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ABSTRACT 
 

The purpose of the present work is to study methods for solving problems of anomaly detection and prediction 
of time series values when processing streaming data in real-time in a network environment and their 
improvement. To solve this problem the authors propose a Real-Time K-Means modification with 
preliminary markup. The effectiveness of the modification is confirmed by comparing it with the frequently 
used Streaming K-Means from the Apache Spark Mllib library. To solve the problem of predicting time series 
when processing streaming data in real-time, the authors propose a modification of the autoregression model 
with a given AR order by adding the inheritance function of the previous values of the time series to it. The 
results of comparative experiments of the proposed Real-Time AR modification with classical AR confirmed 
the effectiveness of the modification, which is especially evident in the presence of anomalies in the behavior 
of the time series. The proposed algorithm modifications allow not only parallelizing calculations using the 
deferred computing paradigm but also configuring the model fleetingly in the Apache Spark ecosystem. To 
conduct experiments with algorithms, a dataset was built – a data slice from 1,000 measurements of the 
Apache Kafka server metrics log with one topic, two producers, and one consumer. Anomalous fragments 
were artificially added to the dataset, differing by a large number of messages per second and/or message 
size. The values of the original dataset were normalized and shifted to the average value of the training fetch. 
Moreover, static and highly correlated metrics were eliminated. The results of the application of the 
developed algorithms in solving the problems of detecting and predicting the values of time series have 
shown that even the presence of behavior anomalies does not distort predictions significantly. 
Keywords: Logs, Technological Platform, Machine Learning, Deep Learning, Apache Software Foundation. 
 
1. INTRODUCTION 

 
Today, every major IT company works with 

dozens or even hundreds of services deployed 
simultaneously. The only reliable source of 
information, characterizing the state of applications 
is service logs – a set of metrics, represented by time 
series of values. Using machine learning methods 
and the values of log metrics, one can track various 
service failures, attempts to interfere with the 
operation of the application, acts of fraud, as well as 
classify anomalies in the behavior of services, and 
predict the values of log metrics for the nearest time 
period. This knowledge helps in risk management 
and decision-making. 

To solve the above problems, several 
successful approaches are available which are 
considered to be classic. Thus, for analyzing time 
series, one can distinguish algorithms such as 
statistical ones (ARMA, ARIMA, GARCH, Holt-
Winters model, etc.), linear regression algorithms 

[1], as well as neural networks with different 
architectures (RNN, LSTM, etc.) [2, 3]. To detect 
anomalies, algorithms, such as K-Means or KNN are 
usually used [4-6]. 

These machine learning methods, 
undoubtedly, can solve the above-mentioned 
problems of managing complex objects, and are 
actively used for various activities. However, their 
straight application is not suitable for working with 
continuous streams of high-intensity big data in real-
time. The standard approach for any supervised 
learning task requires training the model based on a 
pre-prepared training fetch, testing the correctness of 
predictions on a test fetch, and then interpolating the 
results to a wider fetch of real data. When processing 
data, represented by time series, this approach can be 
applied with serious limitations, since, firstly, time-
series data are rigidly ordered, and secondly, these 
data are continuously changing over time. Therefore, 
it is not reasonable to use models previously trained 
on outdated data. An example is the inability to use 
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a model based on a fetch of a load of an online store 
focused on traffic of 2,000 users per day, after a 
short-term increase in traffic due to an advertising 
campaign to 3,000 customers per day. Traffic is 
changing and, possibly, the social status of buyers 
with other needs is changing as well, and therefore 
using a previously built model will give inaccurate 
results at best, and completely incorrect outcomes at 
worst. 

One can try to retrain the model at certain 
time intervals. However, such a solution is 
ineffective because there is usually a lot of processed 
data, and several models can be deployed 
simultaneously to work with different time series. 
Therefore, the process of frequent model changes 
will be associated with fairly high costs. But if it is 
important for us to constantly retrain the data 
analysis model during operation, then we can only 
use algorithms that retrain faster than the next batch 
of training fetch data arrives from the stream. It is 
customary to say about such algorithms that they are 
trained on the fly. A class of such models is 
discussed in publications as part of online learning. 
For high-speed, high-intensity work, it is required to 
use frameworks that allow distributed computing 
over large amounts of data. One of the most popular 
frameworks is Apache Spark, designed for 
distributed processing of structured and unstructured 
data, and being a part of the Hadoop ecosystem [7, 
8]. 

Besides classical approaches, today 
scholars are increasingly looking for real-time 
models and algorithms for solving problems of 
detecting anomalies and predicting time series 
values. 

Thus, in the article [9], a real-time 
implementation of ARIMA and even an open-source 
library for anomaly detection and prediction using 
real-time ARIMA models are proposed. However, 
the proposed framework cannot operate in a 
distributed environment. 

To search for anomalies, the authors [10] 
suggest using OPTICS, but for datasets with 
significant value dynamics, an attempt to use even 
improved DBScan OPTICS does allow detecting 
anomalies. Researchers [11] note the complexity of 
simulating prediction processes with high accuracy 
and sensitivity of anomalous states in real-time. To 
solve this problem, CF-LSTM is proposed, 
representing an improved multidimensional entropy 
transfer method for estimating physical causality 
between multidimensional time series in 
combination with the LSTM model. For thousands 
of time series, some of which are independent, it is 

hardly possible to assess physical causality, not to 
mention the accuracy and sensitivity of forecasting. 

The article [12] proposes a comprehensive 
method for detecting anomalies in 
telecommunications traffic, which includes 
components based on entropy analysis, signature 
analysis, and machine learning using fractal and 
recurrent analysis. The article assumes that 
combining different approaches will give an 
improved result. This is true only for static areas. If 
it is necessary to frequently change the set of models 
used, this approach will lead to an information 
collapse. 

The authors [13] describe a new application 
of robust estimation for detecting volumetric 
anomalies in the traffic of a computer network in 
real-time. The proposed tests are based on the 
location and variance of the sample and are derived 
from relatively unknown zero-order statistics. This 
approach is only effective for detecting one type of 
failure with heavy tails outside of network traffic and 
cannot be used for other anomalies. 

The purpose of the present work is to study 
existing methods for solving problems of detecting 
anomalies by the log-based metrics of technological 
platforms and predicting the time series values when 
processing real-time streaming data in a network 
environment and the possibilities for their 
improvement. 

To verify the solutions proposed by the 
authors, it is necessary to conduct comparative 
experiments with the most common algorithms used 
to solve the set problems on prepared datasets 
containing anomalies. Experiments will allow 
determining in practice the effectiveness of the 
selected methods for solving the set problems.  

 
2. MATERIALS AND METHODS 

 
2.1 Problem Statement 

Abnormal data on the operation of 
technological platforms usually include outliers of 
individual log metrics values that do not correspond 
to the accepted logic of the processes. Often 
abnormal data characterizes some kind of problem, 
for example, a structural defect, attempted fraud, 
etc., although sometimes it is impossible to 
determine the cause of the outlier of the 
characteristic. Two problems arise in connection 
with anomalies: 

- real-time anomaly detection, 
- prediction of possible anomalies. 
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2.2 Overview of Problem-Solving Algorithms 
2.2.1 Algorithms used for anomaly detection 

Let us consider two algorithms – K-means 
and Streaming K-means. 

a) K-means 
The problem of detecting anomalies can be 

considered as a clustering problem. Let there be n 
clusters of normal behavior and one cluster of 
abnormal behavior. The method of its determination 
will be given later in this article. At the first stage, 
we build a model based on historical behavioral data, 
which we will evaluate based on the assumptions of 
experts. At the second stage, we will measure 
distances online within clusters for new data 
appearing in the log, determining their anomaly, 
while periodically updating the model. 

K-means is one of the machine learning 
algorithms that solve the clustering problem. This 
algorithm is non-hierarchical and iterative. It has 
gained great popularity due to its simplicity, clarity 

of implementation and fairly high quality of the 
results obtained. 

The main idea of the algorithm is, as 
known, that at the regular i-th step of the iterative 
procedure, the center of mass of each cluster 
obtained at the previous (i-1)-th step is calculated 
anew, then the vectors are divided into clusters again 
according to which of the new centers turned out to 
be closer to them by the selected metrics. 

The algorithm terminates when there is no 
change in the intracluster distance at the next 
iteration. The number of such iterations is finite, 
since the number of possible partitions of a finite set 
is finite, and at each step, the total square deviation 
(V) decreases. Therefore, there will be no looping. 

For certainty, we give the pseudocode of 
this algorithm: 

1. Setting the initial position of cluster 
centers µy, y∊Y. 

2. Assigning each xi to the nearest center:
 

𝑦𝑖 ∶ =  𝑎𝑟𝑔 𝑚𝑖𝑛 𝑝൫𝑥௜ , µ௬൯, 𝑖 = 1, … , 𝑘, (1) 

where xi and yi are the coordinate and the 
cluster to which point i should be assigned. 

3. Calculating the new positions of the 
centers as the average of the coordinates of the points 
assigned to cluster i:

 

𝜇
௬௝

∶=
∑௟

௜ୀଵ [𝑦௜ = 𝑦]𝑓௝(𝑥௜)

∑௟
௜ୀଵ [𝑦௜ = 𝑦]

, 𝑦 ∈ 𝑌, 𝑗 = 1, … , 𝑛 (2) 

Repeating steps 2 and 3 until the 
composition of yi clusters stops changing [14]. 

b) Streaming K-means 
The Streaming K-means algorithm interacts 

with the coming streaming data, updating meta-
information about clusters dynamically as new data 
is received with the ability to control the forgetting 
of old data (parameter α in formula 3) [15]. This 
algorithm uses generalized rules for updating K-
Means clusters by small data packets. For each data 
packet, the nearest cluster is assigned to each point, 
and then new cluster centers are calculated: 

 

 𝑐௧ାଵ =
𝑐௧𝑛௧𝛼 + 𝑥௧𝑚௧

𝑛௧𝛼 + 𝑚௧

 (3) 

 
 𝑛௧ାଵ = 𝑛௧ + 𝑚௧  , (4) 

 
where ct is the previous cluster center, nt is 

the number of points in cluster t at the current 
moment, xt is the new cluster center made up of 
points received in the package and assigned to 
cluster t, mt is the number of points added to the 
cluster. 

The attenuation criterion α, specified within 
the limits [0, 1], is used to regulate the degree of 
"forgetting" of past values. Thus, at α=1, all data 
from the beginning of the observation will be used, 
at α=0, all data except the last ones will be discarded. 
This parameter is similar to an exponentially 
weighted moving average. 

The attenuation can also be set by the 
halfLife parameter (half-life), which determines the 
correct attenuation coefficient α so that for data 
received at time moment t, their contribution by time 
point t+halfLife drops to 0.5. 
2.2.2 Algorithms for predicting time series 
values 

To predict the time series values, we also 
consider two algorithms. 

a) Autoregressive model 
This is a time series model in which the 

time series values at the current time point depend 
linearly on the previous values [16]. This model can 
be represented by an equation of the form: 

 

𝑋௧ = 𝑐 + ෍

௣

௜ୀଵ

𝑎௜𝑋௧ି௜ + 𝜀௧ (5) 
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where ai are the autoregression coefficients, 

c is a constant coefficient, 𝜀௧ is stationary noise, i.e. 
a sequence of random variables distributed, as a rule, 
according to a normal law with an average equal to 
zero, p is the order of the model. 

The optimization problem is to determine 
both the parameter p, i.e. the number of previous 
values, used to predict the current value of the time 
series and the autoregression coefficients. 

b) ARMA 
The moving average autoregression model 

is a mathematical model that is used to predict the 
values of a stationary time series variable. 

The ARMA (p, q) model, where p and q are 
integers, specifying the order of the model, is the 
process of generating a time series of the form [17]: 

 

𝑋௧ = 𝑐 + 𝜀௧ + ෍

௣

௜ୀଵ

𝑎௜𝑋௧ି௜

+ ෍

௤

௜ୀଵ

𝛽௜𝜀௧ି௜  

(6) 

 
where c is a constant, 𝜀௧ is stationary 

noise, 𝑎௜ and 𝛽௜ are autoregressive coefficients and 
moving average coefficients. 

The optimization problem is to determine 
the order of the model (the p and q numbers) and 
the 𝑎௜ and 𝛽௜  coefficients. 

 
2.3 Preparing Data for Experiments 

To test and compare the results of the 
constructed models, a system with the architecture, 
shown in Figure 1, was deployed locally.

 

 
Figure 1: System Architecture

To prepare experimental data, the metrics 
of the logs of the Apache Kafka Open Source 
product are used. Kafka producers were programs, 
written in the high-level Python programming 
language that send messages with a certain 
frequency to predefined Kafka topics. The same 

programs generated anomalies, represented by a 
stream of messages with the number of messages per 
second exceeding the average value by 2,500 times 
compared to a similar metric for any other time 
period. 

Two producers were used (Table 1).

Table 1: Producers 1 and 2 message generation plans 

Producer 1 Producer 2 
generates messages with a length of 70 
bytes and sends them according to plan: 

 
• one message every two seconds, 
• two messages every ten seconds, 
• five messages every fiftieth second, 
• one hundred messages every five 
minutes and twenty seconds 

generates messages of variable length, 
sends them, and additionally generates two 
abnormal messages according to the plan: 

 
• one message of 70 bytes in length every 
two seconds, 
• two abnormal messages with a length of 
960 kilobytes 



Journal of Theoretical and Applied Information Technology 
31st May 2022. Vol.100. No 10 

© 2022 Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3471 

 

The resulting dataset is a set of more than 
two thousand time-series – metrics, collected by the 
JMX-exporter in the amount of 1,000 rows. Some 
metrics, uncorrelated or poorly correlated with the 
number of messages per second, such as 
jvm_threads_state, jmx_scrape_duration_seconds, 
etc. were excluded from the dataset. The data were 
normalized and shifted relative to the average of the 
training fetch. 

Note that the study does not address the 
issues of emerging new metrics (when a new topic is 
introduced in Kafka) and the irrelevance of old 
metrics (when removing topics or individual Kafka 
consumers/producers). They were not considered 
because these processes are purely technical. 

In real conditions, data will come from the 
real-time application of monitoring services, 
however, for research purposes it is sufficient to use 
a pre-prepared dataset coming in streaming mode, 
for example, using Apache Streaming. 

2.4 Anomaly Detection 
A new dataset that underwent additional 

preprocessing was prepared from the original one to 
detect anomalies. The data in the new dataset were 
normalized, as well as static metrics and correlating 
metrics were removed. 

The Spark MLlib library includes a 
Streaming K-Means model that can be used for 
streaming data clustering. However, this model has 
a disadvantage: it is impossible to load a prepared 
model into it, and therefore it always comes in action 
at a cold start. This inconvenience of the algorithm 
was eliminated by adding an adapter (Figure 2) 
between the usual K-Means model, which is used to 
pre-train the model on a certain amount of historical 
data, and the self-written K-Means Streaming 
model, which works according to formulas (3) and 
(4).

 

 
Figure 2: Class Diagram of the Implemented Adapter Between KMeans and Streaming KMeans

This is implemented as follows: after pre-
training using K-Means, K-Means Streaming loads 
the model metadata, such as the number of clusters 
and their centers. Then, using the dataset on which 
the model was trained, it determines the number of 
points in each cluster and saves them. 

 
2.5 Prediction of Time Series Values 

To solve the problem of predicting the 
values of time series, several of the most informative 
metrics of the Kafka product were selected (Table 2).

Table 2: Kafka Metrics Used 

Name Meaning 

kafka_consumer_records_consumed_rate 
The average number of records consumed per 
second 

kafka_consumer_bytes_consumed_rate 
The average number of bytes consumed by 
consumers per second 

kafka_consumer_fetch_rate The number of fetch requests per second 
kafka_consumer_fetch_latency_max The max time, taken for a fetch request 

The solution to this problem is illustrated 
below using the example of the 
kafka_consumer_bytes_consumed_rate metric, 
which shows the average number of bytes consumed 
per second. This metric strongly correlates with the 

number of messages per second, which, with an 
increase in the volume of incoming traffic, allows it 
to be used in the current task. The initial and 
normalized views of this metric are shown in Figures 
3 and 4.
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Figure 3: The Data of the Kafka_Consumer_Bytes_Consumed_Rate metric 

 

 
 

Figure 4: Normalized Data of the Kafka_Consumer_Bytes_Consumed_Rate Metric

The peaks of anomalies are clearly 
distinguished on the presented graphs. In real 
practice, such peaks are obtained during DoS and 
DDoS attacks. The existing dataset was divided into 
two parts: three quarters was a training fetch and one 
quarter – a testing fetch. This approach allows 
avoiding the problem of the cold start of the model 
since it takes significantly less time and computing 
resources to find the local minimum at each iteration. 

As a basic real-time model, a modification 
of the Streaming Linear Regression model embodied 
into the Spark MLlib library was used, which is a 

linear regression model that modifies its weights on 
each new piece of data received using the gradient 
descent method. 

The modification of the model developed 
by the tori is the autoregression AR(p), where p is 
the order of autoregression, i.e. the number of terms 
in the model corresponding to the previous p values 
of the time series. Such a model approximates 
ARMA(p,q) [18] with some accuracy at certain 
values of p. In addition to autoregression, 
ARMA(p,q) model includes a moving average 
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model, where p is the order of autoregression, and q 
is the order of the moving average model. 

The technical implementation of the model 
was made in the form of a class added in the Scala 
programming language, inheriting from the 
Streaming Linear Regression class, and 
implementing a buffer of the previous p values of the 

time series (Figure 5). Using this buffer, the time 
series is converted into a dataset with an attribute 
space consisting of values shifted relative to the 
current value of the time series (Figure 6). Thus, the 
problem is reduced to a regression problem, which 
can be addressed using methods, built into 
Streaming Linear Regression.

 

 
Figure 5: The Interface of the Autoregression Class 

 

 
Figure 6: Transformation of a Time Series to a Dataset for Linear Regression

 
3. RESULTS  
 
3.1 Anomaly Detection 

A comparison was made between K-Means 
Streaming, which was initially given a dataset for 
training, and a model using K-Means to obtain a pre-
trained model. 

The number of clusters was assumed to be 
K = 3 by the elbow method. 

The K-Means model, built into Spark 
MLlib Streaming operates according to the classical 
scheme: first, it is trained based on a training dataset 
in streaming mode, and then it can be applied to real 
data. The combined K-Means Streaming model, 
implemented by the authors, acts differently: first, it 
uses a pre-trained classical (rather than real-time) K-
Means model, whose accuracy is higher due to 
additional model tuning and optimization of 
parameters that are not available in streaming mode. 
Then, the real-time Streaming K-Means model is 
used through the adapter (Figure 2), working with 
real data. This approach allows a more flexible 
configuration of model parameters. 

As a result of the operation of the two 
described models, the centers of their clusters differ 
significantly, which is explained by a large number 
of iterations in the classical version of K-Means, 

compared with the Spark MLlib Streaming K-Means 
model, in which the emphasis is made on the 
computing speed. 

Let us consider the results of determining 
the coordinates of cluster centers for the standard K-
Means model and the proposed Streaming K-Means 
model, based on two metrics that directly determine 
the anomaly of an event, as: 

● 'message rate' – the number of messages 
per second; 

● 'kafka_consumer_bytes_consumed_rat
e’ – the number of bytes per second, received by the 
consumer. 

For the model, obtained by the standard K-
Means, the cluster centers are practically 
deterministic, since the number of iterations can be 
set during training, and when their number is higher 
than 10, the centers coincide with high accuracy. 

For Streaming K-Means, the resulting 
centers of the model that initially have received the 
same data may differ significantly in position for 
different variants. 

Let us consider two cases of training of 
Streaming K-Means models with obtaining the 
coordinates of the centers for three clusters, specified 
in two-dimensional space (Table 3).
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Table 3: Examples of Resulting Cluster Centers 

Cluster 
No 

Coordinates of the centers 
The first case The second case 

1 (7.074178082686644, -0.11795465590978567) (8.840045919479378, 0.5943960022854669) 
2 (0.6992464872049381, 5.296479067828162) (-0.08328441646883958, -0.005599962336461511) 
3 (-0.08334663515471895, -0.18317698019505607) (-0.08328441646885959, -0.005599962336481511) 

It is seen from Table 3 that the coordinates 
of the cluster centers differ from each other. 
Accordingly, the accuracy of the model differs in 
different tests. On the test dataset, clustering models 
have the following quality indicators: 

– K-Means Streaming with a model pre-
trained by K-Means: TPR = TNR = PPV = NPV = 1. 

– K-Means Streaming, which was first 
given a training fetch: TPR Є [0.90 ; 0.95], TNR = 
PPV = 1, NPV = 0.99, where TPR is sensitivity, 
TNR is specificity, PPV is accuracy, and PNV is the 
proportion of false omissions [14]. 

The decrease in quality indicators for the 
second model is associated with the non-
determinism of cluster centers after learning of K-
Means Streaming based on a test fetch. 

 
3.2 Time Series Prediction 

The following models were used for 
comparative analysis: 

– modification of autoregression, 
considered in this article, with the order of 
autoregression p=5; 

– classical autoregression, trained on a 
training dataset with the order p=5; 

– integrated autoregression of ARIMA 
moving average model with autoregression order 
p=5, differentiation degree d=2, and moving average 
order q=1. 

Figure 7 below shows a graph with the 
results of the predictions of the studied models.

 

 

 
 

Figure 7: Results of Model Prediction on the Test Fetch
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As can be seen from Figure 7, in the case of 
a dataset without periodicity, classical models 
cannot cope with the problem of predicting time 
series. Such behavior is easily explained and is since 
the anomalies are non-periodic, which means they do 
not fit into the pattern to which the classical model 
was adapted. 

 
4. DISCUSSION 

 
The considerable interest of the academic 

community in the problem of real-time processes 
monitoring in various fields of activity and, 
consequently, improving existing approaches to 
detecting anomalies and predicting time series 
values has recently been caused by the desire to use 
different starting points to solve these problems. 
There are several such starting points, namely, 
approaches based on classical models and 
algorithms, developing special real-time methods, 
and applying neural networks.  

When solving the problem of detecting 
anomalies, the range of research is gradually shifting 
from using classical methods, pre-trained on finite 
samples [10, 19-21] or based on identifying 
statistical dependencies [11, 22, 23] and using only 
neural networks [14, 23, 24], to special real-time 
methods [25-28] and combinations of various 
methods [15, 20, 24]. 

For datasets of certain structures, classical 
methods, based on the calculation of the location and 
variance of the sample, obtained from relatively 
unknown zero-order statistics [16], or using a 
statistical lever (credit leveraging) – an information-
theoretic statistical measure to identify outliers [23], 
give acceptable results. 

In the light of the evolution of the 
requirements for the methods used towards 
streaming data processing and an increase in the 
number of highly dynamic real-time time series 
analyzed, various hybrid approaches combining 
real-time methods [27, 28] with settings in the form 
of neural networks are becoming increasingly 
interesting [14, 24]. When adding the requirement to 
work in distributed networks, only real-time 
methods remain in the focus of interest. 

The proposed approach to solving the 
problem of detecting anomalies based on log-based 
metrics of technological platforms with rapidly 
changing metric values is based on the idea of 
implementing K-Means, built into Spark MLlib 
Streaming, by supplementing the initial markup 
function to implement the "hot start" model.  

When developing special real-time 
methods, the emphasis is placed on the computation 

speed in order to have time to produce these 
computations before receiving the next portion of 
streaming information. Therefore, the issue of 
bringing the values of clustering quality indicators to 
similar values of classical methods with a large 
allowable number of iterations remains and requires 
further research. 

When solving the problem of predicting the 
behavior of time series, one can note a gradual shift 
in emphasis towards developing special real-time 
methods [14] based on using classical approaches 
[29] and neural networks [30]. However, this 
problem is not yet widely presented in publications. 

 
5. CONCLUSION  
 

The present article considers the use of ML 
when working with time series in real-time to solve 
problems of detecting anomalies and predicting 
values. The article presents an overview of available 
works and open source solutions in the field of 
online learning, as well as studies and implements 
modifications of classical AR(ARMA) and K-Means 
models for real-time operation, which allows not 
only parallelizing computations using the deferred 
computing paradigm but also configuring the model 
on-the-fly in the Apache Spark ecosystem. 

To test the obtained algorithms, a dataset, 
consisting of JVM and Kafka metrics was prepared 
for the transmission of messages by two producers. 
When creating a dataset, characteristics, such as the 
number of messages per second, and the size of the 
transmitted messages were changed. Also, two 
anomalies were included in the dataset in the form of 
messages with a size many times larger than the 
average size of messages in non-anomalous sections. 
To detect anomalies and predict time series, the 
dataset was normalized. Static and correlating 
metrics were excluded. The 
kafka_consumer_bytes_consumed_rate metric was 
taken as a reference value. The dataset was divided 
into two parts: for training and testing. 

In the problem of predicting time series for 
comparative study on a test dataset, AR(5) and the 
modification of Real-Time AR(5), proposed by the 
authors were pre-trained. The classical AR(5) 
model, as expected, failed to predict the anomalous 
section. Real-Time AR predicted both anomalous 
and non-anomalous sections; however, the accuracy 
of the model was worse than that of the classical 
version, since the number of iterations of Streaming 
K-Means was limited by the need to process 
streaming data at high speed. Improving the 
accuracy of real-time algorithms can be the subject 
of further research and improvements. 
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In the anomaly detection problem, the Real-
Time K-Means modification, proposed by the 
authors, and the implementation of Streaming K-
Means from the Apache Spark Mllib library, pre-
trained based on a training dataset, were compared. 
When considering all non-correlating metrics, the 
cluster centers of the classical and online models 
appeared to be separated, however, when 
considering only metrics, directly related to the 
anomaly, the centers coincided with high accuracy. 

This fact indicates the operability of the 
Real-Time K-Means model and the need for a "hot 
start of the model", because with a "cold start" the 
efficiency of the algorithm decreases. However, 
when changing the profile of metrics, for example, 
at an increase in the load on the service, the online 
model can easily adjust to the new data, unlike the 
classic version, which cannot adjust. 

Summing up, the modifications of real-time 
models proposed by us for working with time series 
contain new results in terms of implementing the 
"hot start" method for real-time K-means, as well as 
add the ability to control the prediction horizon for 
Real-Time AR(5) when working with streaming data 
in a distributed environment. The conducted 
experiments indicate further research and 
development vector in progressing online learning 
models in the Apache Spark ecosystem. 
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