
Journal of Theoretical and Applied Information Technology
31st May 2022. Vol.100. No 10

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3467

ANOMALY DETECTION IN STREAM DATA PROCESSING
IN REAL TIME

1MAXIM DUNAEV, 2KONSTANTIN ZAYTSEV, 3ROMAN ELCHENKOV, 4DENIS SAVITSKY
1,2,3,4National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe

Avenue, Moscow, 115409, Russia

E-mail: kszajtsev@gmail.com

ABSTRACT

The purpose of the present work is to study methods for solving problems of anomaly detection and prediction
of time series values when processing streaming data in real-time in a network environment and their
improvement. To solve this problem the authors propose a Real-Time K-Means modification with
preliminary markup. The effectiveness of the modification is confirmed by comparing it with the frequently
used Streaming K-Means from the Apache Spark Mllib library. To solve the problem of predicting time series
when processing streaming data in real-time, the authors propose a modification of the autoregression model
with a given AR order by adding the inheritance function of the previous values of the time series to it. The
results of comparative experiments of the proposed Real-Time AR modification with classical AR confirmed
the effectiveness of the modification, which is especially evident in the presence of anomalies in the behavior
of the time series. The proposed algorithm modifications allow not only parallelizing calculations using the
deferred computing paradigm but also configuring the model fleetingly in the Apache Spark ecosystem. To
conduct experiments with algorithms, a dataset was built – a data slice from 1,000 measurements of the
Apache Kafka server metrics log with one topic, two producers, and one consumer. Anomalous fragments
were artificially added to the dataset, differing by a large number of messages per second and/or message
size. The values of the original dataset were normalized and shifted to the average value of the training fetch.
Moreover, static and highly correlated metrics were eliminated. The results of the application of the
developed algorithms in solving the problems of detecting and predicting the values of time series have
shown that even the presence of behavior anomalies does not distort predictions significantly.
Keywords: Logs, Technological Platform, Machine Learning, Deep Learning, Apache Software Foundation.

1. INTRODUCTION

Today, every major IT company works with

dozens or even hundreds of services deployed
simultaneously. The only reliable source of
information, characterizing the state of applications
is service logs – a set of metrics, represented by time
series of values. Using machine learning methods
and the values of log metrics, one can track various
service failures, attempts to interfere with the
operation of the application, acts of fraud, as well as
classify anomalies in the behavior of services, and
predict the values of log metrics for the nearest time
period. This knowledge helps in risk management
and decision-making.

To solve the above problems, several
successful approaches are available which are
considered to be classic. Thus, for analyzing time
series, one can distinguish algorithms such as
statistical ones (ARMA, ARIMA, GARCH, Holt-
Winters model, etc.), linear regression algorithms

[1], as well as neural networks with different
architectures (RNN, LSTM, etc.) [2, 3]. To detect
anomalies, algorithms, such as K-Means or KNN are
usually used [4-6].

These machine learning methods,
undoubtedly, can solve the above-mentioned
problems of managing complex objects, and are
actively used for various activities. However, their
straight application is not suitable for working with
continuous streams of high-intensity big data in real-
time. The standard approach for any supervised
learning task requires training the model based on a
pre-prepared training fetch, testing the correctness of
predictions on a test fetch, and then interpolating the
results to a wider fetch of real data. When processing
data, represented by time series, this approach can be
applied with serious limitations, since, firstly, time-
series data are rigidly ordered, and secondly, these
data are continuously changing over time. Therefore,
it is not reasonable to use models previously trained
on outdated data. An example is the inability to use

Journal of Theoretical and Applied Information Technology
31st May 2022. Vol.100. No 10

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3468

a model based on a fetch of a load of an online store
focused on traffic of 2,000 users per day, after a
short-term increase in traffic due to an advertising
campaign to 3,000 customers per day. Traffic is
changing and, possibly, the social status of buyers
with other needs is changing as well, and therefore
using a previously built model will give inaccurate
results at best, and completely incorrect outcomes at
worst.

One can try to retrain the model at certain
time intervals. However, such a solution is
ineffective because there is usually a lot of processed
data, and several models can be deployed
simultaneously to work with different time series.
Therefore, the process of frequent model changes
will be associated with fairly high costs. But if it is
important for us to constantly retrain the data
analysis model during operation, then we can only
use algorithms that retrain faster than the next batch
of training fetch data arrives from the stream. It is
customary to say about such algorithms that they are
trained on the fly. A class of such models is
discussed in publications as part of online learning.
For high-speed, high-intensity work, it is required to
use frameworks that allow distributed computing
over large amounts of data. One of the most popular
frameworks is Apache Spark, designed for
distributed processing of structured and unstructured
data, and being a part of the Hadoop ecosystem [7,
8].

Besides classical approaches, today
scholars are increasingly looking for real-time
models and algorithms for solving problems of
detecting anomalies and predicting time series
values.

Thus, in the article [9], a real-time
implementation of ARIMA and even an open-source
library for anomaly detection and prediction using
real-time ARIMA models are proposed. However,
the proposed framework cannot operate in a
distributed environment.

To search for anomalies, the authors [10]
suggest using OPTICS, but for datasets with
significant value dynamics, an attempt to use even
improved DBScan OPTICS does allow detecting
anomalies. Researchers [11] note the complexity of
simulating prediction processes with high accuracy
and sensitivity of anomalous states in real-time. To
solve this problem, CF-LSTM is proposed,
representing an improved multidimensional entropy
transfer method for estimating physical causality
between multidimensional time series in
combination with the LSTM model. For thousands
of time series, some of which are independent, it is

hardly possible to assess physical causality, not to
mention the accuracy and sensitivity of forecasting.

The article [12] proposes a comprehensive
method for detecting anomalies in
telecommunications traffic, which includes
components based on entropy analysis, signature
analysis, and machine learning using fractal and
recurrent analysis. The article assumes that
combining different approaches will give an
improved result. This is true only for static areas. If
it is necessary to frequently change the set of models
used, this approach will lead to an information
collapse.

The authors [13] describe a new application
of robust estimation for detecting volumetric
anomalies in the traffic of a computer network in
real-time. The proposed tests are based on the
location and variance of the sample and are derived
from relatively unknown zero-order statistics. This
approach is only effective for detecting one type of
failure with heavy tails outside of network traffic and
cannot be used for other anomalies.

The purpose of the present work is to study
existing methods for solving problems of detecting
anomalies by the log-based metrics of technological
platforms and predicting the time series values when
processing real-time streaming data in a network
environment and the possibilities for their
improvement.

To verify the solutions proposed by the
authors, it is necessary to conduct comparative
experiments with the most common algorithms used
to solve the set problems on prepared datasets
containing anomalies. Experiments will allow
determining in practice the effectiveness of the
selected methods for solving the set problems.

2. MATERIALS AND METHODS

2.1 Problem Statement

Abnormal data on the operation of
technological platforms usually include outliers of
individual log metrics values that do not correspond
to the accepted logic of the processes. Often
abnormal data characterizes some kind of problem,
for example, a structural defect, attempted fraud,
etc., although sometimes it is impossible to
determine the cause of the outlier of the
characteristic. Two problems arise in connection
with anomalies:

- real-time anomaly detection,
- prediction of possible anomalies.

Journal of Theoretical and Applied Information Technology
31st May 2022. Vol.100. No 10

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3469

2.2 Overview of Problem-Solving Algorithms
2.2.1 Algorithms used for anomaly detection

Let us consider two algorithms – K-means
and Streaming K-means.

a) K-means
The problem of detecting anomalies can be

considered as a clustering problem. Let there be n
clusters of normal behavior and one cluster of
abnormal behavior. The method of its determination
will be given later in this article. At the first stage,
we build a model based on historical behavioral data,
which we will evaluate based on the assumptions of
experts. At the second stage, we will measure
distances online within clusters for new data
appearing in the log, determining their anomaly,
while periodically updating the model.

K-means is one of the machine learning
algorithms that solve the clustering problem. This
algorithm is non-hierarchical and iterative. It has
gained great popularity due to its simplicity, clarity

of implementation and fairly high quality of the
results obtained.

The main idea of the algorithm is, as
known, that at the regular i-th step of the iterative
procedure, the center of mass of each cluster
obtained at the previous (i-1)-th step is calculated
anew, then the vectors are divided into clusters again
according to which of the new centers turned out to
be closer to them by the selected metrics.

The algorithm terminates when there is no
change in the intracluster distance at the next
iteration. The number of such iterations is finite,
since the number of possible partitions of a finite set
is finite, and at each step, the total square deviation
(V) decreases. Therefore, there will be no looping.

For certainty, we give the pseudocode of
this algorithm:

1. Setting the initial position of cluster
centers µy, y∊Y.

2. Assigning each xi to the nearest center:

𝑦𝑖 ∶ = 𝑎𝑟𝑔 𝑚𝑖𝑛 𝑝൫𝑥௜ , µ௬൯, 𝑖 = 1, … , 𝑘, (1)

where xi and yi are the coordinate and the
cluster to which point i should be assigned.

3. Calculating the new positions of the
centers as the average of the coordinates of the points
assigned to cluster i:

𝜇
௬௝

∶=
∑௟

௜ୀଵ [𝑦௜ = 𝑦]𝑓௝(𝑥௜)

∑௟
௜ୀଵ [𝑦௜ = 𝑦]

, 𝑦 ∈ 𝑌, 𝑗 = 1, … , 𝑛 (2)

Repeating steps 2 and 3 until the
composition of yi clusters stops changing [14].

b) Streaming K-means
The Streaming K-means algorithm interacts

with the coming streaming data, updating meta-
information about clusters dynamically as new data
is received with the ability to control the forgetting
of old data (parameter α in formula 3) [15]. This
algorithm uses generalized rules for updating K-
Means clusters by small data packets. For each data
packet, the nearest cluster is assigned to each point,
and then new cluster centers are calculated:

 𝑐௧ାଵ =
𝑐௧𝑛௧𝛼 + 𝑥௧𝑚௧

𝑛௧𝛼 + 𝑚௧

 (3)

 𝑛௧ାଵ = 𝑛௧ + 𝑚௧ , (4)

where ct is the previous cluster center, nt is

the number of points in cluster t at the current
moment, xt is the new cluster center made up of
points received in the package and assigned to
cluster t, mt is the number of points added to the
cluster.

The attenuation criterion α, specified within
the limits [0, 1], is used to regulate the degree of
"forgetting" of past values. Thus, at α=1, all data
from the beginning of the observation will be used,
at α=0, all data except the last ones will be discarded.
This parameter is similar to an exponentially
weighted moving average.

The attenuation can also be set by the
halfLife parameter (half-life), which determines the
correct attenuation coefficient α so that for data
received at time moment t, their contribution by time
point t+halfLife drops to 0.5.
2.2.2 Algorithms for predicting time series
values

To predict the time series values, we also
consider two algorithms.

a) Autoregressive model
This is a time series model in which the

time series values at the current time point depend
linearly on the previous values [16]. This model can
be represented by an equation of the form:

𝑋௧ = 𝑐 + ෍

௣

௜ୀଵ

𝑎௜𝑋௧ି௜ + 𝜀௧ (5)

Journal of Theoretical and Applied Information Technology
31st May 2022. Vol.100. No 10

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3470

where ai are the autoregression coefficients,

c is a constant coefficient, 𝜀௧ is stationary noise, i.e.
a sequence of random variables distributed, as a rule,
according to a normal law with an average equal to
zero, p is the order of the model.

The optimization problem is to determine
both the parameter p, i.e. the number of previous
values, used to predict the current value of the time
series and the autoregression coefficients.

b) ARMA
The moving average autoregression model

is a mathematical model that is used to predict the
values of a stationary time series variable.

The ARMA (p, q) model, where p and q are
integers, specifying the order of the model, is the
process of generating a time series of the form [17]:

𝑋௧ = 𝑐 + 𝜀௧ + ෍

௣

௜ୀଵ

𝑎௜𝑋௧ି௜

+ ෍

௤

௜ୀଵ

𝛽௜𝜀௧ି௜

(6)

where c is a constant, 𝜀௧ is stationary

noise, 𝑎௜ and 𝛽௜ are autoregressive coefficients and
moving average coefficients.

The optimization problem is to determine
the order of the model (the p and q numbers) and
the 𝑎௜ and 𝛽௜ coefficients.

2.3 Preparing Data for Experiments

To test and compare the results of the
constructed models, a system with the architecture,
shown in Figure 1, was deployed locally.

Figure 1: System Architecture

To prepare experimental data, the metrics
of the logs of the Apache Kafka Open Source
product are used. Kafka producers were programs,
written in the high-level Python programming
language that send messages with a certain
frequency to predefined Kafka topics. The same

programs generated anomalies, represented by a
stream of messages with the number of messages per
second exceeding the average value by 2,500 times
compared to a similar metric for any other time
period.

Two producers were used (Table 1).

Table 1: Producers 1 and 2 message generation plans

Producer 1 Producer 2
generates messages with a length of 70
bytes and sends them according to plan:

• one message every two seconds,
• two messages every ten seconds,
• five messages every fiftieth second,
• one hundred messages every five
minutes and twenty seconds

generates messages of variable length,
sends them, and additionally generates two
abnormal messages according to the plan:

• one message of 70 bytes in length every
two seconds,
• two abnormal messages with a length of
960 kilobytes

Journal of Theoretical and Applied Information Technology
31st May 2022. Vol.100. No 10

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3471

The resulting dataset is a set of more than
two thousand time-series – metrics, collected by the
JMX-exporter in the amount of 1,000 rows. Some
metrics, uncorrelated or poorly correlated with the
number of messages per second, such as
jvm_threads_state, jmx_scrape_duration_seconds,
etc. were excluded from the dataset. The data were
normalized and shifted relative to the average of the
training fetch.

Note that the study does not address the
issues of emerging new metrics (when a new topic is
introduced in Kafka) and the irrelevance of old
metrics (when removing topics or individual Kafka
consumers/producers). They were not considered
because these processes are purely technical.

In real conditions, data will come from the
real-time application of monitoring services,
however, for research purposes it is sufficient to use
a pre-prepared dataset coming in streaming mode,
for example, using Apache Streaming.

2.4 Anomaly Detection
A new dataset that underwent additional

preprocessing was prepared from the original one to
detect anomalies. The data in the new dataset were
normalized, as well as static metrics and correlating
metrics were removed.

The Spark MLlib library includes a
Streaming K-Means model that can be used for
streaming data clustering. However, this model has
a disadvantage: it is impossible to load a prepared
model into it, and therefore it always comes in action
at a cold start. This inconvenience of the algorithm
was eliminated by adding an adapter (Figure 2)
between the usual K-Means model, which is used to
pre-train the model on a certain amount of historical
data, and the self-written K-Means Streaming
model, which works according to formulas (3) and
(4).

Figure 2: Class Diagram of the Implemented Adapter Between KMeans and Streaming KMeans

This is implemented as follows: after pre-
training using K-Means, K-Means Streaming loads
the model metadata, such as the number of clusters
and their centers. Then, using the dataset on which
the model was trained, it determines the number of
points in each cluster and saves them.

2.5 Prediction of Time Series Values

To solve the problem of predicting the
values of time series, several of the most informative
metrics of the Kafka product were selected (Table 2).

Table 2: Kafka Metrics Used

Name Meaning

kafka_consumer_records_consumed_rate
The average number of records consumed per
second

kafka_consumer_bytes_consumed_rate
The average number of bytes consumed by
consumers per second

kafka_consumer_fetch_rate The number of fetch requests per second
kafka_consumer_fetch_latency_max The max time, taken for a fetch request

The solution to this problem is illustrated
below using the example of the
kafka_consumer_bytes_consumed_rate metric,
which shows the average number of bytes consumed
per second. This metric strongly correlates with the

number of messages per second, which, with an
increase in the volume of incoming traffic, allows it
to be used in the current task. The initial and
normalized views of this metric are shown in Figures
3 and 4.

Journal of Theoretical and Applied Information Technology
31st May 2022. Vol.100. No 10

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3472

Figure 3: The Data of the Kafka_Consumer_Bytes_Consumed_Rate metric

Figure 4: Normalized Data of the Kafka_Consumer_Bytes_Consumed_Rate Metric

The peaks of anomalies are clearly
distinguished on the presented graphs. In real
practice, such peaks are obtained during DoS and
DDoS attacks. The existing dataset was divided into
two parts: three quarters was a training fetch and one
quarter – a testing fetch. This approach allows
avoiding the problem of the cold start of the model
since it takes significantly less time and computing
resources to find the local minimum at each iteration.

As a basic real-time model, a modification
of the Streaming Linear Regression model embodied
into the Spark MLlib library was used, which is a

linear regression model that modifies its weights on
each new piece of data received using the gradient
descent method.

The modification of the model developed
by the tori is the autoregression AR(p), where p is
the order of autoregression, i.e. the number of terms
in the model corresponding to the previous p values
of the time series. Such a model approximates
ARMA(p,q) [18] with some accuracy at certain
values of p. In addition to autoregression,
ARMA(p,q) model includes a moving average

Journal of Theoretical and Applied Information Technology
31st May 2022. Vol.100. No 10

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3473

model, where p is the order of autoregression, and q
is the order of the moving average model.

The technical implementation of the model
was made in the form of a class added in the Scala
programming language, inheriting from the
Streaming Linear Regression class, and
implementing a buffer of the previous p values of the

time series (Figure 5). Using this buffer, the time
series is converted into a dataset with an attribute
space consisting of values shifted relative to the
current value of the time series (Figure 6). Thus, the
problem is reduced to a regression problem, which
can be addressed using methods, built into
Streaming Linear Regression.

Figure 5: The Interface of the Autoregression Class

Figure 6: Transformation of a Time Series to a Dataset for Linear Regression

3. RESULTS

3.1 Anomaly Detection

A comparison was made between K-Means
Streaming, which was initially given a dataset for
training, and a model using K-Means to obtain a pre-
trained model.

The number of clusters was assumed to be
K = 3 by the elbow method.

The K-Means model, built into Spark
MLlib Streaming operates according to the classical
scheme: first, it is trained based on a training dataset
in streaming mode, and then it can be applied to real
data. The combined K-Means Streaming model,
implemented by the authors, acts differently: first, it
uses a pre-trained classical (rather than real-time) K-
Means model, whose accuracy is higher due to
additional model tuning and optimization of
parameters that are not available in streaming mode.
Then, the real-time Streaming K-Means model is
used through the adapter (Figure 2), working with
real data. This approach allows a more flexible
configuration of model parameters.

As a result of the operation of the two
described models, the centers of their clusters differ
significantly, which is explained by a large number
of iterations in the classical version of K-Means,

compared with the Spark MLlib Streaming K-Means
model, in which the emphasis is made on the
computing speed.

Let us consider the results of determining
the coordinates of cluster centers for the standard K-
Means model and the proposed Streaming K-Means
model, based on two metrics that directly determine
the anomaly of an event, as:

● 'message rate' – the number of messages
per second;

● 'kafka_consumer_bytes_consumed_rat
e’ – the number of bytes per second, received by the
consumer.

For the model, obtained by the standard K-
Means, the cluster centers are practically
deterministic, since the number of iterations can be
set during training, and when their number is higher
than 10, the centers coincide with high accuracy.

For Streaming K-Means, the resulting
centers of the model that initially have received the
same data may differ significantly in position for
different variants.

Let us consider two cases of training of
Streaming K-Means models with obtaining the
coordinates of the centers for three clusters, specified
in two-dimensional space (Table 3).

Journal of Theoretical and Applied Information Technology
31st May 2022. Vol.100. No 10

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3474

Table 3: Examples of Resulting Cluster Centers

Cluster
No

Coordinates of the centers
The first case The second case

1 (7.074178082686644, -0.11795465590978567) (8.840045919479378, 0.5943960022854669)
2 (0.6992464872049381, 5.296479067828162) (-0.08328441646883958, -0.005599962336461511)
3 (-0.08334663515471895, -0.18317698019505607) (-0.08328441646885959, -0.005599962336481511)

It is seen from Table 3 that the coordinates
of the cluster centers differ from each other.
Accordingly, the accuracy of the model differs in
different tests. On the test dataset, clustering models
have the following quality indicators:

– K-Means Streaming with a model pre-
trained by K-Means: TPR = TNR = PPV = NPV = 1.

– K-Means Streaming, which was first
given a training fetch: TPR Є [0.90 ; 0.95], TNR =
PPV = 1, NPV = 0.99, where TPR is sensitivity,
TNR is specificity, PPV is accuracy, and PNV is the
proportion of false omissions [14].

The decrease in quality indicators for the
second model is associated with the non-
determinism of cluster centers after learning of K-
Means Streaming based on a test fetch.

3.2 Time Series Prediction

The following models were used for
comparative analysis:

– modification of autoregression,
considered in this article, with the order of
autoregression p=5;

– classical autoregression, trained on a
training dataset with the order p=5;

– integrated autoregression of ARIMA
moving average model with autoregression order
p=5, differentiation degree d=2, and moving average
order q=1.

Figure 7 below shows a graph with the
results of the predictions of the studied models.

Figure 7: Results of Model Prediction on the Test Fetch

Journal of Theoretical and Applied Information Technology
31st May 2022. Vol.100. No 10

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3475

As can be seen from Figure 7, in the case of
a dataset without periodicity, classical models
cannot cope with the problem of predicting time
series. Such behavior is easily explained and is since
the anomalies are non-periodic, which means they do
not fit into the pattern to which the classical model
was adapted.

4. DISCUSSION

The considerable interest of the academic

community in the problem of real-time processes
monitoring in various fields of activity and,
consequently, improving existing approaches to
detecting anomalies and predicting time series
values has recently been caused by the desire to use
different starting points to solve these problems.
There are several such starting points, namely,
approaches based on classical models and
algorithms, developing special real-time methods,
and applying neural networks.

When solving the problem of detecting
anomalies, the range of research is gradually shifting
from using classical methods, pre-trained on finite
samples [10, 19-21] or based on identifying
statistical dependencies [11, 22, 23] and using only
neural networks [14, 23, 24], to special real-time
methods [25-28] and combinations of various
methods [15, 20, 24].

For datasets of certain structures, classical
methods, based on the calculation of the location and
variance of the sample, obtained from relatively
unknown zero-order statistics [16], or using a
statistical lever (credit leveraging) – an information-
theoretic statistical measure to identify outliers [23],
give acceptable results.

In the light of the evolution of the
requirements for the methods used towards
streaming data processing and an increase in the
number of highly dynamic real-time time series
analyzed, various hybrid approaches combining
real-time methods [27, 28] with settings in the form
of neural networks are becoming increasingly
interesting [14, 24]. When adding the requirement to
work in distributed networks, only real-time
methods remain in the focus of interest.

The proposed approach to solving the
problem of detecting anomalies based on log-based
metrics of technological platforms with rapidly
changing metric values is based on the idea of
implementing K-Means, built into Spark MLlib
Streaming, by supplementing the initial markup
function to implement the "hot start" model.

When developing special real-time
methods, the emphasis is placed on the computation

speed in order to have time to produce these
computations before receiving the next portion of
streaming information. Therefore, the issue of
bringing the values of clustering quality indicators to
similar values of classical methods with a large
allowable number of iterations remains and requires
further research.

When solving the problem of predicting the
behavior of time series, one can note a gradual shift
in emphasis towards developing special real-time
methods [14] based on using classical approaches
[29] and neural networks [30]. However, this
problem is not yet widely presented in publications.

5. CONCLUSION

The present article considers the use of ML
when working with time series in real-time to solve
problems of detecting anomalies and predicting
values. The article presents an overview of available
works and open source solutions in the field of
online learning, as well as studies and implements
modifications of classical AR(ARMA) and K-Means
models for real-time operation, which allows not
only parallelizing computations using the deferred
computing paradigm but also configuring the model
on-the-fly in the Apache Spark ecosystem.

To test the obtained algorithms, a dataset,
consisting of JVM and Kafka metrics was prepared
for the transmission of messages by two producers.
When creating a dataset, characteristics, such as the
number of messages per second, and the size of the
transmitted messages were changed. Also, two
anomalies were included in the dataset in the form of
messages with a size many times larger than the
average size of messages in non-anomalous sections.
To detect anomalies and predict time series, the
dataset was normalized. Static and correlating
metrics were excluded. The
kafka_consumer_bytes_consumed_rate metric was
taken as a reference value. The dataset was divided
into two parts: for training and testing.

In the problem of predicting time series for
comparative study on a test dataset, AR(5) and the
modification of Real-Time AR(5), proposed by the
authors were pre-trained. The classical AR(5)
model, as expected, failed to predict the anomalous
section. Real-Time AR predicted both anomalous
and non-anomalous sections; however, the accuracy
of the model was worse than that of the classical
version, since the number of iterations of Streaming
K-Means was limited by the need to process
streaming data at high speed. Improving the
accuracy of real-time algorithms can be the subject
of further research and improvements.

Journal of Theoretical and Applied Information Technology
31st May 2022. Vol.100. No 10

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3476

In the anomaly detection problem, the Real-
Time K-Means modification, proposed by the
authors, and the implementation of Streaming K-
Means from the Apache Spark Mllib library, pre-
trained based on a training dataset, were compared.
When considering all non-correlating metrics, the
cluster centers of the classical and online models
appeared to be separated, however, when
considering only metrics, directly related to the
anomaly, the centers coincided with high accuracy.

This fact indicates the operability of the
Real-Time K-Means model and the need for a "hot
start of the model", because with a "cold start" the
efficiency of the algorithm decreases. However,
when changing the profile of metrics, for example,
at an increase in the load on the service, the online
model can easily adjust to the new data, unlike the
classic version, which cannot adjust.

Summing up, the modifications of real-time
models proposed by us for working with time series
contain new results in terms of implementing the
"hot start" method for real-time K-means, as well as
add the ability to control the prediction horizon for
Real-Time AR(5) when working with streaming data
in a distributed environment. The conducted
experiments indicate further research and
development vector in progressing online learning
models in the Apache Spark ecosystem.

REFERENCES:

[1] P.J. Brockwell, and R.A. Davis,

Introduction to time series and forecasting.
Springer, 2016.

[2] A. Aldweesh, A. Derhab, and A.Z. Emam,
“Deep learning approaches for anomaly-
based intrusion detection systems: A
survey, taxonomy, and open issues,”
Knowledge-Based Systems, Vol. 189, 2020,
Art. No. 105124.

[3] Y.G. Cinar, H. Mirisaee, P. Goswami, E.
Gaussier, A. Ait-Bachir, and V. Strijov,
Time series forecasting using RNNs: An
extended attention mechanism to model
periods and handle missing values, March
29, 2017. [Online]. Available:
https://arxiv.org/pdf/1703.10089v1.pdf

[4] A. Sarvani, B. Venugopal, and N.
Devarakonda, “Anomaly detection using k-
means approach and outliers detection
technique”, in K. Ray, T. Sharma, S. Rawat,
R. Saini, and A. Bandyopadhyay (Eds.),
Soft computing: Theories and applications.
Advances in intelligent systems and
computing, Vol. 742. Singapore: Springer,

2019, pp. 375-385.
https://doi.org/10.1007/978-981-13-0589-
4_35

[5] V. Lemaire, O. Alaoui Ismaili, A.
Cornu´ejols, and D. Gay, “Predictive k-
means with local models”, in W. Lu, and
K.Q. Zhu (Eds.), Trends and applications
in knowledge discovery and data mining.
PAKDD 2020. Lecture notes in computer
science, Vol. 12237. Cham, Switzerland:
Springer, 2020, pp. 91-103.
https://doi.org/10.1007/978-3-030-60470-
7_10.

[6] T. Tsigkritis, G. Groumas, and M.
Schneider, “On the use of k-NN in anomaly
detection”, Journal of Information Security,
Vol. 9, 2018, pp. 70-84.
http://dx.doi.org/10.4236/jis.2018.91006

[7] Unified engine for large-scale data
analytics. [Online]. Available:
https://spark.apache.org/ (access date:
October 1, 2021).

[8] Apache Hadoop. [Online]. Available:
https://hadoop.apache.org/ (access date:
October 1, 2021).

[9] V. Kozitsin, I. Katser, and D. Lakontsev,
“Online forecasting and anomaly detection
based on the ARIMA model”, Applied
Sciences, Vol. 11, No. 7, 2021, Art. No.
3194. https://doi.org/10.3390/app11073194

[10] V. Zeufack, D. Kim, D. Seo, and A. Lee,
“An unsupervised anomaly detection
framework for detecting anomalies in real-
time through network system’s log files
analysis”, High-Confidence Computing,
Vol. 1, No. 2, 2021, Art. No. 100030.

[11] S. Chen, G. Jin, and X. Ma, “Detection and
analysis of real-time anomalies in large-
scale complex system”, Measurement, Vol.
184, 2021, Art. No. 109929.
https://www.sciencedirect.com/science/arti
cle/abs/pii/S0263224121008666

[12] A.S. Alghawli, “Complex methods detect
anomalies in real time based on time series
analysis”, Alexandria Engineering Journal,
Vol. 61, No. 1, 2022, pp. 549-561.
https://reader.elsevier.com/reader/sd/pii/S1
110016821003951?token=B823CED8598
AAC7DCC9AC34673F2B52765413196D
F858577AB726F3FC00A6C759F15EC76
DB89AE6F2E47FA31C6195700&originR
egion=eu-west-
1&originCreation=20211109114841

[13] C.A. Bollmann, M. Tummala, and J.C.
McEachen, “Resilient real-time network

Journal of Theoretical and Applied Information Technology
31st May 2022. Vol.100. No 10

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3477

anomaly detection using novel non-
parametric statistical tests”, Computers &
Security, Vol. 102, 2021, Art. No. 102146.
https://doi.org/10.1016/j.cose.2020.102146

[14] Z. Wang, Y.H. Zhou, and G.M. Li,
“Anomaly detection by using streaming k-
means and batch k-means”, in 2020 5th Ieee
International Conference on Big Data
Analytics (IEEE ICBDA 2020), Xiamen,
China, 8–11 May 2020, pp. 11–17.

[15] Clustering - RDD-based API. [Online].
Available:
https://spark.apache.org/docs/latest/mllib-
clustering.html (access date: October 1,
2021).

[16] R.H. Shumway, and D.S. Stoffer, Time
series analysis and its applications: With R
examples, 3rd ed. Springer, 2011, 609 p

[17] E.J. Hannan, Multiple time series. Wiley
series in probability and mathematical
statistics. New York, NY: John Wiley &
Sons Inc., 2009.

[18] O. Anava, E. Hazan, Sh. Mannor, and O.
Shamir, "Online learning for time series
prediction", Proceedings of the 26th Annual
Conference on Learning Theory, PMLR,
Vol. 30, 2013, pp. 172-184.

[19] Md T.R. Laskar, J.X. Huang, V. Smetana,
Ch. Stewart, K. Pouw, A. An, S. Chan, and
L. Liu, “Extending isolation forest for
anomaly detection in big data via k-means”,
ACM Transactions on Cyber-Physical
Systems, Vol. 5, No. 4, 2021, Art. No. 41.
https://doi.org/10.1145/3460976

[20] J. Henriques, F. Caldeira, T. Cruz, and P.
Simoes, “Combining K-Means and
XGBoost Models for Anomaly Detection
Using Log Datasets”, Electronics, Vol. 9,
No. 7, 2020, Art. No. 1164.
https://doi.org/10.3390/electronics9071164

[21] S. Ying, B. Wang, L. Wang, Q. Li, Y. Zhao,
J. Shang, H. Huang, G. Cheng, Z. Yang, and
J. Geng, “An Improved KNN-Based
Efficient Log Anomaly Detection Method
with Automatically Labeled Samples”,
ACM Transactions on Knowledge
Discovery from Data, Vol. 15, No. 3, 2021,
Art. No. 34.
https://doi.org/10.1145/3441448

[22] T. Fawcett, “An introduction to ROC
analysis”, Pattern Recognition Letters, Vol.
27, No. 8, 2006, pp. 861–874.

[23] J. Ko, and M. Comuzzi, “Keeping our rivers
clean: Information-theoretic online
anomaly detection for streaming business
process events”, Information Systems, Vol.
104, 2022, Art. No. 101894.
https://www.sciencedirect.com/science/arti
cle/abs/pii/S0306437921001125

[24] X. Zhang, J. Mu, X. Zhang, H. Liu, L.
Zong, and Y. Li, “Deep anomaly detection
with self-supervised learning and
adversarial training”, Pattern Recognition,
Vol. 121, 2022, Art. No. 108234.
https://www.sciencedirect.com/science/arti
cle/abs/pii/S0031320321004155

[25] V. Kuznetsov, and M. Mohri, “Time series
prediction and online learning”, 29th
Annual Conference on Learning Theory,
PMLR, Vol. 49, 2016, pp. 1190-1213.

[26] D. Fotakis, Th. Lianeas, G. Piliouras, and S.
Skoulakis, “Efficient online learning of
optimal rankings: Dimensionality reduction
via gradient descent”, in Advances in
Neural Information Processing Systems 33:
Proceedings of the international
conference "Neural Information Processing
Systems 2020" (NeurIPS 2020). Curran
Associates, Inc., 2020.

[27] Streaming linear regression. [Online].
Available:
https://spark.apache.org/docs/latest/mllib-
linear-methods.html#streaming-linear-
regression (access date: October 1, 2021).

[28] Streaming k-means. [Online]. Available:
https://spark.apache.org/docs/latest/mllib-
clustering.html#streaming-k-means (access
date: October 1, 2021).

[29] R.J. Hyndman, and G. Athanasopoulos,
Forecasting: Principles and practice, 3rd
ed. Melbourne, Australia: OTexts, 2021.

[30] Z. Han, J. Zhao, H. Leung, K.F. Ma, and W.
Wang, “A Review of Deep Learning
Models for Time Series Prediction”, IEEE
Sensors Journal, Vol. 21, No. 6, 2021, pp.
7833-7848.
https://ieeexplore.ieee.org/abstract/docume
nt/8742529

