
Journal of Theoretical and Applied Information Technology
15th June 2022. Vol.100. No 11
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3622

CROSS-VERSION SOFTWARE FAULT DETECTION MODEL
WITH AUTOMATIC DATA SELECTION

*1KIRAN JAMMALAMADAKA, 2NIKHAT PARVEEN

*1Research Scholar, Department of Computer Science and Engineering,

KoneruLakshmaiah Education Foundation, Vaddeswaram, Guntur, A.P.

2Associate Professor, Department of Computer Science and Engineering,

KoneruLakshmaiah Education Foundation, Vaddeswaram, Guntur, A.P.

*Email:1jvskkiran@yahoo.com, 2nikhat0891@gmail.com

ABSTRACT

Fault detection in software engineering is gaining attention due to the severe impacts of the faults in the
software and malfunctioning of software used in diverse domains. Among the various faults, the class
overlapping and the data distribution difference are one of the major issues that are required to be properly
addressed. To deal with these issues, we propose a concept on cross-version software fault detection with
data selection (CV-FDDS). This scenario is much reasonable and significant to detect the above-mentioned
issues by predicting the faults in the new versions based on the labelled data of previous versions. The
proposed framework works on identifying the faults in the newer versions of the software projects on the
basis ofolder version labels through the use of learning strategies. Initially, the dataset is pre-processed using
an appropriate data filter. The older and newer files are treated in two different ways to accomplish this task.
To deal with the existing or the older files, an adaptive spiking atom search recurrent neural network classifier
(ASARNN) has been proposed through which the training and testing data are automatically selected. This
is done by assigning higher weight values to the much relevant and noise-free older versions. Based on the
training and testing, the newer versions comprising faults are detected using the proposed kernel optimized
extreme learning machine (KOELM). The implementation of the developed approach is implemented on
PYTHON. The implemented approach performance is compared against the conventional methods with
respect to the major performance indicators. The implemented nodel achievesa geometric-mean (G-mean) of
about 0.7815, f-measure of about 0.775 and balance is about 0.8055 respectively.

Keywords: Fault Detection, Software Engineering, Data Distribution Difference, Class Overlapping, Data
Selection, Neural Network.

1. INTRODUCTION

 The software processing and performing
several operation on it is known as software
engineering. There are many detection techniques
in the software engineering fields like cost
prediction and security. Software systems are
highly essential in the modern society and for
human activities as they occupy most of the
safety-critical domains. Due to the growth and
importance of the software systems, it is
important to ensure efficiency and reliability for

the software [1]. There are a vast count of testing
and debugging strategies available to identify the
faults in the software systems. In this domain,
software defect prediction (SDP) is an area of
research intending the researchersto localize the
vulnerable or the fault-prone modules efficiently
[2]. The concept inspired by the SDP strategies is
that it uses the faults identified in the older
versions for predicting the faults in the newer
versions of the projects. The major component
used in SDP is the project data collected from the
older versions. The defects in the software

Journal of Theoretical and Applied Information Technology
15th June 2022. Vol.100. No 11
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3623

projects are normally relevant for the same
projects and hence the versions of the same
projects are much useful to detect the faults of
newer versions of the same projects [3, 4].

 Cross-Version Defect-Prediction
(CVDP) works on the principle of detecting the
software faults based on the prior released project
data. The pre-released versions of any projects are
used to label the current versions belonging to the
same project [5]. The historic data of the software
system provide much useful and relevant data
required to trace the faults in the system. Through
this, the vulnerability of the new software can be
avoided and the developed systems will be error-
free with high reliability [6]. Constructing the
defect prediction models based on mining of
software history database, the constructed models
will be highly efficient without any prior faults
[7]. This scenario involves three major metrics
such as the evolution metrics, code metricsand
process metrics. The code metrics illustrate the
static characteristicslike cohesion, code
complexity, inheritance,coupling and code scale.
The other two metrics describe the dynamic
properties such as the differences and evolution
patterns [8-10].

 Accordingthe training and testing
datasets used, the fault prediction approaches can
be categorized into within-project and cross-
project defect prediction (CPDP) models. The
CPDP models are highly significant as the
training data comprises information gathered
from diverse software projects to predict the faults
from a particular project contrary to the within-
project model for which both the training and
testing datasets are gathered from the similar
project [11, 12]. Though the CPDP models are
efficient in overcoming the data insufficiency
problem, the performance in prediction for most
of these models are degraded due to the data
distribution difference issue [13]. Since the
projects consist of multiple prior versions, the
distribution difference arises among multiple
versions and hence the labelling of versions
become critical. Moreover, labelling the modules
of the newer projects manually are literally time-
consuming and error-prone [14]. Therefore, the

automatic selection of the training data from the
older versions are helpful in achieving the desired
objectives. The CPDP models work on using
these training data for labelling the newer versions
of the projects automatically [15].

 In most of the prediction approaches, the
learning strategies are used as those strategies are
capable of retaining a large amount of information
and those models are able to be trained with the
prior versions more efficiently than the other
techniques [16]. Almost all the existing
techniques relevant to CPDP, as these strategies
are able to automate the prediction process more
reliably and are able to label the versions of the
software projects more accurately [17].The
current research work has been formulated with
the aid of overcoming the issues while classifying
the defects of the versions of the software
projects.

Motivation

 Software faults are intolerable as it leads
to various critical problems including financial
loss or even accidents due to failures in the safety
equipment. One of the most reasonable approach
is the cross-version fault detection of the software
based on the labelling details of the previous
versions. Due to the existence of numerous
previous versions, the scenario faces two major
issues such as the data distribution difference and
class overlapping resulting from the existence of
redundant files in more than one version. These
issues lead to wrong detections of the software
programs. Though there are methods available for
the cross-version fault detection, almost all the
methods considered only the prior version of the
model. But any software project can have multiple
versions and hence data distribution difference
and class overlapping issues will probably occur
leading to critical problems. These issues are
rarely addressed in any of the available
techniques. Due to the lag in this research field
and to improve the scope while providing a keen
knowledge about these issues, this article has been
proposed.

Journal of Theoretical and Applied Information Technology
15th June 2022. Vol.100. No 11
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3624

Objectives

 Fault detection in software engineering
is regarded as a supervised binary
classicationissue. The defect detection
techniques can be classified on the basis
of trainingand test data. Here cross-
version software fault detection is used.

 Validating the existence of two critical
issues in the CV-FDDS scenario such as
the data distribution difference and class
overlapping arising due to redundant
files in more than one version, to identify
and understand the impacts in fault
detection techniques.

 Proposing a novel adaptive spiking atom
search recurrent neural network
(ASARNN) for the older versions of
files to generate the testing and training
data for the classifier to detect the faults
in the newer versions of files.

 Proposing a novel Kernel Optimized
Extreme Learning Machine (KOELM)
for identifying the faults in the newer
versions of the files on the basis
oflabelling data generated by the pre-
mentioned classifier.

 Evaluating the performance of the
implemented fault detection scheme
against the existing approaches of the
major metrics like geometric-mean (G-
mean), balance and f-measure.

2. RELATED WORK

 Some of the recently introduced
techniques in software fault detection using
different learning strategies are listed below:

 Jie Zhang et al. [18] introduced a fault
prediction strategy to predict the faults in the
present version of a software project based on the
faults identified in the previous versions of the
project. The authors tried to address the software
problems that are seldom reported in the previous
studies related to faults predictions and the model
called cross-version model with data selection

(CDS). To deal with the old files, the authors
introduced the clustering-based multi-version
classifier (CMVC) through which the training
data were automatically selected from the most
relevant and noise-free versions and higher
weight values were assigned to them. For the new
files, a Weighted Sampling Model (WSM) was
introduced through the incorporation of the
outputs of CMVC. Upon simulations, the model
proved to outperform the other existing baseline
and state-of-the-art approaches.

 Zhidan Yuan et al. [19] introduced a
technique called ALTRA for CPDP. To overcome
the problem of data distribution difference due to
a large number of existing versions of the projects,
the authors introduced ALTRA integrating active
learning and TrAdaBoost. Initially, the Burak
filter was used to filter out the similar labeled
modules based on the unlabeled modules. Then
active learning was used to label the unlabeled
representative modules of the target project where
the modules were labeled into defective and non-
defective by the experts. Then the weights are
determined for the labeled modules with the help
of the TrAdaBoost in both the source and target
projects. Finally, the model was constructed by
weighted support vector machine (SVM). Under
experimentations, the approach proved to
outperform the other models on the basis ofthe
certain measures.

 Mengmeng Zhu and Hoang Pham [20]
presented a model for software fault detection and
to improve the system reliability based on
multiple environmental factors. The authors
presented a generalized multiple-environmental-
factors reliability growth model under the
martingale model. The model randomness was
analyzed while detecting the faults in the software
projects. For illustration, two environmental
factors were considered for developing the model.
Because of the randomness, a stochastic fault
detection model was developed to identify the
faults occurring in a software system. The
simulation results demonstrated the performance
of the scheme in detecting the faults occurring in
a system in terms of software failure and
reliability.

Journal of Theoretical and Applied Information Technology
15th June 2022. Vol.100. No 11
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3625

 Hiba Alsghaier and Mohammed Akour
[21] suggested a software fault detection model
hybridizing genetics algorithm (GA) with SVM
and particle swarm optimization (PSO) algorithm.
The model was constructed on different phases
each with the integration of an algorithm with the
SVM classifier for predictions and to identify the
best model for prediction. The introduced
integration approaches proved to provide better
results and were sufficient enough for all kind of
datasets. The search models worked on finding
the faults in the software projects through
traversal and helped the classifier to predict the
faults in the project. The simulation results
demonstrated the efficiency and effectiveness of
the suggested approach over the other existing
approaches.

 Swapnil Shukla et al. [22] formulated the
CVDP model for maximizing the recall with the
following objectives: (a) minimizing the
misclassification cost and (b) minimizing the
Quality Assurance (QA) cost over the vulnerable
files. Initially, the pre-processing was carried out
using data standardization and then the training
and testing processes were sequentially carried
out to identify the faults in the projects. The
objectives for optimization were solved using the

GA and the faults were predicted using the logistic
regression technique. Finally the simulation
results suggested that the technique was capable
of locating the faults more accurately than the
other available techniques in fault identification in
software projects.

 Zhou Xu et al. [23] introduced a model
for the cross-version fault prediction to overcome
the issue of data distribution differences. The
authors designed a Two-Stage Training Subset
Selection (TSTSS) to identify the defects of the
newer versions of the projects. In the initial stage,
the model used a selection method called as the
sparse modelling representative to select the
suitable prior version for reconstructing the data.
Then the model introduced a dissimilarity-based
sparse subset selection modelfor refining the best
modules from the selected modules that were
capable of labelling the current version. Finally,
the cross-version defect prediction model was
constructed using the weighted extreme learning
machine classifier. The experimental results
demonstrated that the technique improved the
performance compared to 11 existing baseline
models. Table 1 delineates the Features and
Challenges of the existing approaches

.Table 1: Features and Challenges of the existing approaches

Authors and citation Methods Features Challenges

Jie Zhang et al. [18] CMVC and WSM Achieves better F-score and
G-mean value

When the test set size is
small, active learning
property may cause some
degree of unfair results

Zhidan Yuan et al. [19] ALTRA Achieves better precision,
F-score and Recall

This method is suitable only
for small number of
module, does not support
when the module is large

Mengmeng Zhu and
Hoang Pham [20]

GA with SVM Achieves high accuracy, F-
score and less error rate

This method suffer from
slow convergence and
trapped by local optima

Swapnil Shukla et al.[22] GA Faults are successfully
predicted
Minimize the cost of QA
and misclassification

Sometimes it achieves less
recall and misclassification
cost

Zhou Xu et al. [23] TSTSS This model successfully
reconstructed prior and
current version data

It is a lengthy and time
consumingprocess
It leads to over fitting
problem

Journal of Theoretical and Applied Information Technology
15th June 2022. Vol.100. No 11
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3626

3. PROPOSED METHODOLOGY

Initially, the dataset is pre-processed using a
missing value imputation which is used to secure
the loss of data and normalization process is

carried out.Let the prior version labeled dataset L

is nZZZ ,....., 21 and the present version dataset

Z . The version thj has instances about im ,

}......{ ,2,1
i
mi

iii zzzZ  has a label of

}......{ ,2,1
i
mi

iii gggg  where
ig is 1 when the

respective document is defective and -1 when the

file is not defective. The aim of ASARNN is for

detecting the label of the present version

}......{ ,2,1 mgggg  .

Version 1

Version 2

Version
m

Current Version

Training
Dataset

Testing
Dataset

Data processor

ASARNN

KOELM

Label
detected

result

New files
detected
labels

Old files
detected
labels

Old files

Multi-Version
training data

New files

CV-FDDS

Data processor

Figure 1: Framework of the developed CV-FDDS

Figure 1 delineats the framework of the developed
CV-FDDS. The architecture comprises of three
major parts like data processor, ASARNN and

KOELM. The data processor divides the Z into

new and existing file as
NewZ and

existZ , where
NewZ is the files that are not exist in the prior

version and
existZ is the files exist in the prior

version. In addition the data processor expands

the vectors of label
nggg ,....., 21

 to the similar
size by adding zero and computes the matrix of

the indicator of the matrix
jP for each prior

version that is a matrix of diagonal with 1j
kkP

when k exist in both the thj and the present

version, otherwise 0j
kkI .

When detecting the label NewZ and
existZ are

treated differently. This is because the statistical
or machine learning techniques are on the basis of
the hypothesis that the dataset instance must be
sampled independently from same distribution.

This hypothesis holds true for new files.
existZ file

is based on the similar name document in the
training set. Here ASANN is implemented to find

Journal of Theoretical and Applied Information Technology
15th June 2022. Vol.100. No 11
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3627

the solution for version weighting and to detect

the
existZ label by solving the optimization issue.

In addition by solving the version

weight,KOELM is developed to detect the NewZ
label by classification method trained on the
sample of data from prior versions based on
theresult of ASARNN weights.

The main objectives in detecting the existing files
are given below:

(a) Files with the same features must belabelled
similarly, which is a first step of thedeep learning
models.

(b)The documents in the
presentpatternwillreceive defect patterns from
priorpattern. When detecting the label of
document in the present version, the labels of
similar namedocumentin the prior versions must
be taken.

(c)Prior versions with the relevance of higher data
must assign more weights.

(d) Prior versions with low data noise are assigned
to havemore weights. Sometimes the defect
detection datasets consist of mislabelling noises.
Hencehigher weights must be given to the
versions with low noise.

3.1 Adaptive Spiking Atom Search Recurrent
Neural Network Classifier (ASARNN)

In this work, a hybrid model of deep learning with
optimization technique is employed to obtain old
version file detected label.Spiking neurons
emerge from methods that express the
characteristics of real biological neurons. A
SRNN [24] has 2 recurrent layers; neurons inside
the layer are linked fully recurrently among the
layers neurons are fully connected with
forwarding connections.

Let us consider the RNN with continuous variable
and spiking RNN. The continuous variable with

N rate is given as

ext
rate
j

N

j

rate
ij

id
i Jrwxi

dt

dy
 

1


(1)

)(i
rate
j yr  (2)

where
d
i is the synaptic decay time,

rate
ijw is the

synaptic strength from the unit j to i . extJ is the

input of the external current input to the unit i .
rate
jr is the filtering rate and)(iy is a transfer

function. The firing rate in spiking network
should not be negative;therefore the activation
fuction is a standard sigmoid function.

The 2nd RNN with N spiking unit is given as

ext
spk
j

N

j

spk
iji

i
n Jrwv

dt

dv
 

1

 (3)

Where n is the constant time of membrane, iv

is the thi unit voltage membrane,
spk
ijw is the

synaptic strength from the unit j to i and
spk
jr is

the synaptic filtering rate of unit j . The back

propoagation through time (BPTT) is used for
training the RNN for creating the target signal.

The units in RNN are linked sparely by rateW and

input signal is received by the weights inW derive

from a normal distribution with zero mean and
unit variance. The output of the network output is

)(.)(trWtoutput raterate
o

rate  (4)

Where rate
oW is the weights of the readout,

)(tr rate is the rate of firing at the time t in the

network. The weight matrix of recurrent
rateW ,

rate
oW and d

i are optimized on the process of the

training and the matrix of the input weight inW is

constant.

Journal of Theoretical and Applied Information Technology
15th June 2022. Vol.100. No 11
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3628

A new metaheuristic approachAtom Search
Optimization (ASO) [25] is influenced the atom.
In ASO, everyposition of atom within the search
space indicates a solution computeded by its
mass.The atoms will attract or repel each other on
the basis ofdistance among them, motivating the
lesser atoms to move to heavy atoms. Lighter
atoms have higher acceleration which identify a
newencouraging region in the whole search space
and heavy atom have lessacceleration which
ensures better solutions in local spaces. Atom

search start by N atoms with dimension D . Let

the mass)(M for every atom is calculated by





N

j
i

i

tm

tm
tM

1

)(

)(
)((5)

)()(

)()(

)(tfittfit

tfittfit

i
bw

bi

etm 





(6)

Where)(tfit
w and)(tfit

b
 are the best and the

worst fitness factor at the t iteration.)(tfit
w and

)(tfit
b

are given below.

)(max)(
....,2,1(

tfittfit
iNiw 

 (7)

)(min)(
....,2,1(

tfittfit
iNib 



(8)

Where maxT is the overall iterations. Then the step

is to calculate the constraint force CF and

interaction force IF .

)()(tftIF d
ij

zbestj
j

d  


 (9)

Where]1,0[j is a random number, bestz is

a atoms subset which has the best k atoms.

)(tf d
ij is the force of interaction given on atom

i from atom j at t iteration. Constraint force can

be written as

)()()(()(tYtYttCF d
i

d
b

d  (10)

max

20

)(T

T

et


  (11)

Where)(tY d
b is best atom position,)(t is a

lagrangian multiplier,  is the multiplier weight.

Then for each atom, the acceleration is calculated
by the below expression

)(

)(

)(

)(
)(

tm

tCF

tm

tIF
tA

d
i

d

d
i

d
d
i  (12)

)(

)()((

)(

())((2[1
1)(

max

max

20

1320
3

max

tm

tYtYe

tm

hthr
e

T

T
tA

i

d
i

d
b

T

T

zbestj i

ijijiT

T

d
i












 














(13)

Where ir is the random number. Then the

velocity and position updationat)1(t is given

by the following expression

)1()()1( tVtYtY d
i

d
i

d
i (14)

)()()1(tAtVrtV d
i

d
ii

d
i  (15)

In atom search, for improving the exploration in
the 1st phase of iteration, every atom requires to
interact with more atoms with best fitness value at

the neighbour k . To improve exploitation in the

last phase of iteration, every atom requiresfor
interacting with less atoms with best value of

fitness. The neighbour)(TK is computed by

Journal of Theoretical and Applied Information Technology
15th June 2022. Vol.100. No 11
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3629

max

)2()(
t

t
NNTK  (16)

Finally, the existing files are detected by
ASARNN. This deep learning model ensures an
optimal solution for detecting the file in the prior

version. To detect the file
NewY is the files that are

not exist in the prior version.

3.2 Kernel Optimized Extreme Learning
Machine (KOELM)

KOELM [26]test the data from every prior
version on the basis of the respective weight. The
versions with less noise and relevance of higher
data are considered with more weights, higher
instances sampled from these versions. Likewise,
the training sets are assigned. KOELM has fast
learning speed and has a better generalization.
Because there is no need to tune the initial
parameters of the hidden layer.The hidden layer
Feed Forward Network (FFN) is converted into
the linear equation by minimum norm least
squares. The aim of the KOELM is to reduce the
output norm weight and training error at the same
time. For the samples

},...2,1,,|),{(NiSTSXTZ n
i

m
iii  ,

the P neurons hidden layer with the output
function is:

)()()(
1

ZrZrZf
P

i
iP 



(17)

Where]..........,[21 P  is the output

weight vector between output neuron and P . The

hidden layer output vector to the input X is
given by

)](...).........(),([)(21 ZrZrZrZr P (18)

For enhancing the generalization and to reduce the
training error of neural networks, at the same time
both output weight and the training error must be
minimized.

||||||,:||min  Th  (19)

According to (Karush–Kuhn–Tucker) the
equation (19) can be written as

Thh
R

h TT
1

1








  (20)

Where h is the output matrix of the hidden layer,

R is the coefficient of the reflection and T is the
expected samples and the ELM algorithm output
function is

Thh
R

hZgZf TT
1

1
)()(









 

(21)

When the feature mapping function)(Zr is

unknown, ELM kernel matrix on the basis of
Mercer’s condition is given by

),()()(:,
jijiij

T ZZLZrZrmhhM 
(22)

The output function)(Zg on the basis

ofKOELM is given by

TM
R

ZZLZZLZf n

1

1

1
)],()......,()(









 

(23)

Where),(1ZZL and ThhM  are the hidden

neurons kernel function of single hidden layer
FFN networks. The functions like polynomial
kernel, exponential kernel, linear kernel and
Gaussian kernel will satisfy the Mercer condition.
Here three typical kernel functions are selected for
the kernel functions are given below.

(i) Gaussian kernel:

||)||(),(YZbeYZL 

(24)
(ii) Hyperbolic tangent kernel:

)|tanh(),(CYaZYZL T  (25)

(iii) Wavelet kernel:

Journal of Theoretical and Applied Information Technology
15th June 2022. Vol.100. No 11
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3630








 







 


e

YZ

d

YZ
fYZL

2||||
exp

||||
cos),(

(26)

Where ecba ,,, and f are the parameters that

are the majorpart in the performance of neural
network and must be tuned on the basis of the
solved problem. KOELM depends on the prior
version with higher weights, which has low noise
and applicable for the current version based on
ASRNN.After detection by the KOELM, the
detected model will be trained on the
classification approaches. In this work for
classificationNaive Bayes, Linear
RegressionandRandom forestare used for
training.

4. RESULT AND DISCUSSION

This section gives the performance analysis and
discussion aboutdeveloped scheme. The entire
implementations have been processed on a system
with 8 GB RAM and Intel Core i5 CPU with 3.0
GHz speed. To implement the proposed scheme,
PYTHON 3.8 is utilized. The developed approach
performance is implemented with three metrics
Accuracy, F-score, Balance, and G-mean. The
performance eof the developed model is
compared with Linear Regression [18], Naive
Bayes [18] and Random forest [18], Hybrid
Active Learning and Kernel PCA (HALKP) [30]
and CDS [18].

4.1 Dataset Detail

The dataset used is MORPH and it is collected
from the PROMISE repository. The reason for
choosing this dataset is it was used in many
existing approaches [23],[27], [28], and [29]and
this dataset comprises of multiple previous

version for each software project. The proposed
model is implemented on 28 versions of eight
software projects.

4.2 Performance Measures

The formulas for calculating thethree metrics F-
score, Balance, and G-mean are given below.

The number of accurately classified data to the
total number of data is called as accuracy and it is

given in Eq. (27), where TP , TN , FP and

FN are True Positive, True Negative, False

Positive, False Negative.

FNTNFPTP

TNTP
Accuracy





(27)

1F -score is the harmonic mean of the precision

and recall and it is given in Eq. (28)

callprecision

callprecision
scoreF

Re

Re2






(28)

G-mean is the geometric mean of sensitivity and
specificity and it is given in Eq. (29)





















FNTP

TP

FPTN

TN
meang

(29)

2

)1()0(
1

22 TPRFPR
Balance




(30)

where FPR and TPR are the False Positive
Rate, True Positive Rate

Table 2: projects and defective ratio of MORPH dataset

 Projects Version File Instance Defective (%)

camel

1.0 339 3.8
1.2 608 35.5
1.4 872 16.6
1.6 965 19.5

3.2 273 33.1
4.0 306 24.5

Journal of Theoretical and Applied Information Technology
15th June 2022. Vol.100. No 11
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3631

jedit 4.1 312 25.3
4.2 367 13.1

Log4j

1.0 135 25.2
1.1 109 33.9
1.2 205 92.2

poi

1.5 237 59.2
2.0 314 11.8
2.5 385 64.4
3.0 442 63.6

synapse

1.0 157 10.2
1.1 222 27.0
1.2 256 33.6

velocity

1.4 196 75
1.5 214 66.4
1.6 229 34.1

xalan 2.4 723 15.2
2.5 803 48.2
2.6 885 46.4

xerces 1.1 162 47.5
1.2 440 16.1
1.3 453 15.2
1.4 588 63.7

Table 1shows the projects and defective ratio of
MORPH dataset. There are 8 open source project
and the defective ratio differ for each version. For
example in the software project, in the seventh
project xalan in the version 2.4, only 15.2% files

are defective then in version 2.5 the defective
percentage is increases to 48.2% and again
reduces to 46.4%. therefore it is proved that the
variation pf data distribution among a version of
similar projects does not exist.

Table 3: Detection performance of the proposed method

projects Version pair Accuracy F-score Balance Gmean

camel
prior current
1.0 1.6 0.961 0.945 0.896 0.890
1.2 1.6 0.792 0.424 0.543 0.375
1.4 1.6 0.934 0.859 0.879 0.8749

1.0+1.2+1.4 1.6 0.889 0.749 0.837 0.833
jedit 3.2 4.2 0.672 0.410 0.710 0.708

4.0 4.2 0.818 0.573 0.796 0.795
4.1 4.2 0.818 0.573 0.796 0.795

3.2+4.0+4.1 4.2 0.763 0.522 0.812 0.809
Log4j 1.0 1.2 0.426 0.822 0.698 0.629

1.1 1.2 0.3934 0.810 0.6810 0.601
1.0+1.1 1.2 0.442 0.828 0.706 0.643

poi 1.5 3.0 0.734 0.777 0.727 0.726
2.0 3.0 0.386 0.701 0.539 0.2820
2.5 3.0 0.6969 0.694 0.642 0.620

1.5+2.0+2.5 3.0 0.7348 0.806 0.75 0.748
synapse 1.0 1.2 0.802 0.702 0.793 0.793

1.1 1.2 0.868 0.798 0.853 0.852
1.0+1.1 1.2 0.802 0.701 0.807 0.807

velocity 1.4 1.6 0.794 0.703 0.8115 0.810

Journal of Theoretical and Applied Information Technology
15th June 2022. Vol.100. No 11
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3632

1.5 1.6 0.867 0.8102 0.851 0.850
1.4+1.5 1.6 0.823 0.738 0.845 0.843

xalan 2.4 2.6 0.962 0.9535 0.963 0.963
2.5 2.6 0.9547 0.959 0.953 0.9528

2.4+2.5 2.6 0.950 0.953 0.9495 0.949
xerces 1.1 1.4 0.920 0.9495 0.925 0.925

1.2 1.4 0.909 0.923 0.896 0.895
1.3 1.4 0.931 0.939 0.918 0.918

1.1+1.2+1.3 1.4 0.9090 0.923 0.896 0.8959

Table 2 illustrates the detection performance of
the implemented model. The specific defect
detection approach can differ a lot because of the
variation of training set from different versions.
Let us consider the project synapse, here the G-
mean, balance and F-measure values are less in

the case of version 1.0. but when using 1.1 version
as a training set, detection performance is
increased significantly for three metrics. The data
distribution variation affect the performance.
Hence, selecting the training data with low noise
is suitable for building CV-FDDS model.

Table 4: The overall performance of CV-FDDS and existing models with respect to F-score

project RF [18] LR [18] NB [18] HALKP [30] CDS [18] proposed
camel 0.371 0.240 0.305 0.428 0.516 0.744
jedit 0.482 0.503 0.475 0.564 0.525 0.520

Log4j 0.505 0.409 0.452 0.612 0.718 0.820
poi 0.654 0.634 0.294 0.674 0.767 0.744

synapse 0.361 0.438 0.510 0.457 0.538 0.734
velocity 0.562 0.530 0.525 0.527 0.609 0.750
Xalan 0.427 0.284 0.427 0.610 0.710 0.955
xerces 0.233 0.069 0.224 0.401 0.538 0.933

Average 0.44 0.391 0.401 0.531 0.612 0.775

For every project, the training data is the data in
the prior version, and test data is the present
version. Table 3 shows the overall performance of
CV-FDDS and existing models with respect to F-
score. Here in all cases the developed method CV-

FDDS achieves better results. The average of the
developed method is 0.775 while the existing
approaches like HALKP and CDS achieve less
average of about 0.531 and 0.612.

Table 5: The overall performance of CV-FDDS and existing models with respect to G-mean

project RF [18] LR [18] NB [18] HALKP [30] CDS [18] proposed
camel 0.541 0.395 0.481 0.582 0.710 0.743
jedit 0.782 0.745 0.712 0.709 0.783 0.777

Log4j 0.526 0.492 0.508 0.621 0.636 0.624
poi 0.648 0.621 0.410 0.680 0.705 0.594

synapse 0.487 0.543 0.615 0.568 0.641 0.817
velocity 0.563 0.350 0.549 0.494 0.676 0.834

Xalan 0.523 0.407 0.523 0.635 0.691 0.955
xerces 0.352 0.190 0.351 0.467 0.508 0.908

Average 0.55275 0.467875 0.518625 0.579875 0.6687 0.7815

Journal of Theoretical and Applied Information Technology
15th June 2022. Vol.100. No 11
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3633

Table 4 shows the overall performance of CV-
FDDS and existing models with respect to G-
mean. Here in all cases the developed method CV-
FDDS achieves better results. The average of the

developed method is 0.7815 while the existing
approaches like HALKP and CDS achieves less
average of about 0.579 and 0.6687 respectively.

Table 6: The overall performance of CV-FDDS and existing models with respect to balance

project RF [18] LR [18] NB [18] HALKP [30] CDS [18] proposed
camel 0.519 0.407 0.471 0.551 0.702 0.789
jedit 0.782 0.730 0.690 0.698 0.699 0.778

Log4j 0.518 0.473 0.498 0.597 0.63 0.695
poi 0.641 0.617 0.417 0.666 0.703 0.664

synapse 0.476 0.512 0.591 0.543 0.638 0.818
velocity 0.540 0.381 0.537 0.484 0.682 0.836

Xalan 0.492 0.413 0.497 0.635 0.509 0.955
xerces 0.385 0.318 0.383 0.465 0.667 0.909

Average 0.542 0.318 0.381 0.462 0.507 0.8055

Table 5 shows the overall performance of CV-
FDDS and existing models with respect to
balance. Here in all cases, the developed method
CV-FDDS achieves better results. The average of
the developed method is 0.805. in the first project

camel, the proposed method achieves the balance
value of 0.789 and the existing model like
HALKP and CDS achieves 0.771 and 0.702
respectively.

(a) (b)

Journal of Theoretical and Applied Information Technology
15th June 2022. Vol.100. No 11
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3634

(c)

Figure 2: Box Plot Representation Of Various Models

Figure 2represents the box plot representation of
various models likeRF, LR, NB, HALKP and
CDS. This graph depicts the higher performance
of each model on the basis of balance , G-mean
and F-score. In the case of F-score, in the project
xerces the developed model achieves higher value

of about 0.955. In the case of G-mean, in the
project xerces the developed model achieves
higher value of about 0.955. In the case of balance
also, in the project xerces the developed model
achieves higher value of about 0.955. Thus the
proposed model proved its betterment.

(a) (b)

Journal of Theoretical and Applied Information Technology
15th June 2022. Vol.100. No 11
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3635

(c)

Figure 3: Detection Performance Of Existing File

Figure 3 shows the detection performance of the
methods like CMVC, RF, LR, NB and the
proposed model on the basis of F-score, G-mean
and balance. Here in figure 3(a), in the project
camel, the proposed method achieves F-score of
about 0.806, while the CMVC method achieves
0.536 only. Here in figure 3(b), in the project
camel, the proposed method achieves G-mean of

about 0.873, while the CMVC method achieves
0.729 only. Here in figure 3(c), in the project
camel, the proposed method achieves balance of
about 0.874, while the CMVC method achieves
0.724 only. Finally it is proved that the developed
model achieves higher performance in existing
files in all cases respectively.

Table 7: Detection performance of new file KOELM-RF

 F-score G-mean Balance
project WSM-

RF [18]
KOELM-

RF
WSM-
RF [18]

KOELM-
RF

WSM-
RF [18]

KOELM-
RF

camel 0.257 0.550 0.457 0.272 0.454 0.531
jedit 0.414 0.586 0.811 0.477 0.807 0.601

Log4j 0.515 0.640 0.553 0.0 0.533 0.482
poi 0.432 0.749 0.557 0.690 0.547 0.710

synapse 0.363 0.630 0.494 0.728 0.488 0.729
velocity 0.827 0.746 0.628 0.723 0.590 0.743
Xalan 0.941 0.656 0.941 0.647 0.938 0.655
xerces 0.422 0.820 0.495 0.759 0.481 0.772

Average 0.521375 0.672125 0.617125

0.537

0.605 0.652875

Table 6 shows the detection performance of new
file KOELM-RF. After detecting the new file, this
model is trained on the classifier RF. When
comparing the performance of KOLEM-RF and
the existing model WSM-RF, the proposed model

achieves high F-score value of about 0.820, high
G-mean of about 0.759 and high balance value of
about 0.772 in the xerces software. In addition, the
average value of the three metrics also high for the
developed approach

Journal of Theoretical and Applied Information Technology
15th June 2022. Vol.100. No 11
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3636

Table 8: Detection of new file KOELM- LR

 F-score G-mean Balance
project WSM-

LR [18]
KOELM-

LR
WSM-
LR [18]

KOELM-
LR

WSM-
LR [18]

KOELM-
LR

camel 0.240 0.504 0.408 0.357 0.41 0.549
jedit 0.52 0.405 0.85 0.239 0.85 0.518

Log4j 0.503 0.655 0.546 0.453 0.52 0.5
poi 0.44 0.721 0.537 0.652 0.53 0.676

synapse 0.35 0.630 0.47 0.728 0.45 0.729
velocity 0.82 0.456 0.62 0.407 0.59 0.531
Xalan 0.22 0.659 0.35 0.607 0.38 0.636
xerces 0.13 0.793 0.261 0.714 0.34 0.740

Average 0.402 0.602875 0.505 0.519625 0.511 0.609875

Table 7shows the detection performance of new
file KOELM-LR. After detecting the new file, this
model is trained on the classifier LR. When
comparing the performance of KOELM-LR and
the existing model WSM-LR, the proposed model
achieves a high F-score value of about 0.793 in

xerces software, a high G-mean of about 0.728 in
the synapse software and a high balance value of
about 0.740 in xerces software. In addition, the
average value of the three metrics also high for the
developed approach when compared to the
existing model WSM-LR.

Table 9: Detection of new file KOELM- NB

 F-score G-mean Balance
project WSM-

NB [18]
KOELM-

NB
WSM-

NB [18]
KOELM-

NB
WSM-

NB [18]
KOELM-

NB
camel 0.275 0.199 0.46 0.135 0.454 0.494
jedit 0.4 0.586 0.70 0.477 0.682 0.6015

Log4j 0527 0.655 0.56 0.5453 0.540 0.5
poi 0.17 0.761 0.312 0.704 0.362 0.727

synapse 0.54 0.598 0.63 0.7106 0.608 0.711
velocity 0.88 0.597 0.85 0.576 0.851 0.626
Xalan 0.65 0.703 0.69 0.663 0.653 0.68
xerces 0.29 0.862 0.4 0.816 0.416 0.818

Average 0.45 0.620125 0.58 0.578363 0.57 0.644688

Table 8 shows the detection performance of new
file KOELM-NB and the WSM-NB. After
detecting the new file, this model is trained on the
classifier NB. When comparing the performance
of KOLEM-NB and the existing model WSM-
NB, the proposed model achieves high F-score

value of about 0.862, high G-mean of about 0.816
and high balance value of about 0.818 in the
xerces project. In addition, the average value of
the three metrics also high for the developed
approach.Thus the proposed model proved its
superiority.

5. CONCLUSION

Fault detection in a software engineering is
gaining attention due to the severe impacts of the
faults in the software and malfunctioning of
software used in diverse domains. Among the

various faults, two faults are required to be
properly addressed. To deal with those issues, we
propose a concept on cross-version software fault
detection with data selection (CV-FDDS). This
scenario is much reasonable and significant to
detect the above-mentioned issues by predicting

Journal of Theoretical and Applied Information Technology
15th June 2022. Vol.100. No 11
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3637

the faults in the new versions based on the labelled
data of previous versions. The proposed
framework works on identifying the faults in the
newer versions of the software projects on the
basis of older version labels through the use of
learning strategies. Initially, the dataset is
preprocessed using an appropriate data filter. The
older and newer files are treated in two different
ways to accomplish this task. To deal with the
existing or the older files, an adaptive spiking
atom search recurrent neural network classifier
(ASARNN) has been proposed through which the
training and testing data are automatically
selected. This is done by assigning higher weight
values to the much relevant and noise-free older
versions. Based on the training and testing, the
newer versions comprising faults are detected
using the proposed kernel optimized extreme
learning machine (KOELM). The implementation
of the developed approach is implemented on
PYTHON. The implementation of the developed
approach is implemented on PYTHON. The
implemented approach performance is compared
against the conventional methods with respect to
the major performance indicators. The
implemented nodel achieves a geometric-mean
(G-mean) of about 0.7815 , f-measure of about
0.775 and balance is about 0.8055 respectively. In
the future, the developed model can be applied to
other software engineering problems like
selection of test case.

REFERENCES:

[1] Xiao, Hui, Minhao Cao, and Rui Peng.
"Artificial neural network based software
fault detection and correction prediction
models considering testing effort." Applied
Soft Computing 94 (2020): 106491.

[2] Amasaki, Sousuke. "Cross-version defect
prediction: use historical data, cross-project
data, or both?." Empirical Software
Engineering 25, no. 2 (2020): 1573-1595.

[3] Yao, Zhexi, Jiawei Song, Yushuai Liu, Tao
Zhang, and Jinbo Wang. "Research on
Cross-version Software Defect Prediction
Based on Evolutionary Information." In IOP
Conference Series: Materials Science and

Engineering, vol. 563, no. 5, p. 052092. IOP
Publishing, 2019.

[4] Huo, Xuan, and Ming Li. "On cost-effective
software defect prediction: Classification or
ranking?." Neurocomputing 363 (2019):
339-350.

[5] Haouari, Ahmed Taha, LabibaSouici-Meslati,
FadilaAtil, and DjamelMeslati. "Empirical
comparison and evaluation of Artificial
Immune Systems in inter-release software
fault prediction." Applied Soft
Computing 96 (2020): 106686.

[6] Chen, Xiang, Dun Zhang, Yingquan Zhao,
Zhanqi Cui, and Chao Ni. "Software defect
number prediction: Unsupervised vs
supervised methods." Information and
Software Technology 106 (2019): 161-181.

[7] Gao, Houleng, Minyan Lu, Cong Pan, and
Biao Xu. "Empirical Study: Are Complex
Network Features Suitable for Cross-
Version Software Defect Prediction?."
In 2019 IEEE 10th International
Conference on Software Engineering and
Service Science (ICSESS), pp. 1-5. IEEE,
2019.

[8] Bai, Xue, Hua Zhou, Hongji Yang, and Dong
Wang. "Connecting historical changes for
cross-version software defect
prediction." International Journal of
Computer Applications in Technology 63,
no. 4 (2020): 371-383.

[9] Sultana, KaziZakia, VaibhavAnu, and Tai‐Yin
Chong. "Using software metrics for
predicting vulnerable classes and methods
in Java projects: A machine learning
approach." Journal of Software: Evolution
and Process 33, no. 3 (2021): e2303.

[10] Manjula, C., and Lilly Florence. "Deep
neural network based hybrid approach for
software defect prediction using software
metrics." Cluster Computing 22, no. 4
(2019): 9847-9863.

[11] Ni, Chao, Xin Xia, David Lo, Xiang Chen,
and Qing Gu. "Revisiting supervised and
unsupervised methods for effort-aware
cross-project defect prediction." IEEE
Transactions on Software
Engineering (2020).

Journal of Theoretical and Applied Information Technology
15th June 2022. Vol.100. No 11
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3638

[12] Xu, Zhou, Tao Zhang, Yifeng Zhang, Yutian
Tang, Jin Liu, Xiapu Luo, Jacky Keung, and
Xiaohui Cui. "Identifying crashing fault
residence based on cross project model."
In 2019 IEEE 30th International Symposium
on Software Reliability Engineering
(ISSRE), pp. 183-194. IEEE, 2019.

[13] Pandey, Sushant Kumar, and Anil Kumar
Tripathi. "BCV-Predictor: A bug count
vector predictor of a successive version of
the software system." Knowledge-Based
Systems 197 (2020): 105924.

[14] Sun, Ying, Xiao-Yuan Jing, Fei Wu, and
Yanfei Sun. "Manifold embedded
distribution adaptation for cross-project
defect prediction." IET Software 14, no. 7
(2021): 825-838.

[15] Sohan, MdFahimuzzman, Md Ismail
Jabiullah, Sheikh Shah Mohammad Motiur
Rahman, and SM Hasan Mahmud.
"Assessing the effect of imbalanced learning
on cross-project software defect prediction."
In 2019 10th International Conference on
Computing, Communication and
Networking Technologies (ICCCNT), pp. 1-
6. IEEE, 2019.

[16] Sohan, MdFahimuzzman, MdAlamgirKabir,
Mostafijur Rahman, TouhidBhuiyan, Md
Ismail Jabiullah, and
EbubeoguAmarachukwu Felix. "Prevalence
of Machine Learning Techniques in
Software Defect Prediction."
In International Conference on Cyber
Security and Computer Science, pp. 257-
269. Springer, Cham, 2020.

[17] Tanaka, Kazuya, AkitoMonden, and
ZeynepYücel. "Prediction of software
defects using automated machine learning."
In 2019 20th IEEE/ACIS International
Conference on Software Engineering,
Artificial Intelligence, Networking and
Parallel/Distributed Computing (SNPD),
pp. 490-494. IEEE, 2019.

[18] Zhang, Jie, Jiajing Wu, Chuan Chen, Zibin
Zheng, and Michael R. Lyu. "CDS: A
Cross–Version Software Defect Prediction
Model With Data Selection." IEEE Access 8
(2020): 110059-110072.

[19] Yuan, Zhidan, Xiang Chen, Zhanqi Cui, and
Yanzhou Mu. "ALTRA: Cross-Project
Software Defect Prediction via Active
Learning and Tradaboost." IEEE Access 8
(2020): 30037-30049.

[20] Zhu, Mengmeng, and Hoang Pham. "A
generalized multiple environmental factors
software reliability model with stochastic
fault detection process." Annals of
Operations Research (2020): 1-22.

[21] Alsghaier, Hiba, and Mohammed Akour.
"Software fault prediction using particle
swarm algorithm with genetic algorithm and
support vector machine
classifier." Software: Practice and
Experience 50, no. 4 (2020): 407-427.

[22] Shukla, Swapnil, T. Radhakrishnan, K.
Muthukumaran, and LalitaBhanu Murthy
Neti. "Multi-objective cross-version defect
prediction." Soft Computing 22, no. 6
(2018): 1959-1980.

[23] Xu, Zhou, Shuai Li, Xiapu Luo, Jin Liu, Tao
Zhang, Yutian Tang, Jun Xu, Peipei Yuan,
and Jacky Keung. "TSTSS: A two-stage
training subset selection framework for
cross versiondefect prediction." Journal of
Systems and Software 154 (2019): 59-78.

[24] Kim, Robert, Yinghao Li, and Terrence J.
Sejnowski. "Simple framework for
constructing functional spiking recurrent
neural networks." Proceedings of the
national academy of sciences 116, no. 45
(2019): 22811-22820.

[25] Zhao, W., Wang, L. and Zhang, Z., 2019.
Atom search optimization and its
application to solve a hydrogeologic
parameter estimation problem. Knowledge-
Based Systems, 163, pp.283-304.

[26] Li, B., Rong, X. and Li, Y., 2014. An
improved kernel based extreme learning
machine for robot execution failures. The
Scientific World Journal, 2014.

[27] Yang X, Wen W. Ridge and lasso regression
models for cross-version defect prediction.
IEEE Transactions on Reliability. 2018 Jun
29;67(3):885-96.

[28] Xu, Z., Li, S., Tang, Y., Luo, X., Zhang, T.,
Liu, J. and Xu, J., 2018, May. Cross version

Journal of Theoretical and Applied Information Technology
15th June 2022. Vol.100. No 11
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3639

defect prediction with representative data
via sparse subset selection. In 2018
IEEE/ACM 26th International Conference
on Program Comprehension (ICPC) (pp.
132-13211). IEEE.

[29] Yuan, Zhidan, Xiang Chen, Zhanqi Cui, and
Yanzhou Mu. "ALTRA: Cross-Project
Software Defect Prediction via Active
Learning and Tradaboost." IEEE Access 8
(2020): 30037-30049.

[30] Xu, Z., Liu, J., Luo, X. and Zhang, T., 2018,
March. Cross-version defect prediction via
hybrid active learning with kernel principal
component analysis. In 2018 IEEE 25th
International Conference on Software
Analysis, Evolution and Reengineering
(SANER) (pp. 209-220). IEEE.

