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ABSTRACT 
 

Image segmentation is a useful and important technique in image processing, its purpose is to simplify and/or change 
the representation of an image into components that are more meaningful and easier to analyze. Nevertheless, even after 
the evolution of segmentation methods, they unfortunately lead to over-segmentation or to under-segmentation when 
applied to noisy images. 

Among different techniques for the segmentation of pixels of interest from an image we focus on segmentation by 
active contour models. Those models have been widely successfully used, in recent years, for different applications. 
However, for noisy images it is necessary to perform a denoising preprocessing step for a satisfactory segmentation. 

In this work we propose a segmentation model wich is a combination between a nonlinear diffusion model for image 
denoising and classical active contour models which use mean curvature motion techniques. For this we take, in the 
edge indicator function, the gradient of the image to be segmented which has been denoised by a nonlinear diffusion 
instead a Gaussian filter. 

Finally, we will present various experimental results and in particular some examples for which the classical snakes 
methods based on the gradient are not applicable. 

Keywords: Image Segmentation, Level Set Methods, Nonlinear Diffusion, Nonlinear Diffusion, Active Contour 
Models.  

 
 
1. INTRODUCTION  
 

Segmenting a digital image means finding by a 
numerical algorithm its homogeneous regions and their 
edges or boundaries. Of course, the homogeneous 
regions are supposed to correspond to meaningful parts 
of objects in the real world, and the edges to their 
apparent contours. 

 
Image segmentation is frequently used in medical 
imaging for viewing organs and tissues for the purpose of 
diagnosis and treatment of many diseases. Some other 
main areas that use image segmentation extensively are 
computer vision and autonomous vehicles (see [16]). 

There are various image segmentation procedures like 
active contours, split and merge segmentation, watershed 
segmentation, graph-based segmentation, mean shift 
segmentation and the normalized cut technic [19], [11]. 
Image segmentation, like many other tasks in image 

processing, has many difficulties [9]. One of the 
challenges of this procedure is the one developing 
approaches that can recognize complex objects, like those 
with sharp corners, holes, and mixed textures. Another 
difficulty of segmentation is the capacity to be able to 
recognize objects in an image even in presence of noise. 
The approach for segmentation adopted in this work is 
the famous active contours methods. In all the classical 
active contour models (see for instance [6], [7], [19] , 
[20]), an edge detector is used to stop the evolving curve 
on the boundaries of 
the desired object, usually this edge-function 
depending on the convolution of the image gradient  with 
a Gaussian function. If the initial image is noised, then 
the isotropic smoothing Gaussian filter has to be strong, 
which will smooth the edges too and the evolving curve 
can’t find the boundary. To overcome this, the idea is to 
combine a better performant image filtering to the 
segmentation processe. For this, a nonlinear filter model 
which preserves edges is applied and then the process of  
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active contour segmentation is engaged with a novel edge 
detector function which depends on the gradient of 
denoised image by this nonlinear restoration technic.   

This paper is organized as follows. In the next section we 
review some steps of the nonlinear diffusion model 
employed. Section 3 contains a brief summary of image 
segmentation by geometric active contours implemented 
via level set methods. We end the paper validating our 
model by numerical results.  

 

2. NONLINEAR DIFFUSION FOR IMAGE 
RESTORATION 

Image restoration is historically one of the 
oldest concerns in image processing and is still a 
necessary preprocessing step for many applications. In 
recent decades, several mathematical nonlinear diffusion 
partial differential equations models for image restoration 
have been applied since the one of Perona and Malik was 
introduced, at first,  in [17] in 1990. See for examples [1], 
[2], [3], [4], [7], [10], [13], [9], [19] and [12]. In this 
work we are interested to restore the noisy image using 
the following nonlinear model  

 

       (1) 

where 0v is the grey level distribution of a given distorted 

image occupying a bounded domain  in  for which 

boundary is . Q is defined by , 

for some given 0T > . And | . |  designs the  
Euclidian norm. 
 
The common characteristic of the nonlinear diffusion 
model is that over the region where the gradient of the 
image is small, the model acts like the heat equation on 
the other hand near the edges, where the gradient is large, 
the regularization is stopped and the edges are preserved. 
Typical example for an edge stopping function which, 

in fact, has been used by the authors in [1] 

      (2) 

 is a positive constant and the parameter k is a 
measure for the steepness of an edge to be preserved: 

points with
2s k> are regarded as edges, where the 

diffusivity is small, whereas points with 
2s k< are 

considered to belong to the interior of a region where the 

diffusivity is close to 1. 

In [1] the authors establish that the model (1) is well 
posed in the Hadamard sense and admits a unique weak 
solution in Hilbert space  under 

suitable hypothesis on edge stopping function . 
       For the discretization of (1) we consider the Galerkin 

finite elements method. Given a triangulation hT , we 

define the set  of piecewise linear finite 

elements, i.e.

 
the Galerkin finite element formulation of (1) is defined 
by:  
Find  such that 

      (3) 

that hold for all   . 
Then we apply, to each iteration in time, a semi-
discretization: the nonlinear term of the equation is 
calculated from the results of the previous iteration while 
the linear terms are processed for the current iteration. 

We discretize the interval [0; ]T  with uniform scaling 

interval  thus the discrete linear equation is 

 

(4) 
For this linear scheme we can proof the existence of a 
week solution in every discrete scale step by using 
theorem of Lax-milgram. 
We denote by  the standard Lagrangian bases 

functions, the function n
hu  is given by 

. 

  Let , then equation (4) can be written  

      

(5) 
Finally the discrete linear system is expressed as     

          (6)          
where 

 
and            (7)          
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3. SEGMENTATION BY GEOMETRIC ACTIVE 
CONTOUR 

         Existing active contour models can be classified 
according to their representation and implementation 
parametric active contour models [22]. Thus they can be 
considered as parametric active contour models as well as 
geometric active contour models. The parametric active 
contours are represented explicitly as parameterized 
curves in a Lagrangian framework, while the geometric 
active contours are represented implicitly as level sets of 
a two-dimensional function that evolves in an Eulerian 

framework. For a numerical point of view, we use the 
Eulerian formulation for a level set approach [14] is 
applied. This approach is based on the description of the 
curve as the zero crossing of a higher-dimensional 
function and allows major simplifications. There are 
many advantages to working with this Eulerian 
formulation. First, the contours represented by the level 
set function may break or merge naturally during the 
evolution, and the topological changes are thus 
automatically handled. Second, the level set function 
always remains a function on a fixed grid, which allows 
efficient numerical schemes. Finally, this above level set 
formulation can be extended and applied in any 
dimension.  
 
3.1 Geometric active contour 
 
The geometric active contour for image segmentation 
was introduced by Caselles et al. [4], it is based on the 
theory of curve evolution and the level set method. The 

contourC  is represented by the zero level set of a level 

set function f . In the level set method the curve 

evolution of C is written in the following partial 
differential equation (PDE): 

                       (8) 

where F is the speed function that controls the motion 
of the contour it depends on the image data and the level 
set function . This equation is completed by the initial 

condition  corresponding to the initial curve 0C . 

The level set evolution in a early geometric active 
contour model is given by the following equation: 

  

    (9)  
where I  is an image,   is a constant, and  

 is an edge 

indicator function. This equation develops irregularities 
of  during its evolution, which can cause numerical 

errors and destroys the stability of the evolution of the 

level set. To avoid this problem, we need to initialize the 
function  as a signed distance function and 

periodically reshape it during the evolution by using this 
PDE equation: 

        (10)

                       
where is the level set function to be reinitialized, and  

 is the sign function.  

However, from a practical standpoint, the re-initialization 
can be quite complicated and expensive. To overcome 
this difficulty, Li et al. [8] recently introduced a new 
variational level set formulation in which the regularity 
of the level set function is maintained during the 
evolution and eliminates the need for re-initialization.  

 
3.2 Distance regularized level set evolution 
 
Li et al. propose in [8] a variational level set formulation 
that eliminates the need to re-initialisation and thus 
prevents its induced numerical errors. In contrast to 
complicated implementations of conventional level set 
formulations, a simpler and more efficient finite 
difference scheme can be used to implement this novel 
formulation. 

Let I be an image, and g be the edge detector function 

satisfying  

 g is regular monotonic decreasing. 

 (0) 1,g =    

A typical choice of g  is  2

1
( )

1
g s

s
=

+
, this 

function usually takes smaller values at object boundaries 
than at other locations. 
The level set representation of the geodesic active 
contours proposed by Li et al. is written: 

   

(11)  
where  and  are constants, and 

 

The coefficient  permits one to stop the 

evolving curve when it arrives at the object boundaries. 
The first term penalizes the deviation of from a signed 

distance function and plays a key role in this model. The 
second and third term, correspond respectively to the 
gradient flows of the weighted length of the zero level set 
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of and the weighted area of the region  

, respectively, would 

smoothly drive the motion of the zero level set toward the 
desired edges. Dirac function  is the derivative of 

one-dimensional Heaviside function. 
Due to the penalizing term, the level set function driven 
by equation (11) is naturally and automatically kept as an 
approximate signed distance function during the 
evolution; therefore, the re-initialization procedure is 
completely eliminated. Also this level set evolution 
model has two main advantages over the traditional level 
set formulations. First, it can be implemented using a 
simple finite difference scheme instead of the complex 
upwind scheme as in traditional level set formulations, 
and a significantly larger time step can be used for 
solving equation (11) numerically. Second, the level set 
function  can be efficiently initialized by a piecewise 

constant function as follows: 

   

                                         (12) 

where R  is an arbitrary open region in the image domain 

 is a constant. 

Then once  is calculated on we just need 

to extract the zero level set of to get the curve. Of 

course, we have to add the following conditions. 
 

 A boundary condition: generally chooseen that 

the normal derivative vanishes on  i.e. 

 on . 

 An initial condition at 0t = . 
 

Equation (11) is implemented with explicit difference 
scheme, the spatial derivatives are approximated by the 
central differences by using a fixed space steps 

 and the temporal derivative is 

approximated by the forward difference. For the 

discretization of the term  

there are several possible choices. (see for example [18]). 
To avoid the singularity at the point where the gradient of 

 is null,  is approximated by: 

 with            

(13) 
As in many level set methods the Dirac function  is 
approximated by the following function  defined by : 

 

                                               

        (14) 

By and ,i jI we denote approximation to 

 and ( , )i jI x y , respectively, where 

the partial derivatives are approximated by the following 
forward Euler differences: 

(15) 

Similary for  and  . 

The explicite discretization of (11) is given by: 

                   

                

(16) 

where       

 

and  
            

  

 
4.  EXPERIMENTAL RESULTS 

 
This section shows the simulation results of 

both model (1) and (11) for  restoration and 
segmentation. To show the advantage of combining both 
models we use different types of images and same initial 
contour for each image. The model (11) is not sensitive to 

the choice of and , which can be fixed for 

most of applications. The choice of the parameter 

1k =  is subject to the CFL condition. These 
parameters are fixed as  , and time 
step   in this paper. The parameter  needs to 
be turned for different images, if the initial contour is 
placed inside the object, the coefficient  should take 
negative value to expand the contour and if the initial 
contour is placed outside the object, the coefficient  
should be positive, so that the zero level contour can 
shrink in the level set evolution. For the model (1) the 

parameters are fixed as and 1k = . 
For the examples in figures 1-6, we show the image and 
the evolving contour. In all cases, we start with a very 
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noisy image and a single initial closed curve. We show 
how our model (see cell d) can restore image and detect 
contours compared with classical active contours based 
on the gradient or Gaussian smoothing gradient for edge 
function.  

 
5.  Conclusion 

 
In this paper we propose a modified active contour 
model for image segmentation. It’s a combination 
between a classical active contour models using mean 
curvature motion techniques, and a nonlinear diffusion 
model for denoising and segmentation. In the classical 
active contour models the edge indicator function is 
based on a Gaussian filter, to stop the evolving curve on 
the desired boundary while, in the proposed model we 
replace it by a function which depends on the gradient of 
the restored image by a nonlinear diffusion filter. In this 
way the locations of boundaries are very well detected as 
shown in the different numerical simulations presented 
that validate our model. 

 

 
Figure 1:  Results of segmentation using model (11) after 200 
iterations using different edge indicator functions with 

, and time step .  a) 
Noisy image and initial contour. b) Detection result with edge 

indicator function  . 

 c) Detection result in restored image by Gaussian filter with 

edge indicator function  . 

d) Detection result after restoration using edge indicator 

function  with Î  is restored image by 

(1). 

 

 
Figure 2:  Results of segmentation using model (11) after 150 
iterations using different edge indicator functions with 

, and time step . a) 
Noisy image and initial contour. b) Final result after 150 
iterations using edge indicator function 

 . c) Final result after150 iterations 

using edge indicator function 

 . d) Final result after150 

iterations using edge indicator function 

 with Î  is restored image by (1). 

 

 
Figure 3:  Results of segmentation using model (11) after 450 
iterations using different edge indicator functions with 

, and time step . a) 
Noisy image and initial contour. b) Final  result after 450 
iterations using edge indicator function  . c) Final result after 
450 iterations using edge indicator function 
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 . d) Final result after 450 

iterations using edge indicator function 

 with Î  is restored image by (1). 

 

 
Figure 4:  Results of segmentation using model (11) after 250 
iterations using different edge indicator functions with 

, and time step

5tD = . a) Noisy image (Gaussian and speckle) and initial 
contour. b) Final  result after 250 iterations using edge indicator 
function  . c) Final result after 250 

iterations using edge indicator function 
 . d) Final result after 250 

iterations using edge indicator function 

 with Î  is restored image by (1). 

 

Figure 5:  Results of segmentation using model (11) after 100 
iterations using different edge indicator functions with 

, and time step

5tD = . a) Noisy image (Gaussian and speckle) and initial 
contour. b) Final  result after 100 iterations using edge indicator 

function  . c) Final result after 100 

iterations using edge indicator function 

 . d) Final result after 100 

iterations using edge indicator function 

 with Î  is restored image by (1). 

 

Figure 6:  Results of segmentation using model (11) after 250 
iterations using different edge indicator functions with 

, and time step 5tD = . a) 
Noisy image (Gaussian+speckle) and initial contour. b) Final  
result after 250 iterations using edge indicator function 

 . c) Final result after 250 iterations 

using edge indicator function 

 . d) Final result after 250 

iterations using edge indicator function 

 with Î  is restored image by (1). 
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