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ABSTRACT 

Fault detection in software engineering is gaining attention due to the severe impacts of the faults in the 
software and malfunctioning of software used in diverse domains. Among the various faults, the class 
overlapping and the data distribution difference are one of the major issues that are required to be properly 
addressed. To deal with these issues, we propose a concept on cross-version software fault detection with 
data selection (CV-FDDS). This scenario is much reasonable and significant to detect the above-mentioned 
issues by predicting the faults in the new versions based on the labelled data of previous versions. The 
proposed framework works on identifying the faults in the newer versions of the software projects on the 
basis ofolder version labels through the use of learning strategies. Initially, the dataset is pre-processed using 
an appropriate data filter. The older and newer files are treated in two different ways to accomplish this task. 
To deal with the existing or the older files, an adaptive spiking atom search recurrent neural network classifier 
(ASARNN) has been proposed through which the training and testing data are automatically selected. This 
is done by assigning higher weight values to the much relevant and noise-free older versions. Based on the 
training and testing, the newer versions comprising faults are detected using the proposed kernel optimized 
extreme learning machine (KOELM). The implementation of the developed approach is implemented on 
PYTHON. The implemented approach performance is compared against the conventional methods with 
respect to the major performance indicators. The implemented nodel achievesa geometric-mean (G-mean) of 
about 0.7815, f-measure of about 0.775 and balance is about 0.8055 respectively. 

Keywords: Fault Detection, Software Engineering, Data Distribution Difference, Class Overlapping, Data 
Selection, Neural Network. 

1. INTRODUCTION 

 The software processing and performing 
several operation on it is known as software 
engineering. There are many detection techniques 
in the software engineering fields like cost 
prediction and security. Software systems are 
highly essential in the modern society and for 
human activities as they occupy most of the 
safety-critical domains. Due to the growth and 
importance of the software systems, it is 
important to ensure efficiency and reliability for 

the software [1]. There are a vast count of testing 
and debugging strategies available to identify the 
faults in the software systems. In this domain, 
software defect prediction (SDP) is an area of 
research intending the researchersto localize the 
vulnerable or the fault-prone modules efficiently 
[2]. The concept inspired by the SDP strategies is 
that it uses the faults identified in the older 
versions for predicting the faults in the newer 
versions of the projects. The major component 
used in SDP is the project data collected from the 
older versions. The defects in the software 
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projects are normally relevant for the same 
projects and hence the versions of the same 
projects are much useful to detect the faults of 
newer versions of the same projects [3, 4]. 

 Cross-Version Defect-Prediction 
(CVDP) works on the principle of detecting the 
software faults based on the prior released project 
data. The pre-released versions of any projects are 
used to label the current versions belonging to the 
same project [5]. The historic data of the software 
system provide much useful and relevant data 
required to trace the faults in the system. Through 
this, the vulnerability of the new software can be 
avoided and the developed systems will be error-
free with high reliability [6]. Constructing the 
defect prediction models based on mining of 
software history database, the constructed models 
will be highly efficient without any prior faults 
[7]. This scenario involves three major metrics 
such as the evolution metrics, code metricsand 
process metrics. The code metrics illustrate the 
static characteristicslike cohesion, code 
complexity, inheritance,coupling and code scale. 
The other two metrics describe the dynamic 
properties such as the differences and evolution 
patterns [8-10]. 

 Accordingthe training and testing 
datasets used, the fault prediction approaches can 
be categorized into within-project and cross-
project defect prediction (CPDP) models. The 
CPDP models are highly significant as the 
training data comprises information gathered 
from diverse software projects to predict the faults 
from a particular project contrary to the within-
project model for which both the training and 
testing datasets are gathered from the similar 
project [11, 12]. Though the CPDP models are 
efficient in overcoming the data insufficiency 
problem, the performance in prediction for most 
of these models are degraded due to the data 
distribution difference issue [13]. Since the 
projects consist of multiple prior versions, the 
distribution difference arises among multiple 
versions and hence the labelling of versions 
become critical. Moreover, labelling the modules 
of the newer projects manually are literally time-
consuming and error-prone [14]. Therefore, the 

automatic selection of the training data from the 
older versions are helpful in achieving the desired 
objectives. The CPDP models work on using 
these training data for labelling the newer versions 
of the projects automatically [15]. 

 In most of the prediction approaches, the 
learning strategies are used as those strategies are 
capable of retaining a large amount of information 
and those models are able to be trained with the 
prior versions more efficiently than the other 
techniques [16]. Almost all the existing 
techniques relevant to CPDP, as these strategies 
are able to automate the prediction process more 
reliably and are able to label the versions of the 
software projects more accurately [17].The 
current research work has been formulated with 
the aid of overcoming the issues while classifying 
the defects of the versions of the software 
projects. 

Motivation 

 Software faults are intolerable as it leads 
to various critical problems including financial 
loss or even accidents due to failures in the safety 
equipment. One of the most reasonable approach 
is the cross-version fault detection of the software 
based on the labelling details of the previous 
versions. Due to the existence of numerous 
previous versions, the scenario faces two major 
issues such as the data distribution difference and 
class overlapping resulting from the existence of 
redundant files in more than one version. These 
issues lead to wrong detections of the software 
programs. Though there are methods available for 
the cross-version fault detection, almost all the 
methods considered only the prior version of the 
model. But any software project can have multiple 
versions and hence data distribution difference 
and class overlapping issues will probably occur 
leading to critical problems. These issues are 
rarely addressed in any of the available 
techniques. Due to the lag in this research field 
and to improve the scope while providing a keen 
knowledge about these issues, this article has been 
proposed. 
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Objectives 

 Fault detection in software engineering 
is regarded as a supervised binary 
classicationissue. The defect detection 
techniques can be classified on the basis 
of  trainingand test data. Here cross-
version software fault detection is used. 

 Validating the existence of two critical 
issues in the CV-FDDS scenario such as 
the data distribution difference and class 
overlapping arising due to redundant 
files in more than one version, to identify 
and understand the impacts in fault 
detection techniques. 

 Proposing a novel adaptive spiking atom 
search recurrent neural network 
(ASARNN) for the older versions of 
files to generate the testing and training 
data for the classifier to detect the faults 
in the newer versions of files. 

 Proposing a novel Kernel Optimized 
Extreme Learning Machine (KOELM) 
for identifying the faults in the newer 
versions of the files on the basis 
oflabelling data generated by the pre-
mentioned classifier. 

 Evaluating the performance of the 
implemented fault detection scheme 
against the existing approaches of the 
major metrics like geometric-mean (G-
mean), balance and f-measure. 

 

2. RELATED WORK 

 Some of the recently introduced 
techniques in software fault detection using 
different learning strategies are listed below: 

 Jie Zhang et al. [18] introduced a fault 
prediction strategy to predict the faults in the 
present version of a software project based on the 
faults identified in the previous versions of the 
project. The authors tried to address the software 
problems that are seldom reported in the previous 
studies related to faults predictions and the model 
called cross-version model with data selection 

(CDS). To deal with the old files, the authors 
introduced the clustering-based multi-version 
classifier (CMVC) through which the training 
data were automatically selected from the most 
relevant and noise-free versions and higher 
weight values were assigned to them. For the new 
files, a Weighted Sampling Model (WSM) was 
introduced through the incorporation of the 
outputs of CMVC. Upon simulations, the model 
proved to outperform the other existing baseline 
and state-of-the-art approaches. 

 Zhidan Yuan et al. [19] introduced a 
technique called ALTRA for CPDP. To overcome 
the problem of data distribution difference due to 
a large number of existing versions of the projects, 
the authors introduced ALTRA integrating active 
learning and TrAdaBoost. Initially, the Burak 
filter was used to filter out the similar labeled 
modules based on the unlabeled modules. Then 
active learning was used to label the unlabeled 
representative modules of the target project where 
the modules were labeled into defective and non-
defective by the experts. Then the weights are 
determined for the labeled modules with the help 
of the TrAdaBoost in both the source and target 
projects. Finally, the model was constructed by 
weighted support vector machine (SVM). Under 
experimentations, the approach proved to 
outperform the other models on the basis ofthe 
certain measures. 

 Mengmeng Zhu and Hoang Pham [20] 
presented a model for software fault detection and 
to improve the system reliability based on 
multiple environmental factors. The authors 
presented a generalized multiple-environmental-
factors reliability growth model under the 
martingale model. The model randomness was 
analyzed while detecting the faults in the software 
projects. For illustration, two environmental 
factors were considered for developing the model. 
Because of the randomness, a stochastic fault 
detection model was developed to identify the 
faults occurring in a software system. The 
simulation results demonstrated the performance 
of the scheme in detecting the faults occurring in 
a system in terms of software failure and 
reliability. 
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 Hiba Alsghaier and Mohammed Akour 
[21] suggested a software fault detection model 
hybridizing genetics algorithm (GA) with SVM 
and particle swarm optimization (PSO) algorithm. 
The model was constructed on different phases 
each with the integration of an algorithm with the 
SVM classifier for predictions and to identify the 
best model for prediction. The introduced 
integration approaches proved to provide better 
results and were sufficient enough for all kind of 
datasets. The search models worked on finding 
the faults in the software projects through 
traversal and helped the classifier to predict the 
faults in the project. The simulation results 
demonstrated the efficiency and effectiveness of 
the suggested approach over the other existing 
approaches. 

 Swapnil Shukla et al. [22] formulated the 
CVDP model for maximizing the recall with the 
following objectives: (a) minimizing the 
misclassification cost and (b) minimizing the 
Quality Assurance (QA) cost over the vulnerable 
files. Initially, the pre-processing was carried out 
using data standardization and then the training 
and testing processes were sequentially carried 
out to identify the faults in the projects. The 
objectives for optimization were solved using the 

GA and the faults were predicted using the logistic 
regression technique. Finally the simulation 
results suggested that the technique was capable 
of locating the faults more accurately than the 
other available techniques in fault identification in 
software projects. 

 Zhou Xu et al. [23] introduced a model 
for the cross-version fault prediction to overcome 
the issue of data distribution differences. The 
authors designed a Two-Stage Training Subset 
Selection (TSTSS) to identify the defects of the 
newer versions of the projects. In the initial stage, 
the model used a selection method called as the 
sparse modelling representative to select the 
suitable prior version for reconstructing the data. 
Then the model introduced a dissimilarity-based 
sparse subset selection modelfor refining the best 
modules from the selected modules that were 
capable of labelling the current version. Finally, 
the cross-version defect prediction model was 
constructed using the weighted extreme learning 
machine classifier. The experimental results 
demonstrated that the technique improved the 
performance compared to 11 existing baseline 
models. Table 1 delineates the Features and 
Challenges of the existing approaches

.Table 1: Features and Challenges of the existing approaches 

Authors and citation Methods Features Challenges 

Jie Zhang et al. [18] CMVC and WSM Achieves better F-score and 
G-mean value 

When the test set size is 
small, active learning 
property may cause some 
degree of unfair results 

Zhidan Yuan et al. [19] ALTRA Achieves better precision, 
F-score and Recall 

This method is suitable only 
for small number of 
module, does not support 
when the module is large  

Mengmeng Zhu and 
Hoang Pham [20] 

GA with SVM Achieves high accuracy, F-
score and less error rate 

This method suffer from 
slow convergence and 
trapped by local optima 

Swapnil Shukla et al.[22] GA Faults are successfully 
predicted 
Minimize the cost of QA 
and misclassification 

Sometimes it achieves less 
recall and misclassification  
cost 

Zhou Xu et al. [23] TSTSS This model successfully 
reconstructed prior and 
current version data  
 

It is a lengthy and time 
consumingprocess 
It leads to over fitting 
problem 
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3. PROPOSED METHODOLOGY 

Initially, the dataset is pre-processed using a 
missing value imputation which is used to secure 
the loss of data and normalization process is 

carried out.Let the prior version labeled dataset L  

is nZZZ ,....., 21  and the present version dataset 

Z . The version thj has instances about im  , 

}......{ ,2,1
i
mi

iii zzzZ  has a label of  

}......{ ,2,1
i
mi

iii gggg  where 
ig  is 1 when the 

respective document is defective and -1  when the 

file is not defective. The aim of ASARNN is for 

detecting the label of the present version

}......{ ,2,1 mgggg  . 

Version 1

Version 2

Version 
m

Current Version 

Training 
Dataset

Testing 
Dataset

Data processor

ASARNN

KOELM

Label 
detected 

result

New files 
detected 
labels

Old files 
detected 
labels

Old files

Multi-Version 
training data

New files

CV-FDDS

Data processor

 

Figure 1: Framework of the developed CV-FDDS 

Figure 1 delineats the framework of the developed 
CV-FDDS. The architecture comprises of three 
major parts like data processor, ASARNN and 

KOELM. The data processor divides the Z into 

new and existing file as 
NewZ and 

existZ , where 
NewZ is the files that are not exist in the prior 

version and 
existZ  is the files exist in the prior 

version. In addition the data processor expands 

the vectors of label
nggg ,....., 21

 to the similar 
size by adding zero and computes the matrix of 

the indicator of the matrix 
jP for each prior 

version that is a matrix of diagonal with 1j
kkP  

when k  exist in both the thj  and the present 

version, otherwise 0j
kkI .  

When detecting the label NewZ and 
existZ are 

treated differently. This is because the statistical 
or machine learning techniques are on the basis of 
the hypothesis that the dataset instance must be 
sampled independently from same distribution. 

This hypothesis holds true for new files. 
existZ file 

is based on the similar name document in the 
training set. Here ASANN is implemented to find 
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the solution for version weighting and to detect 

the 
existZ label by solving the optimization issue.  

In addition by solving the version 

weight,KOELM is developed to detect the NewZ  
label by classification method trained on the 
sample of data from prior versions based on 
theresult of ASARNN weights.  

The main objectives in detecting the existing files 
are given below: 

(a) Files with the same features must belabelled 
similarly, which is a first step of thedeep learning 
models. 

(b)The documents in the 
presentpatternwillreceive defect patterns from 
priorpattern. When detecting the label of 
document in the present version, the labels of 
similar namedocumentin the prior versions must 
be taken.  

(c)Prior versions with the relevance of higher data 
must assign more weights.  

(d) Prior versions with low data noise are assigned 
to havemore weights. Sometimes the defect 
detection datasets consist of mislabelling noises. 
Hencehigher weights must be given to the 
versions with low noise. 

3.1 Adaptive Spiking Atom Search Recurrent 
Neural Network Classifier (ASARNN) 

In this work, a hybrid model of deep learning with 
optimization technique is employed to obtain old 
version file detected label.Spiking neurons 
emerge from methods that express the 
characteristics of real biological neurons. A 
SRNN [24] has 2 recurrent layers; neurons inside 
the layer are linked fully recurrently among the 
layers neurons are fully connected with 
forwarding connections. 

Let us consider the RNN with continuous variable 
and spiking RNN. The continuous variable with 

N rate is given as 

ext
rate
j

N

j

rate
ij

id
i Jrwxi

dt

dy
 

1


(1) 

)( i
rate
j yr  (2) 

where
d
i  is the synaptic decay time, 

rate
ijw is the 

synaptic strength from the unit j to i . extJ is the 

input of the external current input to the unit i . 
rate
jr  is the filtering  rate and )( iy is a transfer 

function. The firing rate in spiking network 
should not be negative;therefore the activation 
fuction is a standard sigmoid function. 

The 2nd RNN with N  spiking unit is given as 

ext
spk
j

N

j

spk
iji

i
n Jrwv

dt

dv
 

1

 (3) 

Where n  is the constant time of membrane,  iv  

is the thi  unit voltage membrane, 
spk
ijw  is the 

synaptic strength from the unit j to i  and 
spk
jr  is 

the synaptic filtering rate of unit j . The back 

propoagation through time (BPTT) is used for 
training the RNN for creating the target signal. 

The units in RNN are linked sparely by rateW and 

input signal is received by the weights inW  derive 

from a normal distribution with zero mean and 
unit variance. The output of the network output is  

)(.)( trWtoutput raterate
o

rate  (4) 

Where rate
oW  is the weights of the readout, 

)(tr rate is the rate of firing at the time t  in the 

network. The weight matrix of recurrent 
rateW , 

rate
oW and  d

i are optimized on the process of the 

training and the matrix of the input weight inW is 

constant. 
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A new metaheuristic approachAtom Search 
Optimization (ASO) [25] is influenced the atom.  
In ASO, everyposition of atom within the search 
space indicates a solution computeded by its 
mass.The atoms will attract or repel each other on 
the basis ofdistance among them, motivating the 
lesser atoms to move to heavy atoms. Lighter 
atoms have higher acceleration which identify a 
newencouraging region in the whole search space 
and heavy atom have lessacceleration which 
ensures better solutions in local spaces. Atom 

search start by N  atoms with dimension D . Let 

the mass )(M  for every atom is calculated by  





N

j
i

i

tm

tm
tM

1

)(

)(
)(   (5) 

)()(

)()(

)( tfittfit

tfittfit

i
bw

bi

etm 





(6) 

Where )(tfit
w and )(tfit

b
 are the best and the 

worst fitness factor at the t iteration. )(tfit
w and 

)(tfit
b

are given below. 

)(max)(
....,2,1(

tfittfit
iNiw 

 (7) 

)(min)(
....,2,1(

tfittfit
iNib 


                                                    

(8)
 

Where maxT  is the overall iterations. Then the step 

is to calculate the constraint force CF and 

interaction force IF . 

)()( tftIF d
ij

zbestj
j

d  


 (9) 

Where ]1,0[j is a random number, bestz is 

a atoms subset which has the best k atoms.

)(tf d
ij is the force of interaction given on atom 

i from atom j  at t iteration. Constraint force can 

be written as 

)()()(()( tYtYttCF d
i

d
b

d  (10) 

max

20

)( T

T

et


  (11) 

Where )(tY d
b is best atom position, )(t is a 

lagrangian multiplier,  is the multiplier weight. 

Then for each atom, the acceleration is calculated 
by the below expression 

)(

)(

)(

)(
)(

tm

tCF

tm

tIF
tA

d
i

d

d
i

d
d
i  (12) 

)(

)()((

)(

())((2[1
1)(

max

max

20

1320
3

max

tm

tYtYe

tm

hthr
e

T

T
tA

i

d
i

d
b

T

T

zbestj i

ijijiT

T

d
i












 














(13) 

Where ir is the random number. Then the 

velocity and position updationat )1( t is given 

by the following expression 

)1()()1(  tVtYtY d
i

d
i

d
i (14) 

)()()1( tAtVrtV d
i

d
ii

d
i  (15) 

In atom search, for improving the exploration in 
the 1st phase of iteration, every atom requires to 
interact with more atoms with best fitness value at 

the neighbour k . To improve exploitation in the 

last phase of iteration, every atom requiresfor 
interacting with less atoms with best value of 

fitness. The neighbour )(TK  is computed by  
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max

)2()(
t

t
NNTK    (16) 

Finally, the existing files are detected by 
ASARNN. This deep learning model ensures an 
optimal solution for detecting the file in the prior 

version. To detect the file 
NewY is the files that are 

not exist in the prior version. 

3.2 Kernel Optimized Extreme Learning 
Machine (KOELM) 

KOELM [26]test the data from every prior 
version on the basis of the respective weight. The 
versions with less noise and relevance of higher 
data are considered with more weights, higher 
instances sampled from these versions. Likewise, 
the training sets are assigned. KOELM has fast 
learning speed and has a better generalization. 
Because there is no need to tune the initial 
parameters of the hidden layer.The hidden layer 
Feed Forward Network (FFN) is converted into 
the linear equation by minimum norm least 
squares. The aim of the KOELM is to reduce the 
output norm weight and training error at the same 
time. For the samples

},...2,1,,|),{( NiSTSXTZ n
i

m
iii  , 

the P neurons hidden layer with the output 
function is: 

 )()()(
1

ZrZrZf
P

i
iP 



(17) 

Where ]..........,[ 21 P   is the output 

weight vector between output neuron and P . The 

hidden layer output vector to the input X  is 
given by  

)](...).........(),([)( 21 ZrZrZrZr P (18) 

For enhancing the generalization and to reduce the 
training error of neural networks, at the same time 
both output weight and the training error must be 
minimized. 

||||||,:||min  Th   (19) 

According to (Karush–Kuhn–Tucker) the 
equation (19) can be written as  

Thh
R

h TT
1

1








  (20) 

Where h  is the output matrix of the hidden layer, 

R is the coefficient of the reflection and T is the 
expected samples and the ELM algorithm output 
function is 

Thh
R

hZgZf TT
1

1
)()(









                                                         

(21) 

When the feature mapping function )(Zr is 

unknown, ELM kernel matrix on the basis of 
Mercer’s condition is given by 

),()()(:,
jijiij

T ZZLZrZrmhhM 
(22) 

The output function )(Zg on the basis 

ofKOELM is given by 

TM
R

ZZLZZLZf n

1

1

1
)],()......,()(









 

(23) 

Where ),( 1ZZL and ThhM  are the hidden 

neurons kernel function of single hidden layer 
FFN networks. The functions like polynomial 
kernel, exponential kernel, linear kernel and 
Gaussian kernel will satisfy the Mercer condition. 
Here three typical kernel functions are selected for 
the kernel functions are given below. 

(i) Gaussian kernel: 

||)||(),( YZbeYZL                                                                  

(24) 
(ii) Hyperbolic tangent kernel: 

)|tanh(),( CYaZYZL T  (25) 

(iii) Wavelet kernel: 
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






 







 


e

YZ

d

YZ
fYZL

2||||
exp

||||
cos),(   

(26) 

Where ecba ,,,  and f  are the parameters that 

are the majorpart in the performance of neural 
network and must be tuned on the basis of the 
solved problem. KOELM depends on the prior 
version with higher weights, which has low noise 
and applicable for the current version based on 
ASRNN.After detection by the KOELM, the 
detected model will be trained on the 
classification approaches. In this work for 
classificationNaive Bayes, Linear 
RegressionandRandom forestare used for 
training. 

4. RESULT AND DISCUSSION 

This section gives the performance analysis and 
discussion aboutdeveloped scheme. The entire 
implementations have been processed on a system 
with 8 GB RAM and Intel Core i5 CPU with 3.0 
GHz speed. To implement the proposed scheme, 
PYTHON 3.8 is utilized. The developed approach 
performance is implemented with three metrics 
Accuracy, F-score, Balance, and G-mean. The 
performance eof the developed model is 
compared with Linear Regression [18], Naive 
Bayes [18] and Random forest [18], Hybrid 
Active Learning and Kernel PCA (HALKP) [30] 
and CDS [18].  

4.1 Dataset Detail 

The dataset used is MORPH and it is collected 
from the PROMISE repository. The reason for 
choosing this dataset is it was used in many 
existing approaches [23],[27], [28], and [29]and 
this dataset comprises of multiple previous 

version for each software project. The proposed 
model is implemented on 28 versions of eight 
software projects. 

4.2 Performance Measures 

The formulas for calculating thethree metrics F-
score, Balance, and G-mean are given below. 

The number of accurately classified data to the 
total number of data is called as accuracy and it is 

given in Eq. (27), where TP , TN , FP  and 

FN  are True Positive, True Negative, False 

Positive, False Negative.  

FNTNFPTP

TNTP
Accuracy





(27) 

1F -score is the harmonic mean of the precision 

and recall and it is given in Eq. (28)
 

callprecision

callprecision
scoreF

Re

Re2




                              

(28) 

G-mean is the geometric mean of sensitivity and 
specificity and it is given in Eq. (29) 


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(30) 

where FPR and TPR are the False Positive 
Rate, True Positive Rate 

Table 2: projects and defective ratio of MORPH dataset 

               Projects Version File Instance Defective (%) 
 
 

camel 

1.0 339 3.8 
1.2 608 35.5 
1.4 872 16.6 
1.6 965 19.5 

 
 

3.2 273 33.1 
4.0 306 24.5 



Journal of Theoretical and Applied Information Technology 
15th June 2022. Vol.100. No 11 
© 2022 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3631 

 

jedit 4.1 312 25.3 
4.2 367 13.1 

 
Log4j 

1.0 135 25.2 
1.1 109 33.9 
1.2 205 92.2 

 
 

poi 

1.5 237 59.2 
2.0 314 11.8 
2.5 385 64.4 
3.0 442 63.6 

 
synapse 

1.0 157 10.2 
1.1 222 27.0 
1.2 256 33.6 

 
velocity 

1.4 196 75 
1.5 214 66.4 
1.6 229 34.1 

xalan 2.4 723 15.2 
2.5 803 48.2 
2.6 885 46.4 

xerces 1.1 162 47.5 
1.2 440 16.1 
1.3 453 15.2 
1.4 588 63.7 

 

Table 1shows the projects and defective ratio of 
MORPH dataset. There are 8 open source project 
and the defective ratio differ for each version. For 
example in the software project, in the seventh 
project xalan in the version 2.4, only 15.2% files 

are defective then in version 2.5 the defective 
percentage is increases to 48.2% and again 
reduces to 46.4%. therefore it is proved that the 
variation pf data distribution among a version of 
similar projects does not exist. 

Table 3: Detection performance of the proposed method 

projects Version pair Accuracy F-score Balance  Gmean 
 

camel 
prior current 
1.0 1.6 0.961 0.945 0.896 0.890 
1.2 1.6 0.792 0.424 0.543 0.375 
1.4 1.6 0.934 0.859 0.879 0.8749 

1.0+1.2+1.4 1.6 0.889 0.749 0.837 0.833 
jedit 3.2 4.2 0.672 0.410 0.710 0.708 

4.0 4.2 0.818 0.573 0.796 0.795 
4.1 4.2 0.818 0.573 0.796 0.795 

3.2+4.0+4.1 4.2 0.763 0.522 0.812 0.809 
Log4j 1.0 1.2 0.426 0.822 0.698 0.629 

1.1 1.2 0.3934 0.810 0.6810 0.601 
1.0+1.1 1.2 0.442 0.828 0.706 0.643 

poi 1.5 3.0 0.734 0.777 0.727 0.726 
2.0 3.0 0.386 0.701 0.539 0.2820 
2.5 3.0 0.6969 0.694 0.642 0.620 

1.5+2.0+2.5 3.0 0.7348 0.806 0.75 0.748 
synapse 1.0 1.2 0.802 0.702 0.793 0.793 

1.1 1.2 0.868 0.798 0.853 0.852 
1.0+1.1 1.2 0.802 0.701 0.807 0.807 

velocity 1.4 1.6 0.794 0.703 0.8115 0.810 
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1.5 1.6 0.867 0.8102 0.851 0.850 
1.4+1.5 1.6 0.823 0.738 0.845 0.843 

xalan 2.4 2.6 0.962 0.9535 0.963 0.963 
2.5 2.6 0.9547 0.959 0.953 0.9528 

2.4+2.5 2.6 0.950 0.953 0.9495 0.949 
xerces 1.1 1.4 0.920 0.9495 0.925 0.925 

1.2 1.4 0.909 0.923 0.896 0.895 
1.3 1.4 0.931 0.939 0.918 0.918 

1.1+1.2+1.3 1.4 0.9090 0.923 0.896 0.8959 
 

Table 2 illustrates the detection performance of 
the implemented model. The specific defect 
detection approach can differ a lot because of the 
variation of training set from different versions. 
Let us consider the project synapse, here the G-
mean, balance and F-measure values are less in 

the case of version 1.0. but when using 1.1 version 
as a training set, detection performance is 
increased significantly for three metrics. The data 
distribution variation affect the performance. 
Hence, selecting the training data with low noise 
is suitable for building CV-FDDS model. 

Table 4: The overall performance of  CV-FDDS and existing models with respect to F-score 

project RF [18] LR [18] NB [18] HALKP [30] CDS [18] proposed 
camel 0.371 0.240 0.305 0.428 0.516 0.744 
jedit 0.482 0.503 0.475 0.564 0.525 0.520 

Log4j 0.505 0.409 0.452 0.612 0.718 0.820 
poi 0.654 0.634 0.294 0.674 0.767 0.744 

synapse 0.361 0.438 0.510 0.457 0.538 0.734 
velocity 0.562 0.530 0.525 0.527 0.609 0.750 
Xalan 0.427 0.284 0.427 0.610 0.710 0.955 
xerces 0.233 0.069 0.224 0.401 0.538 0.933 

Average 0.44 0.391 0.401 0.531 0.612 0.775 
 

For every project, the training data is the data in 
the prior version, and test data is the present 
version. Table 3 shows the overall performance of  
CV-FDDS and existing models with respect to F-
score. Here in all cases the developed method CV-

FDDS achieves better results. The average of the 
developed method is 0.775 while the existing 
approaches like HALKP and CDS achieve less 
average of about 0.531 and 0.612. 

Table 5: The overall performance of  CV-FDDS and existing models with respect to G-mean 

project RF [18] LR [18] NB [18] HALKP [30] CDS [18] proposed 
camel 0.541 0.395 0.481 0.582 0.710 0.743 
jedit 0.782 0.745 0.712 0.709 0.783 0.777 

Log4j 0.526 0.492 0.508 0.621 0.636 0.624 
poi 0.648 0.621 0.410 0.680 0.705 0.594 

synapse 0.487 0.543 0.615 0.568 0.641 0.817 
velocity 0.563 0.350 0.549 0.494 0.676 0.834 

Xalan 0.523 0.407 0.523 0.635 0.691 0.955 
xerces 0.352 0.190 0.351 0.467 0.508 0.908 

Average 0.55275 0.467875 0.518625 0.579875 0.6687 0.7815 
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Table 4 shows the overall performance of  CV-
FDDS and existing models with respect to G-
mean. Here in all cases the developed method CV-
FDDS achieves better results. The average of the 

developed method is 0.7815 while the existing 
approaches like HALKP and CDS achieves less 
average of about 0.579 and 0.6687 respectively. 

Table 6: The overall performance of  CV-FDDS and existing models with respect to balance 

project RF [18] LR [18] NB [18] HALKP [30] CDS [18] proposed 
camel 0.519 0.407 0.471 0.551 0.702 0.789 
jedit 0.782 0.730 0.690 0.698 0.699 0.778 

Log4j 0.518 0.473 0.498 0.597 0.63 0.695 
poi 0.641 0.617 0.417 0.666 0.703 0.664 

synapse 0.476 0.512 0.591 0.543 0.638 0.818 
velocity 0.540 0.381 0.537 0.484 0.682 0.836 

Xalan 0.492 0.413 0.497 0.635 0.509 0.955 
xerces 0.385 0.318 0.383 0.465 0.667 0.909 

Average 0.542 0.318 0.381 0.462 0.507 0.8055 
 

Table 5 shows the overall performance of  CV-
FDDS and existing models with respect to 
balance. Here in all cases, the developed method 
CV-FDDS achieves better results. The average of 
the developed method is 0.805. in the first project 

camel, the proposed method achieves the balance 
value of 0.789 and the existing model like 
HALKP and CDS achieves 0.771 and 0.702 
respectively. 

 

 

 

(a) (b) 
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(c) 

Figure 2: Box Plot Representation Of Various Models 

Figure 2represents the box plot representation of 
various models likeRF, LR, NB, HALKP and 
CDS. This graph depicts the higher performance 
of each model on the basis of balance , G-mean 
and F-score. In the case of F-score, in the project 
xerces the developed model achieves higher value 

of about 0.955. In the case of G-mean, in the 
project xerces the developed model achieves 
higher value of about 0.955. In the case of balance 
also, in the project xerces the developed model 
achieves higher value of about 0.955. Thus the 
proposed model proved its betterment. 

 
 

(a) (b) 
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(c) 

Figure 3: Detection Performance Of Existing File 

Figure 3 shows the detection performance of the 
methods like CMVC, RF, LR, NB and the 
proposed model on the basis of F-score, G-mean 
and balance. Here in figure 3(a), in the project 
camel, the proposed method achieves F-score of 
about 0.806, while the CMVC method achieves 
0.536 only. Here in figure 3(b), in the project 
camel, the proposed method achieves G-mean of 

about 0.873, while the CMVC method achieves 
0.729 only. Here in figure 3(c), in the project 
camel, the proposed method achieves balance of 
about 0.874, while the CMVC method achieves 
0.724 only. Finally it is proved that the developed 
model achieves higher performance in existing 
files in all cases respectively. 

 
Table 7: Detection performance of new file KOELM-RF 

 F-score G-mean Balance  
project WSM-

RF [18] 
KOELM-

RF 
WSM-
RF [18] 

KOELM-
RF 

WSM-
RF [18] 

KOELM-
RF 

camel 0.257 0.550 0.457 0.272 0.454 0.531 
jedit 0.414 0.586 0.811 0.477 0.807 0.601 

Log4j 0.515 0.640 0.553 0.0 0.533 0.482 
poi 0.432 0.749 0.557 0.690 0.547 0.710 

synapse 0.363 0.630 0.494 0.728 0.488 0.729 
velocity 0.827 0.746 0.628 0.723 0.590 0.743 
Xalan 0.941 0.656 0.941 0.647 0.938 0.655 
xerces 0.422 0.820 0.495 0.759 0.481 0.772 

Average 0.521375 0.672125 0.617125 
 

0.537 
 

0.605 0.652875 

 

Table 6 shows the detection performance of new 
file KOELM-RF. After detecting the new file, this 
model is trained on the classifier RF. When 
comparing the performance of KOLEM-RF and 
the existing model WSM-RF, the proposed model 

achieves high F-score value of about 0.820, high 
G-mean of about 0.759 and high balance value of 
about 0.772 in the xerces software. In addition, the 
average value of the three metrics also high for the 
developed approach
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Table 8: Detection of new file KOELM- LR 

 F-score G-mean Balance  
project WSM-

LR [18] 
KOELM- 

LR 
WSM- 
LR [18] 

KOELM- 
LR 

WSM- 
LR [18] 

KOELM- 
LR 

camel 0.240 0.504 0.408 0.357 0.41 0.549 
jedit 0.52 0.405 0.85 0.239 0.85 0.518 

Log4j 0.503 0.655 0.546 0.453 0.52 0.5 
poi 0.44 0.721 0.537 0.652 0.53 0.676 

synapse 0.35 0.630 0.47 0.728 0.45 0.729 
velocity 0.82 0.456 0.62 0.407 0.59 0.531 
Xalan 0.22 0.659 0.35 0.607 0.38 0.636 
xerces 0.13 0.793 0.261 0.714 0.34 0.740 

Average 0.402 0.602875 0.505 0.519625 0.511 0.609875 
 

Table 7shows the detection performance of new 
file KOELM-LR. After detecting the new file, this 
model is trained on the classifier LR. When 
comparing the performance of KOELM-LR and 
the existing model WSM-LR, the proposed model 
achieves a high F-score value of about 0.793 in 

xerces software, a high G-mean of about 0.728 in 
the synapse software and a high balance value of 
about 0.740 in xerces software. In addition, the 
average value of the three metrics also high for the 
developed approach when compared to the 
existing model WSM-LR. 

Table 9: Detection of new file KOELM- NB 

 F-score G-mean Balance  
project WSM-

NB [18] 
KOELM- 

NB 
WSM- 

NB [18] 
KOELM- 

NB 
WSM- 

NB [18] 
KOELM- 

NB 
camel 0.275 0.199 0.46 0.135 0.454 0.494 
jedit 0.4 0.586 0.70 0.477 0.682 0.6015 

Log4j 0527 0.655 0.56 0.5453 0.540 0.5 
poi 0.17 0.761 0.312 0.704 0.362 0.727 

synapse 0.54 0.598 0.63 0.7106 0.608 0.711 
velocity 0.88 0.597 0.85 0.576 0.851 0.626 
Xalan 0.65 0.703 0.69 0.663 0.653 0.68 
xerces 0.29 0.862 0.4 0.816 0.416 0.818 

Average 0.45 0.620125 0.58 0.578363 0.57 0.644688 
 

Table 8 shows the detection performance of new 
file KOELM-NB and the WSM-NB. After 
detecting the new file, this model is trained on the 
classifier NB. When comparing the performance 
of KOLEM-NB and the existing model WSM-
NB, the proposed model achieves high F-score 

value of about 0.862, high G-mean of about 0.816 
and high balance value of about 0.818 in the 
xerces project. In addition, the average value of 
the three metrics also high for the developed 
approach.Thus the proposed model proved its 
superiority. 

5. CONCLUSION 

Fault detection in a software engineering is 
gaining attention due to the severe impacts of the 
faults in the software and malfunctioning of 
software used in diverse domains. Among the 

various faults, two faults are required to be 
properly addressed. To deal with those issues, we 
propose a concept on cross-version software fault 
detection with data selection (CV-FDDS). This 
scenario is much reasonable and significant to 
detect the above-mentioned issues by predicting 
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the faults in the new versions based on the labelled 
data of previous versions. The proposed 
framework works on identifying the faults in the 
newer versions of the software projects on the 
basis of older version labels through the use of 
learning strategies. Initially, the dataset is 
preprocessed using an appropriate data filter. The 
older and newer files are treated in two different 
ways to accomplish this task. To deal with the 
existing or the older files, an adaptive spiking 
atom search recurrent neural network classifier 
(ASARNN) has been proposed through which the 
training and testing data are automatically 
selected. This is done by assigning higher weight 
values to the much relevant and noise-free older 
versions. Based on the training and testing, the 
newer versions comprising faults are detected 
using the proposed kernel optimized extreme 
learning machine (KOELM). The implementation 
of the developed approach is implemented on 
PYTHON. The implementation of the developed 
approach is implemented on PYTHON. The 
implemented approach performance is compared 
against the conventional methods with respect to 
the major performance indicators. The 
implemented nodel achieves a geometric-mean 
(G-mean) of about 0.7815 , f-measure of about 
0.775 and balance is about 0.8055 respectively. In 
the future, the developed model can be applied to 
other software engineering problems like 
selection of test case. 
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