommender 
systems. In Fig. 8, the feature-augmentation process 
is showed. 

 
Figure 8. Feature Augmentation Hybridization 

Method 
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Instead of using the actual dataset, the meta-level 
employs a learned structure from the contributing 
structure to the original recommendation model. We 
can see the summarization of the Hybridization 
method at a glance in Table 1. 

Table 1. Hybridization Methods[157] 

Hybridization 
Method 

Description 

Weighted 

Multiple recommendation 
methods' scores (or votes) are 
merged to generate a single 
suggestion. 

Switching 

Depending on the current 
scenario, the system shifts 
between recommendation 
methods. 

Mixed 

Simultaneously, 
recommendations from 
multiple different 
recommenders are provided. 

Feature Combination 

A single recommendation 
algorithm is developed by 
integrating various 
recommendation data sources 
features. 

Cascade 
One recommender builds on the 
recommendations provided by 
another. 

Feature 
Augmentation 

One technique's output is 
employed as a feature in 
another's input. 

Meta-Level 
One recommender's model gets 
fed into another's algorithm. 

 
3. THE WORKING PROCEDURE 

To start the paper, some research questions 
are defined. After settings the questions, the papers 
are collected from various data sources like Scopus, 
IEEE, ACM and, Web of Science. So, the full 
writing process of literature review are given below:  

 Step-01: Defining research questions. 
 Step-02: Collect paper from various 

databases according to criteria 
 Step-03: Paper inclusion and exclusion 
 Step-04: Reading the selected paper 
 Step-05: Find out the data collection 

approaches 
 Step-06: Find out hybridization methods 
 Step-07: Find the frequent solution of cold 

Start 
 Step-08: Evaluate result 

The questions which help to write the review paper 
are given below: 
Q-1: Does the use of hybrid technique create any 
improvement for solving the cold start problem? 
Q-2: Which data collection techniques give a better 
result to solve cold start problem using hybrid 

approaches? 
Three criteria are followed to collect papers 

which are shown in Fig. 9. First of all, a search string 
is created. Based on this search string, the papers 
have been collected. Then the snowballing method is 
used. Finally, the forwarding process is used to 
collect paper. Papers are collected from Google 
Scholar which are indexed in various database like 
Scopus, IEEE, ACM and, Web of Science. 

 

 
Figure 9. Paper Collection Process 

 
For executing the first step, a search string 

has been created. The string is ("hybrid 
recommendation" OR "content and collaborative 
filtering" OR "combined recommendation system" 
OR "cross recommendation" OR "content and 
collaborative base recommendation") AND ("cold 
start recommendation" OR "new user 
recommendation system" OR "newcomer 
recommendation"). Almost 59 papers are collected 
using this searching string which is shown in Table 
2.  

Table 2. Collecting Papers Using Search String 
Publishing 

year 
No of paper Reference 

2010 0 - 
2011 2 [9], [10] 
2012 1 [11] 
2013 1 [12] 
2014 3 [13], [14], [15], 
2015 4 [16], [17], [18], [18] 

2016 5 
[19], [20], [21], [22], 
[23], [24], [25] 

2017 9 
[26], [27], [28], [29], 
[2], [30], [31], [32], 
[33], 

2018 10 
[34], [35], [36], [37], 
[38], [39], [8], [40], 
[41], [42] 

2019 8 
[43], [44], [45], [46], 
[47], [48], [49], [50],  

2020 8 
[5], [51], [1], [3], [52], 
[53], [54], [55] 

2021 8 
[56], [57], [58], [59], 
[60], [61], [62], [63],  

 
After collecting papers using search string, 

the next process is going to be executed which is 
called snowballing process. Almost 42 papers have 
been collected from snowballing. Papers are 
collected from snowballing has been shown in Table 
3.  
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Table 3. Collecting Papers Using Snowballing 
Publishing 

year 
No of paper Reference 

2010 3 [64], [65], [66] 
2011 2 [67], [68] 
2012 1 [69] 

2013 6 
[12], [70], [71], [72], 
[73], [74] 

2014 12 
[75], [76], [77], [24], 
[78], [79], [80], [81], 
[82], [83], [84], [85] 

2015 6 
[86], [87], [88], [89], 
[90], [91] 

2016 5 
[92], [93], [94], [50], 
[95] 

2017 2 [96], [97] 
2018 2 [98], [99] 

2019 4 
[100], [43], [101], 
[102] 

2020 1 [103],  
2021 0 - 

 
Finally, forwarding process is applied for 

collecting rest of the papers. Using forwarding 
process almost 53 papers has been collected. Papers 
are collected from forwarding has been enlisted in 
Table 4. 

Table 4. Collecting Papers Using Forwarding 
Publishing 

year 
No of 
paper 

Reference 

2013 1 [4] 
2014 1 [104] 
2015 3 [105], [106], [107] 

2016 4 
[108], [109], [110], 
[111] 

2017 9 
[112], [113], [114], 
[115], [116], [117], 
[51], [118], [119] 

2018 5 
[2], [120], [121], [83], 
[122] 

2019 6 
[123], [124], [125], 
[126], [127], [128] 

2020 11 

[129], [130], [131], 
[132], [133], [134], 
[135], [136], [137], 
[138], [139] 

2021 13 

[140], [141], [142], 
[143], [144], [145], 
[146], [147], [148], 
[149], [150], [151], 
[152] 

 
 After collecting all the papers, the vital 

process has been executed for picking up the most 
relevant papers from the paper collection. This step 
is called paper inclusion and exclusion, which is 
shown in Fig. 10. For paper inclusion and exclusion, 
some steps are followed. These steps are described 
below. 
Step-01:  After collecting all the papers from 
various databases, it is defined whether the paper is 

written in English. If it is not written in English, the 
papers are excluded. 
Step-02: After this, the title, abstract, introduction 
and, the conclusion of the paper is read. 
Step-03: After reading, we try to find if these 
papers solve any cold start problem. If yes, then go 
to the next step. Otherwise, exclude the paper. 
Step-04: After finding the Cold start, we try to find 
out if there are any uses of hybrid approaches? If 
yes, then choose the paper for work. Otherwise, the 
paper is discarded. 
Fig. 10 is shown to present the whole process of our 
paper exclusion and inclusion.    
 

 
Figure 10. Paper Inclusion and Exclusion Criteria 

According to the above criteria, some 
papers has been picked up for review. A list of 
papers is shown in Table 5.  

 
Table 5. Total Papers after Inclusion and Exclusion 

Publishing 
Year 

No of relevant 
paper 

References 

2010 2 [64], [65]  

2011 1 [9] 

2012 1 [11] 

2013 2 [4], [153] 

2014 1 [13] 

2015 4 
[17], [18], [16], 
[19] 

2016 4 
[21], [20], [22], 
[110] 

2017 5 
[26], [29], [28], 
[32], [27] 

2018 7 
[34], [35], [36], 
[8], [2], [98], [40] 

2019 7 
[46], [43], [45], 
[44], [127], [39], 
[47] 

2020 7 
[37], [3], [1], [5], 
[52], [51], [7] 

2021 2 [56], [154] 

 
According to the Table. 5 a graph is created. 

How many papers have been got as most relevant to 
work is shown in Fig. 11.  
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Figure 11. No of Relevant Paper VS Publishing Year 

In the above Fig. 11, The X-axis defines publication 
year, and the Y-axis depicts the number of papers 
collected based on the search string, snowballing and 
forwarding process. Within 2018-2020, most of the 
papers are found for the relevant work.  
 
4. DATA COLLECTION APPROCHES 

In recommendation systems, data is the 
most important thing. Data can be collected either 
implicitly or explicitly or combined both in an RS 
which is known as “Information-Feedback” [6]. The 
core function of an RS is data or information 
feedback, which provides the information or 
data that RS needs to make appropriate 
recommendations to customers based on their choice 
or preferences [6]. In general, there are three sorts of 
feedback mechanisms which is reflected in Fig: 12.  

 
Figure 12. Data Collection Approaches 
This approach obtains information without 

the user's knowledge but is based on the user's 
actions during the process. Without the user's 
agreement, the user's preferences are assessed. An 
Implicit Technique uses applications tools and 
procedures to record and evaluate the user input. 
This form of Implicit Technique could be found in a 
variety of apps, including browser history, web 
consumption or purchasing record, and even search 
history or user's behavior.  

Users are asked to offer either a number or 
a score-evaluation while assessing the product, in 
this method. An organized continuous scale is used 
to fulfil the usual situation of explicit evaluations 
(example-Mark out ten). Ratings on various 
measures enable statistical analysis of these 
judgments, such as distributions, averages, and so 
on. The Explicit Technique assists people in 
expressing their desire and taste for a certain thing 
[155]. 

Both Implicit and Explicit Techniques are 
combined in Mixed Techniques. To anticipate things 
of interest and choice to users, this technique uses a 
combination of numerical rating, scores and human 
nature [6]. 

5. MOST COMMONLY USED SOLUTIONS 
OF COLD START 

The solution of cold start is one of the main 
challenges in the Recommendation Systems. The 
cold start problem occurs when recommenders are 
unable to make conclusions about users or goods due 
to a lack of data[4]. It can be either for new products 
or new users. Some frequent solutions of cold start 
is given below in Fig 13.  

 

 
Figure 13. Frequent Solution of Cold-Start 

 
The demographical based approach is 

based on user demographical characteristics or 
personal attributes. The RS suggests a list of goods 
that have received positive feedback from customers 
with demographics comparable to the target 
customer [18]. When no user rating record is 
available, this method produces suggestions. This 
method is quick, easy, and straightforward in 
creating findings based on a few observations. 

Until there are enough rated products, a 
new user is explicitly requested to give rate the 
selected items. In RS, asking a set of questions 
regarding user’s preferences or proposing certain 
goods to obtain any rating that would irritate the 
consumer. It's also a time-consuming and 
inconvenient activity. 

Build a model based on the rating database 
first when using the model-based method. The 
model then generates a suggestion without 
consulting the entire database each time. 

To increase suggestion accuracy, this 
recommender system incorporates social networking 
aspects. The practice of examining social structures 
using network and graph theory concepts is known 
as social network analysis (SNA). Nodes (individual 
actors or persons inside the network) and edges 
(relationships) illustrate the social network. 
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6. RESULT AND DISCISSION 

The main purpose of this literature review 
is to display the full overview of the possible 
solution of Cold-Start problem using hybridization 
approaches as well as showing the suitable data 
collection process for solving coldstart. Some tables 
and graphs are created for showcasing the results.  

There are three type of data collection 
techniques. They are implicit, explicate and mixed 
approaches. After reviewing the papers, it is found 
that the mixed method is the most used data 
collection approach among all which is the answer 
of Q-2. The result is shown in the following Fig: 14. 

 

 
Figure 14. No of Paper VS Data Collection Approaches 

 
In the above Fig: 14, the X-axis depicts the 

data collection process. On the other hand, the Y-
axis defines the number of papers. According to Fig: 
14, most of the authors used this mixed technique to 
get a better result. 

There are seven types of hybridization 
methods. But weighted, mixed, feature combination 
and Feature Argumentation are the most commonly 
used hybridization methods used in recommendation 
systems. In Fig. 15, which hybrid methods are 
broadly used for solving cold start problem is shown. 
In the following pie chart, the percentage of the 
hybridization methods are shown. In our finding, the 
weighted hybridization method is a highly used 
method. About 28.9% of our collected paper's 
authors used this method. On the other hand, cascade 
hybridization is a rarely used method. About 2.6% of 
collected paper used this method which is so low in 
the count. 

 
Figure 15. Hybridization Methods 

 
The most frequently used solutions to cold 

start problems are Demographic Data Based, Ask-to-

rate, Model based and, Social network analysis 
based. But after the survey, we can find out that 
demographic data based solutions are the most 
commonly used approaches. In Fig. 16, the 
frequently used cold start solutions in practical field 
are shown. 

 
Figure 16.  Frequent Solutions of Cold-Start 

 
In the above pie chart, the demographic-based 
solution has been highlighted. According to the 
collected paper, about 63.2% of authors used this 
solution to solve cold start problem. 

In this paper, five types of domain’s papers 
like Movies, Books, Tourism, Music and, E-
commerce are reviewed. After reviewing, some 
commonly used datasets are found. The datasets are 
shown in Table 6. 

Table 6. Datasets 

Paper Domain Datasets 

Movie 

MovieLens [4], [1], [2],  [21], 
MovieLens 1M [18], [37], [154], 
[110], [65], MovieLens 100K [37], 
[127], [154] 

Books 

Using historical data of Southwest 
University Library [17], DBook [13], 
Book-Crossing community [26], 
Twitter platform [44], 
Amazon/LibraryThing (A/LT) corpus 
[45] 

Tourism 
TripAdvisor [28], [27], [39],  
Tongcheng [20], Flickr [51] 

Music 
Last.fm [11], [32], [32], Million Song, 
Yahoo Music [52], Spotify [40] 

E-commerce Amazon [35], [56] 

After analysis, according to collected paper 
it can be said that MovieLens dataset is the most 
commonly used dataset for movie domain, as well as 
TripAdvisor for tourism, Last.fm for music and 
Amazon for the e-commerce sector. 

There are many papers where the authors 
used their own proposed algorithms. But most of the 
papers are used some common algorithms which are 
enlisted in Table 7. 

Table 7. Commonly Used Algorithms 

Algorithm Name 
No of 
papers 

Reference 

K Nearest 
Neighbor (KNN) 

6 
[26], [29], [28], [7], 
[65], [98] 
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K- means 
Clustering 

8 
[4], [9], [13], [43], 
[127], [8], [153], 
[40] 

Jaccard Similarity 3 [4], [18], [110] 
Pearson’s 
Correlation 
Coefficient 

4 [18], [16], [8], [110] 

Cosine Similarity 5 
[18], [1], [7], [5], 
[110] 

Euclidean Distance 4 
[18],  [45], [127], 
[28] 

Singular Value 
Decomposition 
(SVD) 

2 [43], [7] 

Matrix 
Factorization (MF) 

4 
[43], [34], [32], 
[110] 

Associate Rule 
Mining 

3 [4], [37], [65] 

TF-IDF 2 [21], [5] 
Decision Tree 2 [9], [28] 

 

 
Figure 17. Commonly Used Algorithms VS No 

of papers. 
 
In Fig. 17, X-axis illustrates the number of 

papers, and the Y-axis defines the name of the 
commonly used algorithms. From the collected 
paper, K- means clustering algorithm, K-Nearest 
Neighbor (KNN), Cosine Similarity etc. are the most 
widely used algorithms. 

There are a lot of evaluation metrics but 
after reviewing some common evaluation metrics 
are found. They are 
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Different forms of measurements, such as 
accuracy or coverage, can be used to evaluate the 
importance of a recommendation system. The 
metrics utilized are determined by the filtering 
process. The metrics are shown below in Table 8. 

 

Table 8. Commonly Used Evaluation Metrics 
Evaluation 

Metrics 
No of 
paper 

Reference 

MAE (Mean 
Absolute 
Error) 

12 
[18], [9], [16], [45], [28], 
[1], [2], [7], [46], [32], 
[52], [20] 

RMSE (Root 
Mean Square 
Error)  

10 
[18], [13], [34], [43], [3], 
[28], [2], [7], [20], [158] 

Precision 7 
[4], [17], [44], [154], [5], 
[52], [98] 

Recall 5 [44], [154], [5], [51], [98] 
MAP (Mean 
Average 
Precision)  

3 [154], [22], [51] 

 
According to the Table 8, Fig. 18 has been 

created where the commonly used evaluation 
metrics are shown. 

 

 
Figure 18. No of paper VS Evaluation Metrics 

 
In Fig. 18, X-axis represents the evaluation metrics 
and Y-axis depicts the number of papers which used 
this metrics   According to collected paper, only 12 
papers are used MAE (Mean Absolute Error), 10 
papers used RMSE (Root Mean Square Error), 7 
papers used Precision, 5 papers used Recall and 3 
papers used MAP (Mean Average Precision). 

After the survey, some important information like 
the most useable data collection techniques, 
hybridization methods, commonly used solutions of 
coldstart problems, algorithms, evaluation matrices, 
etc. has been found. Besides this, some common 
datasets are found for a specific domain. In the 
future, implementing the combination of this survey 
result will give a possible better solution in these 
domains as well as other domains.  

 
7. CONCLUSION 

The coldstart problem is the existing barrier 
in the recommender system. It is the most 
challenging issue to solve. Another problematic 
issue is to get accurate available data. A lot of 
researchers are working on it. As a result, various 
types of possible solutions have been found. But 
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still, they are working on it to get a more accurate 
solution. It is a vast research platform. Many new 
methods will be proposed to solve the problem in the 
future. This paper reviewed the recommendation 
approaches and hybrid approaches to solving the 
cold start problem. According to the writing 
procedure, the papers has been collected. Then the 
papers are included and excluded based on exclusion 
and inclusion criteria. Then the vital information is 
evaluated for solving cold start. Every author solves 
cold start problem in their own way. But the common 
methods which had been used from 2010 to 2021 in 
the field of cold start solutions using hybrid 
approaches are shown here. An informative 
overview of the recommendation system, the 
solution of cold start, data collection techniques, and 
a future direction for solving the coldstart problem 
in a hybridization approach are given. It will help the 
researchers by providing ideas. It will be improved 
in other domains of recommendation systems in the 
future. Above all, this paper will inspire researchers 
and provide a future roadmap for improving current 
recommendation approaches for solving cold-start 
problems. 
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